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Abstract It is well known that the Einstein-scalar system
of general relativity can in principle yield non-unique exact
spinning naked singularities, which lead to unique Kerr black
hole when the scalar field is switched off. It is a challenging
task to observationally distinguish these two types of objects.
Since accretion process could be a viable diagnostic for this
distinction, the purpose of the present work is to explore
whether there could be features in the accretion profiles dis-
tinguishing the singularity from a Kerr black hole. Here we
study the Novikov–Thorne thin accretion to a new spinning
naked singularity with a scalar charge σ recently reported by
Bogush and Gal’tsov (BG). Our study reveals that: (1) the
conversion efficiency ε of the BG naked singularity is inde-
pendent of σ and (2) the maxima of emissivity profiles for
the BG singularity tend to shift towards the inner disk ISCO
boundary r = rms and peak at a value significantly larger
than those of a Kerr black hole with the increase of a, σ and
relative shrinking of

√−g. All these effects arequantitatively
tabulated, which reveal, for instance, that the flux from the
naked singularity could be as high as 105 times larger than
that of a Kerr black hole. Since these distinguishing features
are known to be shared also by other models of naked singu-
larity, it is tempting to speculate that such behavior could be
hallmark of naked singularities.
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1 Introduction

After the advent of Brans–Dicke (BD) theory, originally for-
mulated in the Jordan Frame (JF) as a Machian competitor
to Einstein’s general relativity, scalar fields have become a
significant component of research in gravitational physics
today. Solar system experiments suggest that the dimen-
sionless BD coupling constant ωBD should be very large,
|ωBD| ≥ 50,000, and in this limit the two theories become
practically identical (however, see [1,2]). In the conformally
rescaled Einstein Frame (EF), the original JF formulation
becomes Einstein’s general relativity (GR), which has found
many applications including the interpretation of galactic
halo (see, e.g., [3,4]). Applying the generation technique
devised in [5–7] together with a radial redefinition proposed
in [8], Kim [9] generated a BD–Kerr–Newman type naked
singularity solution. Its chargeless corollary is the BD–Kerr
type naked singularity for which the steady state Novikov–
Thorne [10–13] accretion disk emissivity properties have
been recently studied by Shahidi, Harko and Kovács (SHK)
[14]. On the other hand, a new naked singularity solution
in the Einstein-scalar theory has been obtained recently by
Bogush and Galt’sov (BG) [15] that yield Kerr black hole
in the zero scalar field limit. Since the signatures of accre-
tion to naked singularity could be an important diagnostic
distinguishing it from black hole, our motivation here is to
precisely explore those distinguishing features in the com-
parative accretion profiles of the singularity and Kerr black
hole. With this in mind, we shall study the accretion proper-
ties of the BG solution [15].

In general, due to the existence of non-trivial scalar field
(often called hair) either in the JF or in the EF, the solutions
might show singularity at a finite radius, where curvature
invariants diverge. It is called a naked singularity since noth-
ing in spacetime prevents light to reach external asymptotic
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observers thereby making it visible. Penrose’s cosmic censor-
ship conjecture [16] forbids occurrence of naked singularity
(strong version) or if it occurs, it must be clothed by an event
horizon (weak version) preventing light to reach asymptotic
observers. There is also the Ruffini–Wheeler conjecture [17]
that states that “black holes can have no hair”. Since the two
conjectures are not yet rigorously proven, the final fate of
gravitational collapse does not rule out naked singularities,
hairy or otherwise [18]. A notable realistic scenario involves
perfect fluid collapse which, depending on the initial con-
ditions, can lead to a naked singularity known as the JMN
solution [19]. Early static singular solution with scalar hair
in the EF is well known [20]. (See also, [21]). There is a large
literature on scalar field solutions (not necessarily singular
ones) both in JF and EF including works on BD wormholes
threaded by exotic scalar field [22–28]. Some works relate
to the possible detectability of wormholes and naked sin-
gularities by their gravitational lensing signatures [29–38]
and by their accretion disk characteristics [39–47]. There are
important works related to material collapse to black holes –
an early one being the famous hoop conjecture due to Thorne
[48] and its recent inverse due to Hod [49–53], stability issues
in generic scalar tensor theory (see, e.g., [54]) – the list is by
no means exhaustive. There is however a useful introduc-
tory review on this topic in SHK [14] and comprehensive
references are available therein.

If naked singularities truly exist in nature, it should have
some distinct observable signatures. Two important obser-
vational diagnostics come to mind. One is to measure their
accretion emissivity profiles to see how they differ from those
of Kerr black hole and the other is to measure their shadows
projected on the background of the corresponding accretion
flows. We shall focus on the former diagnostic in this paper.
SHK [14] studied this diagnostic for BD–Kerr type naked sin-
gularity from which, depending on the ranges of the solution
parameter γ (related to ωBD), BD–Kerr type hairy black hole
also followed. The occurrence of scalar hairy black holes can
have implications for Penrose censorship conjecture as dis-
cussed in [14]. In contrast, no hairy black holes follow from
the BG naked singularity of GR [15] reflecting the difference
between the BD and GR black holes.

In this paper, we study thin accretion disk radiation pro-
files of the BG solution using the celebrated Novikov–Thorne
model, ingredients of which we briefly summarize for easy
reading in Sect. 2. Next, in Sect. 3, assuming a toy model of
stellar sized BG spinning naked singularity, we compute the
emissivity profiles (Sect. 4), and compare them with those
of Kerr black hole. Section 5 summarizes our findings. We
shall take units such that 8πG = c = 1.

2 Thin accretion disk: Novikov–Thorne model in brief

For our purposes, we start with the general form of the spin-
ning metric

dτ 2 = gttdt
2 + 2gtϕdtdϕ + grrdr

2 + gθθdθ2 + gϕϕdϕ2,

(1)

and from it find two sets of formulas related to the accretion
disk. These are:

2.1 Kinematic formulas

Since the BG metric components are independent of t and ϕ,
there exist conserved quantities, which are the specific energy
˜E , the specific angular momentum ˜L of test particles moving
in stable orbits. For particles moving on the equatorial plane
(θ = π/2), they are

gtt
dt

dτ
+ gtϕ

dϕ

dτ
= −˜E, (2)

gtϕ
dt

dτ
+ gϕϕ

dϕ

dτ
= ˜L. (3)

Solving, one obtains

dt

dτ
= ˜Egϕϕ + ˜Lgtϕ

g2
tϕ − gtt gϕϕ

, (4)

dϕ

dτ
= − ˜Egtϕ + ˜Lgtt

g2
tϕ − gtt gϕϕ

. (5)

From the metric, then it follows for massive test particles that
[43]

grr

(

dr

dτ

)2

= Veff(r; ˜E, ˜L). (6)

The last equation thus provides an effective potential term

Veff(r; ˜E, ˜L) = −1 + ˜E2gϕϕ + 2˜E˜Lgtϕ + ˜L2gtt
g2
tϕ − gtt gϕϕ

. (7)

Circular orbit radii in the equatorial plane follow from
Veff (r) = 0 and Veff,r (r) = 0, where the comma in the
subscript denotes a derivative with respect to the radial coor-
dinate r . These conditions allow us to write the kinematic
quantities as

˜E = − gtt + gtϕΩ
√−gtt − 2gtϕΩ − gϕϕΩ2

, (8)

˜L = gtϕ + gϕϕΩ
√−gtt − 2gtϕΩ − gϕϕΩ2

, (9)

Ω = dϕ

dt
= −−gtϕ,r ±

√

(

gtϕ,r
)2 − gtt,r gϕϕ,r

gϕϕ,r
. (10)
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Following Novikov–Thorne model [10], an important
characteristic of the accretion disk is the efficiency ε, which
quantifies the ability by which the accreting body converts
particle mass into radiation. It is measured at infinity and is
defined as the ratio between the rate of energy of the pho-
tons emitted from the disk surface and the rate with which
mass-energy is transported to the central accreting body. If
all photons reach asymptotic infinity, the efficiency is given
by the specific energy ˜E of accreting particles measured at
r = rms such that [12,13]

ε = 1 − ˜Ems. (11)

The behavior of the potential V in Eq. (7) givesmarginally
stable circular radius r = rms defining an inner edge or inner-
most stable circular orbit (ISCO) radius as a the solution of

d2Veff/dr
2
∣

∣

∣

r=rms
= 0, (12)

while the orbits at higher radii are Keplerian. We emphasize
that the above kinematic formulas ˜E , ˜L , Ω , ε and Veff depend
only on gtt , gϕϕ and gtϕ , which are the same as the Kerr metric
and therefore the rms exactly coincide with those for the Kerr
geometry obtained long ago by Bardeen, Press and Teukolsky
[55]. So we omit displaying the well known kinematic plots
for Kerr black hole but the formulas will anyway be needed
for emissivity profile computations in the sequel.

2.2 Emissivity formulas

We assume the accretion disk to be thin such that |θ − π/2| �
1 and the height H much smaller than the characteristic radius
R of the disk, H � R. The disk is assumed to be in hydro-
dynamical equilibrium stabilizing its vertical size, with the
pressure and vertical entropy gradient being negligible in the
disk. The efficient cooling via the radiation over the disk sur-
face is assumed to be preventing the disk from collecting the
heat generated by stresses and dynamical friction. In steady-
state accretion disk models, the mass accretion rate Ṁ0 is
assumed to be constant and the physical quantities describ-
ing the orbiting matter are averaged over a characteristic time
scale, e.g., the total period of the orbits over the azimuthal
angle Δϕ = 2π , and over the height H .

In the above steady-state thin disk model, the orbiting
particles have Ω , ˜E and ˜L that depend only on the radii
of the orbits. Accreting particles orbiting with the four-
velocity uμ form a disk of an averaged surface density ρ.
Novikov and Thorne [10], using the rest mass conservation
law, showed that the time averaged rate of rest mass accretion
dM0/dt is independent of the radius, i.e., Ṁ0 ≡ dM0/dt =
−2πrurρ = const. (Here ur is the radial component of the
four-velocity). We omit other known technical details of the
model but quote only the relevant formulas below.

These consist of the flux F(r), temperature T (r) and the
lumininosity of the radiant energy L (ν) over the disk that
can be expressed in terms of Ω , ˜E and ˜L of the compact
sphere as

F (r) = − Ṁ0

4π
√−g

Ω,r
(

˜E − Ω˜L
)2

∫ r

rms

(

˜E − Ω˜L
)

˜L ,r dr.

(13)

Because of the assumed thermodynamical equilibrium, the
radiation flux emitted by the disk surface will follow Stefan–
Boltzmann law:

F (r) = σ0T
4 (r) , (14)

where σ0 is the Stefan–Boltzmann constant. The observed
luminosity L (ν) has a redshifted black body spectrum

L (ν) = 4πd2 I (ν) = 8πh cos j

c2

∫ rf

rms

∫ 2π

0

ν3
e rdrdϕ

exp
[

hνe
kBT

]

− 1
.

(15)

Here h is Planck’s constant, I (ν) is the Planck distribu-
tion function, kB is the Boltzmann constant, νe is the emission
frequency, d is the distance to the source, j is the disk incli-
nation angle perpendicular to the line of sight, and rms and
rf indicate the radii of the innermost and outermost edge of
the disk, respectively. We take rf → ∞, since we expect that
the flux over the disk surface should vanish at r → ∞ due to
the assumed asymptotic flatness of the geometry. We assume
j = 0◦ so that the disk is face-on. The observed photons
are redshifted to the reception frequency νr related to the
emission frequency νe by

νe = (1 + z)νr , (16)

where the red-shift factor is given by [43]

1 + z = 1 + Ωr sin ϕ sin j
√−gtt − 2gtϕΩ − gϕϕΩ2

. (17)

We shall numerically integrate out Eq. (15) over r and ϕ, tak-
ing into account the expressions of redshift factor from Eqs.
(16) and (17), to compute the luminosity L (ν) as a function
of frequency ν. It is important to note that the denominator in
Eq. (17) becomes smaller as r → rms, hence the redshift fac-
tor (1 + z) becomes large causing a large luminosity νL (ν)

vs ν [Hz] plotted in Fig. 3, whereas the light bending effect
becomes negligible compared to it (see, e.g., [14]) and hence
ignored in the present work.
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3 Comparison of emissivity profiles of BG spinning
naked singularity and Kerr black hole

3.1 Bogush–Galt’sov (BG) spinning naked singularity

Einstein field equations coupled minimally to a scalar field
φ considered by BG are [15]:

Rμν = 2∂μφ∂νφ, (18)

∇μ∇μφ = 0. (19)

The complete solution is given in the form

dτ 2
BG = − f (dt − ωdϕ)2 + f −1hi j dx

i dx j , (20)

f (r, θ) = Δ − a2 sin2 θ

r2 + a2 cos2 θ
, (21)

ω(r, θ) = − 2aMr sin2 θ

Δ − a2 sin2 θ
, (22)

hi j dx
i dx j = H(r, θ)

(

dr2 + Δdθ2
)

+ Δ sin2 θdϕ2, (23)

Δ = (r − M)2 − b2, (24)

b =
√

M2 − a2, (25)

with the scalar field φ and the function H given by

φ = φ∞ + σ

2b
ln

(

r − M + b

r − M − b

)

, (26)

H(r, θ) =
(

Δ − a2 sin2 θ

Δ

)[

1 + b2

Δ
sin2 θ

]−σ 2/b2

. (27)

where M is the mass, a is the spin and σ is called the scalar
charge.1

It has also received independent support from the liter-
ature. For instance, Chauvineau [56] obtained a spinning
solution, which coincides with the BG solution in the same
extreme limit b2 = M2 − a2 → 0. The curvature scalar R
for the BG solution diverges at Δ = 0, b2 ≥ 0 yielding a
singular radius

rS = M +
√

M2 − a2 = M

(

1 +
√

1 − a2∗
)

, (28)

where a∗ = a/M . That’s why we call the BG solution a
spinning naked singularity, not covered by event horizon.
The solution has ring singularities in the equatorial plane
(θ = π/2) at r = 0 for any b and at r = M for b2 < 0. In the
Kerr case (σ = 0), the condition Δ = 0 yields event horizon
at the same radius, rH = M + √

M2 − a2. We emphasize
that BG spinning hairy (σ �= 0) naked singularity for which
a∗ < 1 is not the hairless usual Kerr naked singularity for

1 BG [15] denote the scalar charge by an unusual notation Σ . This
notation is customarily used in the literature to denote the expression
Σ = r2 + a2 cos2 θ . To avoid any confusion, we have in this paper
replaced the BG scalar charge Σ by σ . Also, ω(r, θ) of the BG solution
should not be confused with the BD coupling constant ωBD.

which a∗ > 1. If the condition a∗ > 1 is imposed on the
BG solution, then rS becomes imaginary and the solution
would look like a Kerr naked singularity but with hair σ . It
would be certainly very interesting to study the spacetime
structures of hairy Kerr-like (σ �= 0) and hairless Kerr (σ =
0) naked singularities both now defined by a∗ > 1. While
work on this topic is underway, in this paper we focus only
on the distinctive accretion properties between BG naked
singularity and Kerr black hole.

3.2 Emissivity maxima

Since kinematic properties of the BG accretion disk are
exactly the same as those of Kerr, we shall consider only
the emissivity properties of both objects. For this, we shall
assume a toy model of a stellar sized accreting object to be
M = 15M� with an accretion rate Ṁ0 = 1018 gm.sec−1.
The inner boundary of accretion is determined by the ISCO
radius rms > rS, which, for the BG solution, is independent
of the scalar charge σ but depends on the spin a, as accu-
rately computed in Table 1. We adopt the Thorne black hole
spin limit a/M = 0.998 for BG naked singularity as well
to make the comparison with Kerr black hole meaningful.
Moreover, Eq. (28) suggests a real valued singular radius rS

only for a/M ≤ 1, which for the Kerr black hole exactly
coincides with the horizon radius. The BG naked singularity
is very much unlike the Kerr naked singularity that occurs
at a/M > 1 rendering the horizon radius rH imaginary or
non-existent. There is no limit on the scalar charge σ , but
for definiteness of calculations, we shall always restrict it as
σ/M ≤ 1. The Kerr kinematic values displayed in the table
will be needed for numerical computation of the emissivity
properties of the BG naked singularity.

Note that at the extreme spin value a/M = 1, the
efficiency ε becomes 42%. But this extreme spin value is
unreachable by a realistic Kerr black hole, so we stop at the

Table 1 The rms, rS, Ẽms and the efficiency ε for BG NS. They are the
same as those of Kerr BH. The general relativistic Schwarzschild black
hole corresponds to a = 0

a/M rms/M rS/M Ẽms ε[%]
0 6 2 0.943 5.7

0.1 5.6693 1.9949 0.939 6.1

0.3 4.9786 1.9539 0.931 6.9

0.5 4.2330 1.8660 0.918 8.2

0.7 3.3931 1.7141 0.896 10.4

0.9 2.3209 1.4358 0.844 15.6

0.95 1.9372 1.3122 0.810 19.0

0.998 1.2370 1.0632 0.679 32.1
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Table 2 The exact maximum values of the time averaged radiation flux Fmax(r), temperature Tmax(r) and the emission spectra νL(ν)max for
accretion disk around BG naked singularity. The table shows the Kerr maximum values (σ = 0) in the first column for comparison

σ/M 0 0.3 0.7 1

a = 0

Fmax(r)[erg · s−1 · cm−2] 5.739 × 1014 5.748 × 1014 5.787 × 1014 5.838 × 1014

Tmax(r)[K ] 5.640 × 104 5.642 × 104 5.652 × 104 5.664 × 104

νL(ν)max[erg · s−1] 4.771 × 1030 4.774 × 1030 4.787 × 1030 4.804 × 1030

a = 0.3M

Fmax(r)[erg · s−1 · cm−2] 1.275 × 1015 1.278 × 1015 1.292 × 1015 1.310 × 1015

Tmax(r)[K ] 6.887 × 104 6.891 × 104 6.909 × 104 6.933 × 104

νL(ν)max[erg · s−1] 6.961 × 1030 6.967 × 1030 6.996 × 1030 7.034 × 1030

a = 0.7M

Fmax(r)[erg · s−1 · cm−2] 6.833 × 1015 6.876 × 1015 7.076 × 1015 7.343 × 1015

Tmax(r)[K ] 1.048 × 105 1.049 × 105 1.057 × 105 1.067 × 105

νL(ν)max[erg · s−1] 1.512 × 1031 1.516 × 1031 1.532 × 1031 1.553 × 1031

a = 0.9M

Fmax(r)[erg · s−1 · cm−2] 3.908 × 1016 3.985 × 1016 4.352 × 1016 4.899 × 1016

Tmax(r)[K ] 1.620 × 105 1.628 × 105 1.664 × 105 1.714 × 105

νL(ν)max[erg · s−1] 3.253 × 1031 3.274 × 1031 3.374 × 1031 3.513 × 1031

a = 0.95M

Fmax(r)[erg · s−1 · cm−2] 9.417 × 1016 9.760 × 1016 1.155 × 1017 1.468 × 1017

Tmax(r)[K ] 2.019 × 105 2.037 × 105 2.124 × 105 2.256 × 105

νL(ν)max[erg · s−1] 4.665 × 1031 4.719 × 1031 4.978 × 1031 5.364 × 1031

a = 0.998M

Fmax(r)[erg · s−1 · cm−2] 1.176 × 1018 1.798 × 1018 1.721 × 1020 5.267 × 1023

Tmax(r)[K ] 3.795 × 105 4.219 × 105 1.319 × 106 9.817 × 106

νL(ν)max[erg · s−1] 1.082 × 1032 1.166 × 1032 3.685 × 1032 1.789 × 1035

Thorne limiting value a/M = 0.998. In Table 2, we show
the maximum values of the radiation profile characteristics.

It is evident from the table that, with increase in spin a, the
radii rms decrease but always remain greater than the singular
radius rS, coming closest to rS as the spin value approaches
the Thorne limit, a/M = 0.998. So near to this limit, and
with increase in scalar charge σ , we expect higher emissivity
profiles in the vicinity of the singularity than those at lower
values of a/M . Indeed, we shall see that this is precisely the
case despite some metric functions and the efficiency ε being
the same between the Bogush–Galt’sov singularity and Kerr
black hole.

The most important cause responsible for heightening
the maxima over the Kerr value is that the factor

√−g,
that appears in the denominator of flux F(r) in Eq. (13),
gets shrunk. The equatorial value of

√−g for the Bogush–
Galt’sov singularity is not the same as that of Kerr. For
Kerr black hole,

√−g
∣

∣

Kerr
θ=π/2 = r2, while for the Bogush–

Galt’sov singularity, with b2 = M2 − a2 > 0, Δ =
r2 − 2Mr + a2, it is given by

√−g
∣

∣

BG
θ=π/2 = r2

[

1 + b2

Δ

]−σ 2/b2

= r2
[

Δ

Δ + b2

]σ 2/b2

. (29)

This is much smaller than
√−g

∣

∣

Kerr
θ=π/2 at the ISCO radius

r = rms To get a numerical estimate of how smaller, consider
the values a = 0.998M , r = rms = 1.23M and scalar charge
σ = M (say), then

√−g
∣

∣

BG
θ=π/2 = 2.90 × 10−9 × √−g

∣

∣

Kerr
θ=π/2 . (30)

Therefore, the BG profiles peak near the inner radius much
higher than those of the Kerr black hole mainly because of
the shrinking of

√−g as shown above. Keeping this factor
in mind, we now turn to analyzing radiation profiles pointing
out how other factors like a/M and σ influence the profiles.
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Fig. 1 Variation of radiative flux with distances away from rms

4 Analyses of profiles

4.1 Radiation flux

Figure 1 show the variation of time averaged flux of radiation
F(r) with distance (r/rms) from the inner boundary of the
disk r = rms outwards with increasing order of both scalar
charge σ/M ≤ 1 and spin a/M ≤ 0.998. We shall mainly
focus on the profiles at σ/M ∼ 1. A generic qualitative
feature of the plots with increasing values ofa andσ is that the
profiles for BG naked singularity are always higher than those
of a Kerr black hole with the BG maxima always approaching
the inner radius with the increase of spin and charge. All the
plots merge in the limit r → ∞ since both the Kerr and BG

spacetimes are asymptotically flat with the BG scalar field φ

becoming trivial there.
Figure 1a (top left hand corner) compares the flux profile

for the Schwarzschild black hole (a = 0, σ = 0) and static
naked singularities (a = 0, σ �= 0), the latter represent-
ing classes of Fischer–Janis–Newman–Winnicour (FJNW)
solutions [20,57] (see also, [21]). Both profiles peak near
the radius r ∼ 1.5rms, but they are almost indistinguishable.
Figure 1b (top left hand corner) compares the flux profiles
of Kerr black hole (a/M = 0.3, σ = 0) with the spinning
BG naked singularity (a/M = 0.3, σ/M ≤ 1). As we see,
for low spin such as a/M = 0.3, the profiles peak around
r ∼ 1.5rms but again do not show any appreciable difference
in Fmax(r).
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Fig. 2 Variation of temperature with distances away from rms

From Table 2, we can see the exact ratios of the
flux emissivity maxima Fmax(r) as both spin and charge
increase. Figure 1c (middle left) shows that the spin effect
(a/M = 0.7) is barely appreciable, the ratios of fluxes
become FBG

max(r)/F
Kerr
max (r) = 1.07, which shows only a

slight increase from the Kerr values. Figure 1d (middle
right) shows that the higher spin effect (a/M = 0.9)
beginning to become noticeable - the flux ratios become
FBG

max(r)/F
Kerr

max (r) = 1.25. Similarly, Fig. 1e (bottom left)
shows the spin effect (a/M = 0.95) causes the flux ratio to
be FBG

max(r)/F
Kerr
max (r) = 1.56. Profile patterns in Fig. 1f (bot-

tom right) for (a/M = 0.998) and (σ/M = 1) show that the
radiation flux from the BG singularity attains a huge value,
that is, FBG

max(r)/F
Kerr
max (r) = 4.48 × 105 (as can be read off

from Table 2), with FBG
max(r) occurring at a radius close to

r/rms ∼ 1, meaning that much of the radiation is emerging
from the vicinity of the inner radius rms.

Thus, it turns out that the flux behavior of naked singularity
becomes extremely sensitive at the Thorne spin limit a/M as
well as to the high values of the scalar charge σ . The exact
quantitative ratios show how the radiation flux behavior of
BG naked singularity could be drastically higher than those
of a Kerr black hole. This feature is consistently shared by
other profiles too as we shall see.
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Fig. 3 Variation of luminosity νL(ν) in [erg.s−1] with frequency in ν [Hz]

4.2 Temperature profiles

The qualitative features of the temperature profiles are
determined by radiation flux F(r) because of the Stefan–
Bolzmann law, Eq. (14). Figure 2 show the variation of
temperature T (r) in Kelvin from the inner boundary of the
disk r = rms outwards with increasing orders of scalar
charge σ/M ≤ 1 and spin a/M ≤ 0.998. As revealed from
Fig. 2f, the BG profile of temperature is always higher than
those of Kerr black hole, with the maxima of temperature
TBG

max(r) occurring at a radius shifting toward the inner bound-
ary of the disk, r/rms = 1, with the increase of spin and
scalar charge. However, as revealed from Table 2, the order
of magnitude of the ratio TBG

max(r)/T
Kerr
max (r) ∼ O(1) until at

(a/M = 0.998) and (σ/M = 1), when TBG
max(r)/T

Kerr
max (r) ∼

2.58×102, which shows considerably higher temperature of
the BG singularity. Thus the singularity will be much hotter
than the Kerr black hole near the inner boundary of the disk
consistent with the behavior of flux profiles.

4.3 Luminosity profiles

Figure 3 show disk luminosity spectra νL(ν) plotted against
the observed frequency ν [Hz]. Plots show a steep rise in
νL(ν) to ∼ 1030 [erg.s−1] occurring around ν ∼ 1015 [Hz].
As the frequency ν increases, there is a steep fall to near zero
luminosity. The concentration of luminosity in the narrow
band of frequency width suggests that the disk appears bright-
est when observed within that bandwidth. The maximum

luminosity ratio νL(ν)BG

νL(ν)Kerr = 1.65 × 103, for a/M = 0.998
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and σ/M = 1, shows that the BG singularity brightness is
over 1000 times more than that of the Kerr black hole, which
is a definite signature of naked singularity.

4.4 Differential luminosity

Joshi et al. [19] defined a differential luminosity reaching an
observer at infinity as

dL∞
d ln r

= 4πr
√−g˜EF, (31)

where ˜E is the specific energy and F is the radiation flux
emitted by the innermost radius of the disk. Note that

√−g
cancels with the 1/

√−g in the definition of F leaving only

dL∞
d ln r

= r˜Ems × −Ṁ0Ω,r
(

˜E − Ω˜L
)2

∫ r

rms

(

˜E − Ω˜L
)

˜L ,r dr (32)

As noted before, ˜E(rms) for the BG is the same as that
of Kerr black hole having a maximum value 0.679 and the
multiplying factor being finite for a ≤ 0.998M , the differ-
ential luminosity reaching an observer at the asymptotically
flat region increases without limit.

5 Conclusions

We presented a comparative study of accretion profiles
between Bogush–Gal’tsov spinning naked singularity of gen-
eral relativity (GR) and Kerr black hole. Our main conclusion
is that the emissivity profiles of naked singularity peak much
higher near the ISCO boundary than the ones belonging to
Kerr black hole.

To reach our conclusion, we had worked within the frame-
work of Novikov–Thorne model of thin accretion disk around
a stellar sized spinning object. This model is extremely use-
ful and widely employed to study accretion phenomena.
The motivation of our work was to compare, both qualita-
tively and quantitatively, the discriminating emissivity fea-
tures between a GR spinning naked singularity and Kerr black
hole. Our study contrasts with a previous work in [14] that
compared Novikov–Thorne emissivity properties of Brans–
Dicke (BD) spinning naked singularity and Kerr black hole.

Within the realm of BD theory, an early spinning solu-
tion was generated by Kim [9], where he found that non-
trivial Kerr–Newman-type black hole solutions (hairy spin-
ning black holes) different from general relativistic solutions
could occur for the Brans–Dicke parameter values −5/2 ≤
ωBD < −3/2. Its implications for the Penrose conjecture was
also discussed in [9]. The non-spinning uncharged corollary
yields static but non-spherically symmetric hairy black hole
and not the usual Schwarzschild black hole of general rela-
tivity. Defining the solution parameter as |1 − γ | = 4

2ωBD+3 ,

Shahidi, Harko and Kovács (SHK) [14] classified the Kim
solution into three categories: Brans–Dicke-Kerr model of
naked singularity (−∞ < γ ≤ 0 and 2 < γ < ∞), non-
general-relativistic hairy spinning black hole (0 < γ < 1
and 1 < γ < 2) and the usual Kerr black hole (γ = 1).

On the other hand, within the realm of GR theory, the latest
spinning naked singularity obtained by Bogush and Galt’sov
(BG) [15] in the Einstein-scalar system directly reduces to
Kerr black hole when the scalar field is switched off. Thus,
spinning naked singularity in GR is different from the same
in BD theory treated in [14] in the sense that the former does
not yield hairy spinning black holes like the ones in [9] but
directly yields only the hairless Kerr black hole as a special
case (σ = 0).

It is interesting to note that the frame dragging frequency
ωfd = − gtϕ

gϕϕ
and the conversion efficiency ε in the two mod-

els of spinning naked singularities, viz., in the BD and the GR
models, are exactly the same as those of the Kerr black hole.
There is noapriori reason that the metric components gtϕ and
gϕϕ in two distinct gravity theories be the same, while other
metric components differ. The conversion efficiency ε of the
BG naked singularity is independent of σ and hence at the
Thorne limit, it is the same as the Kerr value 32.1% (Table 1).
It has also been found that, on the equatorial plane (θ = π/2),
kinematic properties of BG naked singularity are exactly the
same as those of Kerr black hole. Therefore, none of the above
properties (frame dragging, efficiency, kinematic properties)
can distinguish BD and GR models of naked singularities
from their limiting Kerr black hole counterpart. Thus, look-
ing for distinctive features, we studied the Novikov–Thorne
emissivity profiles such as the flux, temperature and luminos-
ity, assuming a toy model of stellar sized BG spinning naked
singularity. We assumed, for a meaningful comparison, that
the BG naked singularity respects the Thorne limit on the
black hole spin, a/M ≤ 0.998.

The most illuminating results from the present work are
the quantitative predictions of the maxima of the emissivity
profiles displayed in Table 2. As shown there, the accretion
disk emission profiles of BG spinning singularity could be
much higher than those of a Kerr black hole - naked singu-
larities are hotter and brighter as the spin a and scalar charge
σ increase. In particular, the radiative flux could be consid-
erably higher near the inner disk boundary, e.g., 105 times
higherr than that of a Kerr black hole under the same spin val-
ues but non-trivial scalar charges. This happens largely due
to the fact that near the inner boundary

√−g considerably
shrinks compared to the Kerr value as shown in Eq. (30). We
speculate that such drastically higher profiles of naked singu-
larity could actually be its generic feature as similar features
are exhibited also by other entirely different models of naked
singularity such as the Brans–Dicke-Kerr model [9,14] and
the JMN perfect fluid model [19].
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We point out a recent work dealing with experimental rel-
ativity with accretion disk observations [58]. The authors,
using the Rezzolla-Zhidenko [59] bumpy black hole, com-
bined ray-tracing and MCMC sampling techniques to con-
strain and detect deviations from general relativity using the
accretion disk spectrum of stellar-mass black holes in binary
systems. They concluded that, “even when a very simple
astrophysical model for the accretion disk is assumed a pri-
ori, the uncertainties and covariances between the parameters
of the model and the parameters that control the deformation
from general relativity make any test of general relativity very
challenging with accretion disk spectrum observations.” As
to our metric, however, there is no deformation from general
relativity but there is a scalar hair σ causing naked singular-
ity and statistical techniques using observed accretion data
can, in principle, constrain σ , which would have implica-
tions especially for the Ruffini–Wheeler conjecture on hair-
less black holes. This topic however would be beyond the
motivation of the future.

DataAvailability Statement This manuscript has no associated data or
the data will not be deposited. [Authors’ comment: This is a theoretical
study and no experimental data has been listed.]

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adaptation,
distribution and reproduction in any medium or format, as long as you
give appropriate credit to the original author(s) and the source, pro-
vide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indi-
cated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permit-
ted use, you will need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.
Funded by SCOAP3.

Appendix A: Axially symmetric spacetime

The BG spacetime is part of one of the axially symmetric
spacetime parametrisations suggested in [60]:

dτ 2 = −N 2(r, θ) − W 2(r, θ)

K 2(r, θ)
dt2 − 2W (r, θ)r sin2 θdtdφ

+K 2(r, θ)r2 sin2 θdϕ2

+Λ(r, θ)

[

B2(r, θ)

N 2(r, θ)
dr2 + r2dθ2

]

. (A.1)

The BG metric part can be rewritten as

dτ 2
BG = −

(

1 − 2Mr

Σ

)

dt2 − 4aMr sin2 θ

Σ
dtdφ

+
(

r2 + a2 + 2a2Mr sin2 θ

Σ

)

sin2 θdϕ2

+
[

1 + b2

Δ
sin2 θ

]−σ 2/b2

Σ

[

dr2

Δ
+ dθ2

]

. (A.2)

The functions in (A.1) can be identified from the BG solution
as follows

N 2 (r, θ) = (Σ − 2Mr)
(

r2 + a2
) + 2a2Mr sin2 θ

r2Σ
, (A.3)

W (r, θ) = 2aM

Σ
, (A.4)

K 2 (r, θ) = 1 + a2

r2 + 2a2M sin2 θ

rΣ
, (A.5)

Λ(r, θ) = Σ

r2

(

1 + b2 sin2 θ

Δ

)−σ 2/b2

, (A.6)

B2 (r, θ) = (Σ − 2Mr)
(

r2 + a2
) + 2a2Mr sin2 θ

ΔΣ
, (A.7)

where

Σ = r2 + a2 cos2 θ, (A.8)

Δ = r2 − 2Mr + a2, (A.9)

b =
√

M2 − a2. (A.10)

Using the asymptotic behavior of the functions (A.3–A.7),
one may read off the asymptotic and strong field coefficients
derived in [60].

References

1. A. Bhadra, K.K. Nandi, Phys. Rev. D 64, 087501 (2001)
2. V. Faraoni, Phys. Rev. D 59, 084021 (1999)
3. T. Matos, F.S. Guzmán, D. Nuñez, Phys. Rev. D 62, 061301 (2000)
4. K.K. Nandi, I. Valitov, N.G. Migranov, Phys. Rev. D 80, 047301

(2009)
5. R.N. Tiwari, B.K. Nayak, Phys. Rev. D 14, 2502 (1976)
6. R.N. Tiwari, B.K. Nayak, J. Math. Phys. 18, 289 (1977)
7. T. Singh, L.N. Rai, Gen. Relativ. Gravit. 11, 37 (1979)
8. R.M. Misra, D.B. Pandey, J. Math. Phys. 13, 1538 (1972)
9. H. Kim, Phys. Rev. D 60, 024001 (1999)

10. I.D. Novikov, K.S. Thorne, Astrophysics and black holes, in Black
Holes. ed. by C. De Witt, B. De (Witt Gordon and Breach, New
York, 1973)

11. N.I. Shakura, R.A. Sunyaev, Astron. Astrophys. 24, 33 (1973)
12. D.N. Page, K.S. Thorne, Astrophys. J. 191, 499 (1974)
13. K.S. Thorne, Astrophys. J 191, 507 (1974)
14. S. Shahidi, T. Harko, Z. Kovács, Eur. Phys. J. C 80, 162 (2020)
15. I. Bogush, D. Galt’sov, Phys. Rev. D 102, 124006 (2020)
16. R. Penrose, Riv. Nuovo Cim. 1, 252 (1969)
17. R. Ruffini, J.A. Wheeler, Phys. Today 24, 30 (1971)
18. P.S. Joshi, Gravitational Collapse and Spacetime Singularities

(Cambridge University Press, Cambridge, 2007)
19. P.S. Joshi, D. Malafarina, R. Narayan, Class. Quantum Gravity 31,

015002 (2014)
20. A.I. Janis, E.T. Newman, J. Winnicour, Phys. Rev. Lett. 20, 878

(1968)
21. A. Bhadra, K.K. Nandi, Int. J. Mod. Phys. A 28, 4543 (2001)
22. A.G. Agnese, M. La Camera, Phys. Rev. D 51, 2011 (1995)
23. K.K. Nandi, A. Islam, J. Evans, Phys. Rev. D 55, 2497 (1997)

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


Eur. Phys. J. C (2022) 82 :239 Page 11 of 11 239

24. L.A. Anchordoqui, S.P. Bergliaffa, D.F. Torres, Phys. Rev. D 55,
526 (1997)

25. K.K. Nandi, B. Bhattacharjee, S.M.K. Alam, J. Evans, Phys. Rev.
D 57, 823 (1998)

26. K.K. Nandi, Y.-Z. Zhang, Phys. Rev. D 70, 044040 (2004)
27. A. Bhattacharya, I. Nigmatzyanov, R. Izmailov, K.K. Nandi, Class.

Quantum Gravity 26, 235017 (2009)
28. V. Cardoso, E. Franzin, P. Pani, Phys. Rev. Lett. 116, 171101 (2016)
29. K.K. Nandi, Y.-Z. Zhang, A.V. Zakharov, Phys. Rev. D 74, 024020

(2006)
30. K.K. Nandi, R.N. Izmailov, A.A. Yanbekov, A.A. Shayakhmetov,

Phys. Rev. D 95, 104011 (2017)
31. R.F. Lukmanova, G.Y. Tuleganova, R.N. Izmailov, K.K. Nandi,

Phys. Rev. D 97, 124027 (2018)
32. K.S. Virbhadra, G.F.R. Ellis, Phys. Rev. D 65, 103004 (2002)
33. R.N. Izmailov, RKh. Karimov, E.R. Zhdanov, K.K. Nandi, Mon.

Not. R. Astron. Soc. 483, 3754 (2019)
34. N. Tsukamoto, Y. Gong, Phys. Rev. D 95, 064034 (2017)
35. R. Shaikh, S. Kar, Phys. Rev. D 96, 044037 (2017)
36. K. Nakajima, H. Asada, Phys. Rev. D 85, 107501 (2012)
37. R. Shaikh, P. Kocherlakota, R. Narayan, P.S. Joshi, Mon. Not. R.

Astron. Soc. 482, 52 (2019)
38. R. Shaikh, Phys. Rev. D 98, 024044 (2018)
39. M.S. Longair, High Energy Astrophysics, vol. II (Cambridge Uni-

versity Press, Cambridge, 1994)
40. D. Torres, Nucl. Phys. B 626, 377 (2002)
41. C. Bambi, D. Malafarina, Phys. Rev. D 88, 064022 (2013)
42. RKh. Karimov, R.N. Izmailov, K.K. Nandi, Eur. Phys. J. C 79, 952

(2019)

43. T. Harko, Z. Kovács, F.S.N. Lobo, Class. Quantum Gravity 26,
215006 (2009)

44. T. Harko, Z. Kovács, F.S.N. Lobo, Phys. Rev. D 79, 064001 (2009)
45. RKh. Karimov, R.N. Izmailov, A.A. Potapov, K.K. Nandi, Eur.

Phys. J. C 80, 1138 (2020)
46. R.M. Yusupova, RKh. Karimov, R.N. Izmailov, K.K. Nandi, Uni-

verse 7, 177 (2021)
47. M. Heydari-Fard, M. Heydari-Fard, H.R. Sepangi, Eur. Phys. J. C

81, 473 (2021)
48. K.S. Thorne, in Magic Without Magic: John Archibald Wheeler.

ed. by J. Klauder (Freeman, San Francisco, 1972)
49. S. Hod, Eur. Phys. J. C 78, 1013 (2018)
50. S. Hod, Eur. Phys. J. C 80, 162 (2020)
51. S. Hod, Eur. Phys. J. C 80, 1148 (2020)
52. K.K. Nandi, R.N. Izmailov, G.M. Garipova, R.R. Volotskova, A.A.

Potapov, Phys. Lett. B 809, 135734 (2020)
53. K.K. Nandi, R.N. Izmailov, A.A. Potapov, K.K. Nandi, N.G. Migra-

nov, Eur. Phys. J. C 81, 997 (2021)
54. K.A. Bronnikov, J.C. Fabris, A. Zhidenko, Eur. Phys. J. C 71, 1791

(2011)
55. J.H. Bardeen, W.H. Press, S.A. Teukolsky, Astrophys. J. 178, 347

(1972)
56. B. Chavineau, Phys. Rev. D 100, 024051 (2019)
57. I.Z. Fisher, Zh. Eksp, Teor. Fiz. 8, 636 (1948)
58. A. Cárdenas-Avendaño et al., Phys. Rev. D 100, 024039 (2019)
59. L. Rezzolla, A. Zhidenko, Phys. Rev. D 90, 084009 (2014)
60. R. Konoplya, L. Rezzolla, A. Zhidenko, Phys. Rev. D 93, 064015

(2016)

123


	Comparing accretion disk profiles of Bogush–Galt'sov naked singularity and Kerr black hole
	Abstract 
	1 Introduction
	2 Thin accretion disk: Novikov–Thorne model in brief
	2.1 Kinematic formulas
	2.2 Emissivity formulas 

	3 Comparison of emissivity profiles of BG spinning naked singularity and Kerr black hole
	3.1 Bogush–Galt'sov (BG) spinning naked singularity
	3.2 Emissivity maxima

	4 Analyses of profiles
	4.1 Radiation flux
	4.2 Temperature profiles
	4.3 Luminosity profiles
	4.4 Differential luminosity

	5 Conclusions
	Appendix A: Axially symmetric spacetime
	References




