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Abstract While spacetime in the vicinity outside astro-
physical black holes is believed to be well understood, the
event horizon and the interior remain elusive. Here, we dis-
cover a degenerate infinite spectrum of novel general rela-
tivity solutions with the same mass-energy and entropy that
describe a dark energy universe inside an astrophysical black
hole. This regular cosmological black hole is stabilized by a
finite tangential pressure applied on the dual cosmological-
black hole event horizon, localized up to a quantum indeter-
minacy. We recover the Bekenstein–Hawking entropy for-
mula from the classical fluid entropy, calculated at a Tolman
temperature equal to the cosmological horizon temperature.
We further calculate its gravitational quasi-normal modes.
We find that cosmological black holes are detectable by
gravitational-wave experiments operating within the μHz–
Hz range, like LISA space-interferometer.

1 Introduction

As early as 1966, Sakharov [1] proposed that the proper equa-
tion of state of matter and energy at very high densities is that
of a dark energy fluid P = −ρc2. About the same time Gliner
[2] suggested that a spacetime filled with vacuum could pro-
vide a proper description of the final stage of gravitational
collapse, replacing the future singularity [2]. Black hole solu-
tions where the singularity is avoided are called regular black
holes [3–10] and may or may not involve a de Sitter core. The,
so called, dark energy stars or gravastars [11–19] generally
do not predict the presence of an event horizon.

The idea that a new universe is generated inside a black
hole has been put forward in [20–24]. Gonzalez-Diaz [5] was,
to our knowledge, the first to explicitly propose that a de Sitter
space may complete an exterior Schwartzschild metric with
the presence of a kind of cosmological black hole horizon
in-between. Later, it was realized by Poisson and Israel that
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in this case a singular tangential pressure will be exerted on
the horizon [6]. The present work elaborates on the Poisson–
Israel solution regularizing the horizon by considering that
the quantum uncertainty principle applies.

We discover an infinite spectrum of solutions, which
describe the fluid shell which matches the interior de Sitter
core with the exterior Schwarzschild spacetime. The met-
ric’s derivatives are continuous up to any required order. All
states of the spectrum have the same energy and entropy. This
fluid entropy of the dual horizon recovers the Bekenstein–
Hawking black hole entropy for a fluid temperature equal to
the cosmological horizon temperature. This spacetime spec-
trum describes a novel kind of regular black hole we shall
call the “cosmological black hole” for brevity.

Gravitational-wave astronomy has opened up the possi-
bility to detect such objects. The cosmological black holes
may exist independently than singular or other types of reg-
ular black holes, or may describe the state of all detected
black holes. The detectability of cosmological black holes
is founded on the fact that the fundamental quasi-normal
mode, calculated here, is distinctively different than the one
of Schwarzschild black holes for any mass. These modes
are closely related to the ringdown phase of a post-merger
object. This phase follows the inspiral phase of a binary black
hole merger. The ringdown phase is dominated by the natu-
ral frequencies of black hole spacetime, like a ringing bell.
We argue that LIGO’s detections could involve cosmolog-
ical black holes, because LIGO is not able to discriminate
between cosmological and singular black holes, due to the
well-known “mode camouflage” mechanism [25] and the
inadequate frequency sensitivity. On the other hand, the fre-
quency spectrum of quasi-normal modes of the cosmological
black hole interior lie within the detectability range frequen-
cies of the planned LISA space interferometer.
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2 The cosmological black hole solution spectrum

A black hole is formed from material that crossed the
Schwartzschild horizon. Thus, inside the horizon it is proper
to use the full Einstein equations Gμν = (8πG/c4)Tμν

instead of the field vacuum equation Gμν = 0. Out-
side the horizon the Schwartzschild metric should apply
assuming that all of material has crossed the horizon. One
such solution requires the interior to be a de Sitter vac-
uum P = −ρ0c2 = const., with a tangential pressure

PT = −ρ0c2θ
(

1 − r
rH

)
+ 1

2ρ0c2δ
(

r
rH

− 1
)

being applied

on the horizon rH, where θ and δ denote the Heaviside and
Dirac functions respectively. This expression was mentioned
(without a derivation) for the first time, to our knowledge,
by Poisson and Israel [6]. We derive in detail this solution in
Appendix A. Poisson and Israel remarked that this tangen-
tial pressure diverges for an observer at some proper distance
outside the horizon (see equation (45) of Appendix A). Nev-
ertheless, we see little qualitative difference regarding the
physical problems encountered by the Poisson–Israel solu-
tion and the Schwarzschild black hole solution, which does
present a curvature singularity in the centre. It is only that
the problem in the former case is transferred from the cen-
ter to the horizon, having the curvature singularity of the
Schwarzschild solution replaced by a pressure singularity in
the Poisson–Israel solution.

However, assuming that within rH there is distributed a
mass M• in some non-singular way up to rH, quantum physics
suggests that the boundary rH of M• cannot be localized with
accuracy greater than the Compton wavelength

�rH � h

M•c
. (1)

It is justified therefore to assume there exists a length-scale
α that specifies the quantum fuzziness of the horizon

�rH = α (2)

in this case. For an astrophysical black hole with mass M• =
O(M�), α may equal the Compton wavelength or the Planck
scale or a few times the latter, so that

ε ≡ α

rH
� 1 (3)

in each of these cases. Lacking a quantum theory of gravity
we cannot know its precise value, still we shall be able here to
reach definite quantitative results, irrespective from the value
of α. As we shall now show, the Poisson–Israel solution gets
regularized by an infinite spectrum of solutions with the same
energy and entropy.

Let us assume the static, spherically symmetric ansatz for
the metric

ds2 = −h(r)c2dt2 + h(r)−1dr2 + r2d
 (4)

and the following components of an anisotropic diagonal
energy-momentum tensor T 0

0 = −ρ(r)c2, T 1
1 = Pr(r),

T 2
2 = T 3

3 = PT(r), where ρ(r) is the mass density and
Pr(r), PT(r) the radial and tangential pressures. It is straight-
forward to show (see Appendix A) that the Einstein equations
admit the following formulation

h(r) = 1 − 2Gm(r)

rc2 ,
dm(r)

dr
= 4πρ(r)r2, (5)

and

Pr(r) = −ρ(r)c2 (6)

PT(r) = −ρ(r)c2 − 1

2
rρ(r)′c2. (7)

Note that another density distribution function, besides the
Poisson–Israel solution (40)–(43), that solves this system was
identified in Ref. [7].

We discover here a new infinite spectrum of solutions that
regularizes the Poisson–Israel solution within the fuzziness
α of the horizon

ρ(r) =

⎧⎪⎪⎨
⎪⎪⎩

ρ0, r ≤ rH − α
2 ,

ρ(−)(r), rH − α
2 ≤ r ≤ rH,

ρ(+)(r), rH ≤ r ≤ rH + α
2 ,

0, r ≥ rH + α
2 .

,

ρ(±)(r) = ρ0

N∑
n=0

A(±)
n (ε) x(r)n, (8)

where

x ≡ r − rH

α
∈
[
−1

2
,+1

2

]
(9)

and ε is given in (3). Proper choices of A(±)
n (ε) ensure that the

density and consequently the metric through (5) are contin-
uous and have continuous derivatives. The maximum order
of the continuous derivatives can be arbitrarily high. This is
ensured by demanding to hold the following conditions

ρ(−)(rH − α

2
) = ρ0, ρ(−)(rH) = ρ(+)(rH),

ρ(+)(rH + α

2
) = 0, (10)

d(k)ρ(−)(rH − α
2 )

drk
= 0,

d(k)ρ(−)(rH)

drk

= d(k)ρ(+)(rH)

drk
,
d(k)ρ(+)(rH + α

2 )

drk
= 0,

k = 1, 2, . . . , K (11)
∫ rH

rH− α
2

4πρ(−)r
2dr +

∫ rH+ α
2

rH

4πρ(+)r
2dr

= 4

3
πρ0

(
r3

H −
(
rH − α

2

)3
)

. (12)
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Fig. 1 The cosmological black hole spectrum of density (8) and tan-
gential pressure (7) inside the α-shell, that designates the horizon. The
values of PT on the boundaries are mentioned separately in brack-
ets, because the scaling does not allow them to be distinguished opti-
cally. The value of the radial pressure is Pr(r) = −ρ(r)c2 every-
where. Exterior to the horizon, ρ, PT are zero and in the interior
PT = −ρc2 = −ρ0c2 = const. Each curve in all panels represents
a solution of the Einstein equations with the same energy and entropy.

The solid curves represent the limiting allowed curves for which ρ′ ≤ 0
everywhere, for the respective maximum order of continuous metric
derivatives. Upper panels: the metric, its first and second derivatives
are continuous everywhere, that is K = 1. We considered N = 3 and
each curve corresponds to a different value of A(3)

2 ∈ [−4, 8]. Lower
panels: The metric, its first, second and third derivatives are continu-
ous everywhere, that is K = 2. We considered N = 5 and each curve
corresponds to a different value of A(5)

1 = A(5)
2 ∈ [−96, 24]

The condition K ≥ 1 ensures that the metric and its first and
second derivatives are continuous, (over)satisfying Licha-
towich junction conditions, as well as that the tangential pres-
sure (7) is continuous. The condition (12) certifies that the
total mass of the system up to the radius R = rH + α

2 is equal
to

M• = 4

3
πρ0r

3
H (13)

and therefore that

rH ≡ 2GM•
c2 =

√
3c2

8πGρ0
. (14)

This means that at r = rH coincide a cosmological and a
black hole event horizon if the quantum indeterminacy is

�rH = α. This renders our solution a regular, free of sin-
gularities, type of black hole, which we call the cosmolog-
ical black hole solution. In the interior the scalar curvature
R = 6/r2

H ∝ M−2• is finite. We shall see in the next sec-
tion that the entropy of the cosmological black hole equals
the Bekenstein–Hawking entropy at the cosmological hori-
zon temperature. Note that expressing ρ0 with respect to the
horizon radius

ρ0 = 3c2

8πG

1

r2
H

, (15)

we get precisely the definition of the critical energy density
in a Friedmann cosmological model for rH = c/H0, where
H0 denotes the Hubble parameter.
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Fig. 2 The axis are as in Fig. 1, where here is shown the solution with
minimum order N of each density polynomial (8) for various values
of K which is the maximum order of the derivative of density that is

continuous. We observe that density variation is constrained for large
K within much smaller region than α

The order N of the density polynomial (8) can be arbitrar-
ily high independently from the order K (11) that designates
the maximum order of continuous density derivatives. There
can always be found solutions as long as N ≥ (3K + 2)/2.
The maximum order of continuous metric derivatives is
K + 1. In the Appendix B we provide the exact K = 1 spec-
trum for N = 3 and the exact K = 2 spectrum for N = 5
requiring that density is a decreasing function of radius

ρ′(r) ≤ 0. (16)

This condition, along with conditions (10)–(12), certify that
the equation of state (6), (7) for the solution (8) constrained
by these conditions satisfies the Weak Energy Condition
Tμνξ

μξν ≥ 0 for any time-like ξμ; namely that ρ′ ≤ 0,
Pr + ρ ≥ 0, PT + ρ ≥ 0.

We plot the spectrum K = 1 for N = 3 and the spectrum
K = 2 for N = 5 in Fig. 1. Note that there exist also solu-
tions, that are not symmetrical about the r = rH vertical axis.
Furthermore, we remark that the fuzziness α does not neces-
sirily constrain maximally the density variations. For large
K , the density variation is localized within a region smaller
than α. This is depicted in Fig. 2.

3 Fluid entropy

The work performed by a fluid with stress tensor T i j , i, j =
1, 2, 3 may be written with respect to the strain tensor σ i

j as

dW = T j
i dσ i

j . (17)

The strain tensor can be decomposed as the sum of a pure
shear (shape deformations) and a hydrostatic compression

(volume deformations) [26]1

σ i
j =

(
σ i
j − 1

3
δijTr(σ i

j )

)

︸ ︷︷ ︸
pure shear

+
(

1

3
δijTr(σ i

j )

)

︸ ︷︷ ︸
hydrostatic compression

. (18)

The trace of strain expresses relative volume change, so
that considering unit volume deformations we get in gen-
eral dV = dTr(σ i

j ) [26]. For a spherical anisotropic fluid the
space component of the energy-momentum tensor may be
written in spherical coordinates as T i

j = diag(Pr, PT, PT).
The work of the gravitational force under a spherical defor-
mation (no pure shear) is therefore

dW = PdV, where P = 1

3
(Pr + PT + PT) = Pr

+2

3
(PT − Pr). (19)

It is P that contributes to the work and not only Pr despite
the deformation being isotropic. There is an additional, to
Pr, contribution coming from 2

3 (PT − Pr) due to the stretch-
ing forces on the fluid sphere during any spherical deforma-
tion (during a spherical expansion/contraction the area of the
sphere increases/decreases, therefore there are applied tan-
gential forces). The relativistic thermodynamic Euler rela-
tion should involve the pressure that contributes to the work.
Thus, for zero chemical potential, inside the α-shell the ther-
modynamic Euler relation is properly written as

T s = ρc2 + P ⇒ s = − c2

3T
rρ′, (20)

where s = s(r) is the total entropy density, including the
tangential contribution. We denote T = T (r) the local tem-

1 Page 10.
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perature and we have used equation (7). Local temperature
obeys the Tolman law

T (r)
√
gtt (r) = T0 = const. (21)

where the constant T0 is called the Tolman temperature and
corresponds to the temperature of the fluid measured by
an oberver at infinity. The interior, excluding the horizon,
does not contribute to the fluid entropy since T sinterior =
ρ0c2 + Pinterior = ρ0c2 − ρ0c2 = 0. Thus, the total fluid
entropy (integrating the local entropy over the proper vol-
ume in General Relativity) equals the fluid entropy of the
event horizon, which using (20), (21), is equal to

S =
∫ rH+ α

2

rH− α
2

s(r)
√
grr4πr2dr = − c2

3T0

∫ rH+ α
2

rH− α
2

ρ′4πr3dr.

(22)

We get consecutively

S = 4πc2

3T0
ρ0

(
rH − α

2

)3 + c2

T0

∫ rH+ α
2

rH− α
2

ρ 4πr2dr. (23)

For all solutions (8) the second term is a constant given in
Eq. (12). We finally get

S = 4πc2

3

ρ0r3
H

T0
= M•c2

T0
, (24)

where we used Eq. (14) that identifies the coincidence of
cosmological and black hole event horizons. Note that this
result holds for any choice of α and for all solutions of the
cosmological black hole spectrum (8). Therefore, irrespec-
tively from the exact value of the temperature T0, equation
(24) shows that all solutions (8) with the same total mass-
energy, correspond also to the same entropy.

Provided α accounts for the quantum indeterminacy of
the event horizon (2), this Tolman temperature may be iden-
tified with the cosmological temperature TdS. In such a case,
by direct substitution of the cosmological temperature in
entropy (24), we reach the intriguing conclusion that the fluid
entropy equals the Bekenstein–Hawking entropy SBH

S = 4πG

h̄c
M2• = 4πr2

H

4h̄G/c3 ≡ SBH, (25)

if

T0 = TdS ≡ h̄c

2πrH
= h̄c3

4πGM•
≡ 2TBH, (26)

where TBH denotes the Bekenstein–Hawking temperature.
Equation (25) suggests the interpretation of the Bekenstein–
Hawking entropy as the entropy of the horizon realized as a
fuzzy fluid shell.

Assuming that the Bekenstein–Hawking entropy is a uni-
versal maximum bound, the temperature should be equal to
the de Sitter temperature (to maximize the entropy) and the

width α of the shell should not exceed the appropriate quan-
tum fuzziness, not specified in this work. In this sense, the
equation of state of matter (6), (7) for the cosmological black
hole (8) is dictated by maximum entropy and General Rela-
tivity. It describes the bridge between between two different
vaccua.

It seems remarkable that we recover the black hole entropy
for a Tolman temperature that equals the cosmological tem-
perature, fusing effectively de Sitter and Schwarzschild hori-
zons, considering classical relativistic fluid considerations. In
this respect, Figs. 1 and 2 describe a new type of event hori-
zon, we call a dual horizon, that is a fusion of cosmological
and black hole event horizons. Note that the sole quantum
assumption in this calculation is that the horizon’s width is
fuzzy. The exact measure of quantum fuzziness α does not
affect the result.

4 Quasi-normal modes

A linear perturbation analysis about the static equilibrium
(4)–(7), performed in Appendix C, shows that a radial
perturbation cannot develop unstable radial modes. Unless
it is identical to another static equilibrium, it may how-
ever develop non-radial oscillation modes. For any com-
pact object, the latter are categorized in two types; polar
and axial [27]. In Ref. [28] was argued that, similarly to the
Schwarzschild black hole case, polar and axial perturbations
are isospectral for an ultra-compact object with a de Sitter
core and an ultra-thin shell (limit 2GM → Rc2 as in our
case ε � 1). That is because the master equation for polar
perturbations is continuous across the shell. Here we shall
calculate the quasi-normal modes of axial perturbations.

Axial perturbations ψ�(r, t) = e−iωtφ�(r) about the static
spacetime (4), (5) for any metric function h(r) are described
by the Regee-Wheeler type of equation [29]

d2φ�

dr∗2 +
(

ω2

c2 − V

)
φ� = 0, (27)

where the scattering potential is

V (r) = h(r)

(
�(� + 1)

r2 + 8πG

c2 ρ(r) − 6Gm(r)

c2r3

)
,

∀r ≥ 0, (28)

and r∗ is the, so-called, tortoise coordinate defined as

dr∗ = 1

h(r)
dr, ∀r ≥ 0. (29)

We determine the constants of integration (see Appendix D)
by setting r∗ = r + rH ln(r/rH − 1) for r ≥ rH + α/2 and
requiring that r∗ is continuous at r = rH±α/2. The scattering
potential, plotted in Fig. 3, is strictly positive certifying the
stability of the solutions (8) against axial perturbations.
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Fig. 3 The scattering potential (28) of axial perturbations for α equal
to the Compton wavelength of a cosmological black hole with M• =
10M�, that corresponds to ε = 3.8 · 10−78. We used in these plots the
solution K = 1, N = 3 with A(±)

3 = 8. The radii r0, r1, r2 are specified
by the conditionER = V and ER is defined for each mode n such that

the generalized Bohr–Sommerfeld rule (30) is satisfied. On the right
panel we plot the potential with respect to the tortoise coordinate r∗
(29). It is r∗(r = rH − α/2) = −180.3rH, r∗(r = rH) = −179.4rH,
r∗(r = rH + α/2) = −177.9rH

Fig. 4 The real (left panel) and imaginary (right panel) frequency of
the quasinormal mode n = 0, � = 2 of the cosmological black hole
with respect to its mass M•, in dimensions c3/2GM•. The two lines cor-
respond to the two limiting solutions A(±)

3 = 8 (red) and A(±)
3 = −4

(blue) of the case{K = 1, N = 3}, depicted in Fig. 1a. The quasinor-

mal modes’ values of these two solutions bound all values of solutions
{K = 1, N = 3}, {K = 2, N = 5}. There is also strong numerical
evidence that they bound all solutions (8). Differences in the precise
value of ε are negligible

The Sturm–Liouville problem (27) can by solved (calcula-
tion of the quasi-normal modes ωn) by use of the generalized
Bohr–Sommerfeld method [30]. It has been shown to be suf-
ficiently accurate in the case of ultra-compact gravastars [31].
This method dictates identifying ER,n for some n such that
(see Appendix E)

∫ r∗
1 (ER,n)

r∗
0 (ER,n)

√
ER,n − V (r∗)dr∗ = π

(
n + 1

2

)
. (30)

The quasi-normal mode frequencies are then specified
directly as

ωn = ωR,n + iωI,n = c
√
ER,n + i EI,n, (31)

where

EI,n = −1

2
exp

(
−2
∫ r∗

2 (ER,n)

r∗
1 (ER,n)

√
V (r∗) − ER,ndr

∗
)

×
(∫ r∗

1 (ER,n)

r∗
0 (ER,n)

1√
ER,n − V (r∗)

dr∗
)−1

. (32)

The quantities r∗
0 , r∗

1 corresponding to some r0, r1, respec-
tively, are the roots of the equation ER−V (r) = 0 that define
the bounding region ER ≥ V (r). The r2 along with r1 define
the reflecting region ER ≤ V (r). This is depicted in Fig. 3.
We were able to calculate the modes ωn,� by use of mixed
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analytical and numerical calculations, which we describe in
detail in Appendix E.

In Fig. 4 we depict, for black hole masses M• ∈
[10, 109]M�, the frequencies of the mode n = 0, � = 2
for the two limiting solutions of Figs. 1a, b. These corre-
spond to A±

3 = −4 and A±
3 = 8 for {K = 1, N = 3}. The

differences between the two solutions in the values of ωR,
ωI are very small and decrease with increasing black hole
mass. We find numerically that the two solutions bound the
values of the modes for all solutions with K = 1, K = 2
and we find strong numerical evidence that this is true at
least up to K = 15. Our results are identical for α ranging
from 109 times the Planck length down to α equal to the
Compton wavelength. Note that in contrast to the case of a
Shwarzschild black hole, the value of (2GM•/c3)ω depends
on the cosmological black hole mass, although this depen-
dence is very small.

In Table 1 we list the values of the quasi-normal mode
frequencies for 0 ≤ n ≤ 7 (the importance of the first seven
quasi-normal modes has been emphasized recently [32–36])
and 2 ≤ � ≤ 4 for a cosmological black hole with M• =
10M�. For black hole masses M• ∈ [10, 109]M�, the funda-
mental frequency lies in the range 10−6Hz � ωR,0 � 50Hz
and the n = 5 overtone is about ten times bigger, as depicted
in Fig. 5. The damping time of the overtones are on the other
hand drastically lower with respect to the fundamental mode.

The fundametal mode alone may be used to reconstruct
the full inspiral merger ringdown waveform of a binary black
hole merger signal (e.g. GW150914 [37,38]). The highest
possible fundamental mode of an astrophysical cosmologi-
cal black hole (corresponding to the minimum possible mass
M• = 10M�, that is a merger of two 5M• black holes)
is 63Hz (Fig. 5) which lies outside the detection range of
LIGO. This does not mean that LIGO observations exclude
the possibility that they involved cosmological black holes,
but only that LIGO cannot discrimininate between a singu-
lar (Schwarzschild or Kerr) and a cosmological black hole.
The reason is the, so called, “mode camouflage” mechanism

[25]. The ringdown modes of a black hole (regular or not) are
determined by the external null geodesic and not by interior
fluctuations [39]. Fluctuations generated inside our cosmo-
logical black hole will dominate after the exterior perturba-
tions are damped. Thus, LIGO cannot discriminate between
a Schwarzschild (or Kerr) black hole and a cosmological
black hole. Following the full damping of the external light-
ring modes, the internal fluctuation frequencies lie outside
the frequency range detectability of LIGO.

However, it is evident from Fig. 5 that for M• � 104M�
the fundamental mode of cosmological black hole fluctua-
tions lies within the frequency detectability range (∼ 10−1 −
10−5Hz) of the LISA space interferometer. It sounds in par-
ticular intriguing that LISA may be able to detect an interme-
diate mass cosmological black hole through its postmerger
ringdown phase, even if the binary inspiral phase cannot be
detected. Still, in order to estimate the minimum possible
amplitude sensitivity of an interferometer so as to detect a
cosmological black hole ringdown, the excitation factors of
its quasi-normal modes, following a binary merger, have to be
calculated. This is an involved task, that this work urges the
community to perform. In every case, our results as in Fig. 5,
clearly suggest that despite the well-known mode camou-
flage mechanism of ultra-compact objects [25] mentioned
above, cosmological black holes particularly are in principle
detectable and distinguishable from singular black holes. If
already LISA is not amplitude-wise sensitive enough, it is
a matter of developing the appropriate technology to detect
cosmological black holes provided they exist.

Finally, let us remark that regular black holes, like the one
we propopse, should not suffer from the instabilities, such
as the light-ring instability [25,40], the ergosphere insta-
bility [41] and the accretion instability [42–44], that have
been argued to occur in gravastars and dark energy stars.
The absence of a horizon is a key assumption that drives the
appearance of these instabilities [45].

Table 1 The real (left panel)
and imaginary (right panel)
frequency of the quasinormal
modes of a cosmological black
hole M• = 10M�. These
frequencies apply to the solution
A(±)

3 = 8 of the case
{K = 1, N = 3}. Differences
between different solutions are
minor, as depicted in Fig. 4 for
n = 0

n � n �

2 3 4 2 3 4

(a) 2GM•
c3 ωR (b) 2GM•

c3 ωI

0 0.0062 0.0063 0.0063 0 −1.5323E−17 −3.5931E−25 −8.2167E−33

1 0.0184 0.0185 0.0186 1 −3.4718E−15 −7.3691E−22 −1.5037E−28

2 0.0306 0.0307 0.0308 2 −4.6016E−14 −2.7202E−20 −1.5358E−26

3 0.0426 0.0428 0.0430 3 −2.6282E−13 −3.0498E−19 −3.3658E−25

4 0.0546 0.0549 0.0551 4 −9.9518E−13 −1.9108E−18 −3.4785E−24

5 0.0666 0.0670 0.0672 5 −2.9517E−12 −8.4702E−18 −2.2957E−23

6 0.0786 0.0790 0.0793 6 −7.4453E−12 −2.9846E−17 −1.1298E−22

7 0.0905 0.0910 0.0913 7 −1.6734E−11 −8.9303E−17 −4.4937E−22
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Fig. 5 The frequency (left panel) and damping period (right panel) of
the quasinormal modes n = 0, n = 5 for � = 2 of the cosmological
black hole with respect to its mass M•. These apply to all solutions
{K = 1, N = 3}, {K = 2, N = 5} depicted in Fig. 1, since any differ-

ences are negligible in the scales used. Any larger value of K we tried
(≤ 15) gives also identical results. Differences in the precise value of ε

are also negligible. There are also depicted the values of Schwarzschild
black holes for comparison

5 Discussion

We discover that in General Relativity, regular black holes
containing a de Sitter core correspond to a spectrum of space-
time solutions assuming quantum indeterminacy of the local-
ization of the horizon, which behaves as an anisotropic fluid
shell. All spacetime states of the cosmological black hole
spectrum have the same energy and entropy, resembling a
quantum degeneracy. This is a fluid entropy. It recovers the
Bekenstein–Hawking black hole entropy if the Tolman tem-
perature of the fluid is identified with the temperature of
the cosmological horizon, fusing the cosmological and black
hole horizons in a single dual horizon.

The quasi-normal modes of cosmological black holes are
distinctively different than the ones of Schwarzschild black
holes. Still, LIGO cannot disciminate between cosmolog-
ical and Schwarzschild black holes, because of the well-
known mode camouflage mechanism – ringdown waveform
is dominated initially by spacetime fluctuations in the region
of the external null geodesic, that is common in regular
and singular black holes – and the fact that the mode fre-
quencies of astrophysical cosmological black holes, namely
10−6Hz � ωR � 10Hz, lie outside the frequency’s range
detectability of LIGO. Therefore, it remains open the possi-
bility that LIGO’s detections are cosmological black holes.
Most importantly, the quasi-normal frequency range of astro-
physical cosmological black holes lies inside the detectability
frequency range of the planned space interferometer LISA.
Thus, this work urges the community to investigate further
the properties of cosmological black holes, proposed here,
and especially their inspiral and ringdown waveforms. There
arises the fascinating possibility that black hole detections
are also detections of dark energy universes. If these may

evolve to inflationary universes similar to our own and if the
latter is itself such an object remain open possibilities that
beg for further investigation.
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A Derivation of the Poisson–Israel solution

Assuming the static, spherically symmetric ansatz (4), the
Einstein equations

R ν
μ − 1

2
R σ

σ δ ν
μ = 8πG

c4 T ν
μ (33)

give

8πG

c4 T 0
0 = 8πG

c4 T 1
1 = 1

r
h′ + 1

r2 h − 1

r2 , (34)

8πG

c4 T 2
2 = 8πG

c4 T 3
3 = 1

2
h′′ + 1

r
h′, (35)
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where prime denotes differentiation with respect to r . Let us
denote T 0

0 = −ρ(r)c2, T 1
1 = Pr(r), T 2

2 = T 3
3 = PT(r),

where ρ(r) has dimensions of mass density and Pr(r), PT(r)
dimensions of pressure.

Assuming further a function m(r) such that

h(r) = 1 − 2Gm(r)

rc2 , (36)

the Einstein equations (34), (35) give

dm

dr
= 4πr2ρ(r), (37)

Pr(r) = −ρ(r)c2, (38)

PT(r) = −ρ(r)c2 − 1

2
rρ′(r) (39)

One solution of these equations is

m(PI)(r) = M•
{
θ

(
r

rH
− 1

)

+ r3

r3
H

(
θ

(
r

rH

)
− θ

(
r

rH
− 1

))}
(40)

ρ(PI)(r) = ρ0

{
θ

(
r

rH

)
− θ

(
r

rH
− 1

)}
, (41)

P(PI)
r (r) = −ρ(PI)(r)c2, (42)

P(PI)
T (r) = −ρ(PI)(r)c2 + 1

2
ρ0δ

(
r

rH
− 1

)
, (43)

where ρ0 = M•/(4πr3
H/3), rH = 2GM•/c2 and M• =

m(PI)(rH). We denote δ(x) the Dirac δ-function and θ(x) the
Heaviside step function

θ(x) =
{

1, x ≥ 0
0, x < 0

(44)

The superscript (PI) is an acronym for “Poisson–Israel”,
because the expression (39) has appeared for the first time,
to our knowledge, in Ref. [6]. Poisson and Israel remarked
that an observer at a proper distance �s outside the horizon
will perceive an infinite tangential pressure on the horizon

P(PI)
T = 1

2
ρ0δ

(
g−1/2
rr

�s

rH

)

= 1

2
ρ0rHg

1/2
rr δ(�s) → ∞, for r = rH. (45)

Let us now prove that Eqs. (40)–(43) satisfy the Einstein
equations (37)–(39). We shall use the dimensionless variable

u = r

rH
, (46)

and the dimensionless quantities

m̃ = m

M•
, ρ̃ = ρ

ρ0
, P̃r = Pr

ρ0c2 , P̃T = PT

ρ0c2 , (47)

The dimensionless function m̃(PI)(u) is written as

m̃(PI)(u) = θ (u − 1) + u3 (θ (u) − θ (u − 1)) . (48)

Using the property θ ′(u) = δ(u) we have that

dm̃(PI)

du
= δ(u − 1) + u3(δ(u) − δ(u − 1))

+ 3u2(θ(u) − θ(u − 1)) (49)

= u2uδ(u) − (u2 + u + 1)(u − 1)δ(u − 1)

+ 3u2(θ(u) − θ(u − 1)), (50)

which, considering the identity uδ(u) = 0, gives

dm̃(PI)

du
= 3u2(θ(u) − θ(u − 1)). (51)

Comparing with (37) we get

ρ̃(PI) = θ(u) − θ(u − 1), (52)

that is Eq. (41).
Now, we have that

u(ρ̃(PI)(u))′ = uδ(u) − uδ(u − 1) = uδ(u − 1)

= (x + 1)δ(x) = δ(x) = δ(u − 1) (53)

where we have used the transformation x = u − 1. Thus, the
tangential pressure (39) is

P̃(PI)
T (u) = −ρ̃(PI)(u) + 1

2
δ(u − 1), (54)

that is the Poisson–Israel solution (43).

B Analytical expressions of the cosmological black hole
spectrum

We shall use in the followings the dimensionless quantities
(9), (47). The spectrum (8) is written in these dimensionless
variables as

ρ̃(x) =

⎧⎪⎪⎨
⎪⎪⎩

1, x ≤ − 1
2 ,

ρ̃(−)(x), − 1
2 ≤ x ≤ 0,

ρ̃(+)(x), 0 ≤ x ≤ 1
2 ,

0, x ≥ 1
2 .

,

ρ̃(±)(x) =
N∑

n=0

A(±)
n (ε)xn . (55)

For K = 1 and N = 3 the conditions (10)-(12) give

A(−)
0 = A(+)

0 = 60 − (18 + B)ε + 2ε2

4(ε2 − 4ε + 30)
= 1

2
+ O(ε), (56)

A(−)
1 = A(+)

1 = −240 + 30B + 72ε + (B − 8)ε2

4(ε2 − 4ε + 30)

= B − 8

4
+ O(ε), (57)
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A(−)
2 = −60 + 30B + (78 + 3B)ε + (B − 2)ε2

ε2 − 4ε + 30
= B − 2 + O(ε), (58)

A(+)
2 = −−60 + 30B + (18 − 3B)ε + (B − 2)ε2

ε2 − 4ε + 30
= −(B − 2) + O(ε), (59)

A(−)
3 = 30B + (80 + 4B)ε + Bε2

ε2 − 4ε + 30
= B + O(ε), (60)

A(+)
3 = B (61)

The additional requirement

ρ′ ≤ 0 (62)

imposes the constraint, to zero-th order of ε,

− 4 ≤ B ≤ 8. (63)

For K = 2 and N = 5 we get

A(−)
0 = A(+)

0 = 129024 + 168(B2 − B1) + (−21504 + 128(B1 + B2))ε + (3072 + 9(B2 − B1))ε
2

6144(ε2 + 42)

= 1

2
+ B2 − B1

1536
+ O(ε), (64)

A(−)
1 = A(+)

1 = −
(
B1 + B2

96
+ 2

)
, (65)

A(−)
2 = A(+)

2 = −840(B2 − B1) + (−21504 + 128(B1 + B2))ε + 25(B2 − B1)ε
2

256(ε2 + 42)

= − 5

64
(B2 − B1) + O(ε), (66)

A(−)
3 = 672(48 + 4B1 − B2) + 128(168 − B1 − B2)ε + (69B1 − 21B2 + 768)ε2

96(ε2 + 42)

= 1

6
(48 + 4B1 − B2) + O(ε), (67)

A(+)
3 = 672(48 − B1 − 4B2) + 128(168 + B1 + B2)ε + (−21B1 + 69B2 + 768)ε2

96(ε2 + 42)
,

= 1

6
(48 − B1 − 4B2) + O(ε), (68)

A(−)
4 = 129024 + 23352B1 − 1848B2 + 384(168 − B1 − B2)ε + (3072 + 571B1 − 59B2)ε

2

384(ε2 + 42)

= 3072 + 556B1 − 44B2

384
+ O(ε), (69)

A(+)
4 = −129024 − 1848B1 + 23352B2 − 384(168 − B1 − B2)ε + (3072 − 59B1 + 571B2)ε

2

384(ε2 + 42)

= −3072 − 44B1 + 556B2

384
+ O(ε), (70)

A(−)
5 = B1, (71)

A(+)
5 = B2 (72)

For B1 = B2 = B, the requirement ρ′ ≤ 0 imposes the
constraint, to zero-th order of ε,

− 96 ≤ B ≤ 24. (73)

Note that if we identify α with Compton wavelength
h/(M•c) then

εCompton = 3.8 · 10−76
(
M•
M�

)−2

, (74)

and if we identify it with the Planck scale, then

εPlanck = 5.5 · 10−39
(
M•
M�

)−1

. (75)

The parameter α expresses the quantum fuzziness of the hori-
zon. It is a free parameter within our framework and may be
bigger than the Planck length.

123



Eur. Phys. J. C (2022) 82 :255 Page 11 of 14 255

C Radial perturbations

We shall consider here radial perturbations about the static
equilibrium (4)-(7). The general energy-momentum tensor
of a spherical anisotropic fluid may be written as

Tμ
ν =(ρc2+Pr)U

μUν +Prδ
μ
ν +(PT−Pr)(Y

μY ν +ZμZν),

(76)

where UμUμ = −1, YμYμ = ZμZμ = 1, UμYμ =
UμZμ = YμZμ = 1 and in co-moving coordinates Yμ =
δ
μ
2 , Zμ = δ

μ
3 . The general non-static, spherically symmetric

metric may be written as

ds2 = −eν(r,t)dt2 + eλ(r,t)dr2 + r2(dθ2 + sin2 θdφ2),

(77)

where here for convenience we suppress c in g00 identifying
t ≡ x0. Assuming a spherically symmetric deviation from
static equilibrium

u = dr

dt
, (78)

the non-zero components of the time-like vector Uμ are

U 0 = e− ν
2√

1 − u2eλ−ν
, U 1 = u e− ν

2√
1 − u2eλ−ν

,

U0 = − e
ν
2√

1 − u2eλ−ν
, U1 = u eλ− ν

2√
1 − u2eλ−ν

. (79)

The non-zero components of the energy momentum tensor
are therefore

T 0
0 = −ρc2 1

1 − u2eλ−ν
− Pr

u2eλ−ν

1 − u2eλ−ν
(80)

T 1
1 = Pr

1

1 − u2eλ−ν
+ ρc2 u2eλ−ν

1 − u2eλ−ν
(81)

T 2
2 = T 3

3 = PT (82)

T 1
0 = −(ρc2 + Pr)

u

1 − u2eλ−ν
(83)

T 0
1 = (ρc2 + Pr)

ueλ−ν

1 − u2eλ−ν
. (84)

The non-zero components of the Einstein tensor are

G0
0 = e−λ

(
−λ′

r
+ 1

r2

)
− 1

r2 (85)

G1
1 = e−λ

(
ν′

r
+ 1

r2

)
− 1

r2 (86)

G2
2 = G3

3 = e−λ

(
ν′′

2
+ (ν′)2

4
− ν′λ′

4
+ ν′ − λ′

2r

)

− e−ν

(
λ̈

2
+ λ̇2

4
− λ̇ν̇

4

)
(87)

G1
0 = 1

r
e−λλ̇ (88)

G0
1 = −1

r
e−ν λ̇. (89)

In our convention, the Einstein equations read

Gμ
ν = 8πG

c4 Tμ
ν . (90)

Differentiating G1
1, substituting it into G2

2 and using Einstein
equations to substitute Gμ

ν for Tμ
ν we get the equation of

hydrodynamic equilibrium

(T 1
1 )′ = −ν′

2
(T 1

1 − T 0
0 ) + 2

r
(T 2

2 − T 1
1 )

+ c4

8πGr
e−ν

(
λ̈ + λ̇2

2
− λ̇ν̇

2

)
. (91)

We may reach to the same equation by using the continuity
equation Tμ

1;μ = 0 and substituting T 0
1 for G0

1. The time

component of the continuity equation Tμ

0;μ gives

− Ṫ 0
0 = (T 1

0 )′ − 1

2
λ̇(T 1

1 − T 0
0 ) + T 1

0

(
λ′ + ν′

2
+ 2

r

)
.

(92)

Let us now consider the perturbations

λ = λeq + δλ, ν = νeq + δν, ρ = ρeq + δρ, Pr = Pr,eq

+δPr, PT = PT,eq + δPT, u = ueq + δu. (93)

Subscript “eq” denotes equilibrium quantities. It is

eνeq = e−λeq = h, Pr,eq = −ρeqc
2, PT,eq = −ρeqc

2

−1

2
rρ′

eq, ueq = 0, (94)

so that u = δu. To the first order we get

δ(1)T 0
0 = −δρc2, δ(1)T 1

1 = δPr, δ(1)T 2
2 = δPT, (95)

δ(1)T 1
0 = −(ρeqc

2 + Pr,eq)δu = 0, (96)

δ(1)T 0
1 = h−2(ρeqc

2 + Pr,eq)δu = 0, (97)

δ(1)G0
0 = − 1

r2

(
rhδλ′ + hδλ + rh′δλ

)
, (98)

δ(1)G1
1 = 1

r2

(
rhδν′ − hδλ − rh′δλ

)
, (99)

δ(1)G2
2 = −δλ

(
h′′

2
+ h′

r

)
+ h

2

(
δν′′ + 3h′

2h
δν′

− h′

2h
δλ′ + δν′ − δλ′

r

)
+ 1

2h
δ̈λ, (100)

δ(1)G1
0 = h

r
δ̇λ (101)

δ(1)G0
1 = − 1

hr
δ̇λ. (102)
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We may describe perturbations by use of {0, 0}, {1, 1}, {1, 0},
{0, 1} components of Einstein equations along with continu-
ity Eqs. (91), (92) and get respectively

8πG

c2 δρ = 1

r2

(
rhδλ′ + hδλ + rh′δλ

)
, (103)

8πG

c4 δPr = 1

r2

(
rhδν′ − hδλ − rh′δλ

)
, (104)

0 = h

r
δ̇λ, (105)

0 = − 1

hr
δ̇λ, (106)

δP ′
r =− h′

2h
(δρc2+δPr)+ 2

r
(δPT−δPr)+ c4

16πG

1

rh
δ̈λ,

(107)

δ̇ρc2 = 0. (108)

Equations (105), (106), (108) suggest directly that radial per-
turbations in the density and the radial metric component can
only be static δ̇λ = δ̇ρ = 0. We conclude that radial perturba-
tions cannot develop unstable radial modes. If the radial per-
turbation is not identical to another static equilibrium state,
it may develop non-radial modes.

D Tortoise coordinate

The tortoise coordinate used in Fig. 3 is defined as

r∗(r)

rH
=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

r
rH

+ ln( r
rH

− 1), r
rH

≥ 1 + ε
2

R∗
2 −

∫ 1+ ε
2

r/rH

1

h+(u)
du, 1 ≤ r

rH
≤ 1 + ε

2

R∗
H −

∫ 1− ε
2

r/rH

1

h−(u)
du, 1 − ε

2 ≤ r
rH

≤ 1

R∗
1 − atanh(1 − ε

2 ) + atanh( r
rH

), 0 ≤ r
rH

≤ 1 − ε
2

(109)

where

R∗
2 = 1 + ε

2
+ ln(

ε

2
), (110)

R∗
H = R∗

2 −
∫ 1+ ε

2

1

1

h+(u)
du (111)

R∗
1 = R∗

H −
∫ 1

1− ε
2

1

h−(u)
du. (112)

Note that atanh(1− ε
2 ) � 1

2 ln(4/ε). In the calculation of the
integrals (30), (32) we did not use the above expressions, but
we substituted simply dr∗ = (1/h(r))dr .

E Generalized Bohr–Sommerfeld rule

The bound states, namely the normal modes En , in a potential
well V (x) may be well approximated by the well-known
method of the Bohr–Sommerfeld rule
∫ x1

x0

√
En − V (x)dx = π

(
n + 1

2

)
, (113)

where x0, x1 are the roots of the integrand, depending on
En . This method can be derived from WKB theory for the
Schrödinger equation. It has been used in the calculation of
the high-overtone normal modes of the Schwarzschild black
hole [46].

In the case of quasi-stationary states in a partially confin-
ing potential like the one of Eq. (28), the Bohr–Sommerfeld
rule (113) has been generalized in Ref [30] as
∫ x1

x0

√
En − V (x)dx = π

(
n + 1

2

)
− χ(w), (114)

where

χ(w) = 1

2
w(1−ln(w))+ 1

4i
ln

(
�(1/2 + iw)

�(1/2 − iw)(1 + e−2πw)

)
,

w = 1

π

∫ x2

x1

√
V (x) − Endx, (115)

where � denotes the Gamma function. Here x0, x1 denote
the roots of En − V (x) = 0 that define the bounding region
En ≥ V (x) and x2 is the upper limit of the reflecting region
En ≤ V (x), as in Fig. 3. This expression can be simplified
further for sufficiently low modes [47] as
∫ x1

x0

√
En−V (x)dx=π

(
n+ 1

2

)
− i

4
e
−2
∫ x2
x1

√
V (x)−Endx .

(116)

The imaginary part is a measure of the barrier penetrability,
that is absent in the normal Bohr–Sommerfeld rule (113)
since the barrier is infinite in the latter case.

We shall denote

En = ER,n + i EI,n . (117)

In case the imaginary part is negligible with respect to the
real part EI,n � ER,n the generalized Bohr–Sommerfeld
rule (116) may be decomposed as follows

∫ x1

x0

√
ER,n − V (x)dx = π

(
n + 1

2

)
, (118)

EI,n = −1

2
exp

(
−2
∫ x2

x1

√
V (x) − ER,ndx

)

×
(∫ x1

x0

1√
ER,n − V (x)

dx

)−1

, (119)
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which correspond to (30), (32). We used this generalized
Bohr–Sommerfeld formulas to solve the Sturm-Liouville
problem (27). The accuracy of the method in the calculation
of the quasi-normal modes of gravastars has been verified in
Ref. [31].

We calculated the integrals (30), (32) by a combination of
analytical and numerical techniques. For ε � 1 the point r0

lies within the de Sitter core r0/rH < 1 − ε/2 and the points
r1 < r2 lie outside the black hole within the Schwarzschild
spacetime r1/rH > 1 + ε/2. In particular, we have

u0 = L

ER + L
, where L = �(� + 1) (120)

and we use the dimensionless variable u = r/rH. It is

∫ 1− ε
2

u0

1

1 − u2

√
ER − L

1 − u2

u2 du

=
⎡
⎣√ER atanh

(
u2 − u2

0

1 − u2
0

) 1
2

−√
L atan

(
u2

u2
0

−1

) 1
2
⎤
⎦
u=1−ε

2

.

(121)

This diverges logarithmically for ε � 1 and therefore can be
calculated analytically for a Compton or Planck or smaller ε

(see (74), (75))

atanh

(
u2 − u2

0

1 − u2
0

) 1
2

� 1

2
ln

4(1 − u2
0)

ε
. (122)

In the interval rH − α/2 ≤ r ≤ rH + α/2 it applies the
density profile (8) and we use the variable x = (r −rH)/α =
(u − 1)/ε = O(1). The metric function h± is of order ε,
h± = O(ε). Thus we have

∫ rH+ α
2

rH− α
2

1

h±
√
ER − V (r)dr = √ER

∫ + 1
2

− 1
2

1

h±/ε
dx + O(ε).

(123)

The function h± is Taylor expanded about ε = 0 and the
integral is calculated numerically. We find numerically that
for K = 1 and K = 2 all quasi-normal modes are constrained
(as in Fig. 4) by the two limiting solutions of the K = 1,
N = 3 solutions that correspond to A(±)

3 = 8, A(±)
3 = −4

(see Appendix B), which we call below I and II. We have

ρI
(±) = 8x3 ∓ 6x2 + 1

2
+ O(ε), (124)

hI
(±) = ε

(
−6x4 ± 6x3 − 1

2
x + 3

8

)
+ O(ε2) (125)

and

ρII
(±) = −4x3 ± 6x2 − 3x + 1

2
+ O(ε), (126)

hII
(±) = ε

(
3x4 ∓ 6x3 + 9

2
x2 − 1

2
x + 3

16

)
+ O(ε2) (127)

and the integral (123) is calculated numerically for both solu-
tions I, II, decomposing it to regions −1/2 ≤ x ≤ 0 where
h− applies and 0 ≤ x ≤ 1/2 where h+ applies.

There remains the region 1/2 ≤ x ≤ x1 corresponding to
rH + α/2 ≤ r ≤ r1, equivalently 1 + ε/2 ≤ u ≤ u1. The
radius r1 is the smallest root within r ≥ rH + α/2 of

(
1 − rH

r

)(
L
r2

H

r2 − 3
r3

H

r3

)
= 0. (128)

We write the integral

ISchw =
∫ u1

1+ ε
2

1

(1 − 1
u )

√
ER −

(
1 − 1

u

)(
L

u2 − 3

u3

)
du

(129)

as

ISchw =
∫ u1

1+ ε
2

du

u(u − 1)

√
P(u), where

P(u) = ERu
4 − Lu2 + (L + 3)u − 3, (130)

where P(u1) = 0. Considering that (ln(u−1))′ = 1/(u−1)

we get

ISchw = − ln
(ε

2

)
·
√
P
(
1 + ε

2

)

1 + ε
2

−
∫ u1

1+ ε
2

du ln(u − 1)
d

du

√
P(u)

u
. (131)

This expression is calculated numerically in a straightforward
manner.

The integral in the numerator of Eq. (32) is calculated
directly numerically. The integral in the denominator of Eq.
(32) is calculated by using analogous treatments as above,
except in the Schwarzschild region where there appears the
additional pole at u1. We approximated this non-regular inte-
gral

ISchw,2 =
∫ u1

1+ ε
2

du
u3

(u − 1)
√
P(u)

, (132)

by use of the transformation u = y+1 and expanding P(y+
1) with respect to y. We get

ISchw,2 � 1√
ER

∫ y1

ε
2

dy
(y + 1)3

y
√

1 − y
y1

= 1√
ER

(
2y2

1 + 3y1 + ln
8y1

ε

)

+O(ε), y1 = ER

L − 3 − 4ER
. (133)

123



255 Page 14 of 14 Eur. Phys. J. C (2022) 82 :255

References

1. A.D. Sakharov, The initial stage of an expanding universe and the
appearance of a nonuniform distribution of matter. Soviet J. Exp.
Theor. Phys. 22, 241 (1966)

2. E.B. Gliner, Algebraic properties of the energy-momentum tensor
and vacuum-like states o+ matter. Soviet J. Exp. Theor. Phys. 22,
378 (1966)

3. J.M. Bardeen, Non-singular general-relativistic gravitational col-
lapse. Proceedings of the International Conference GR5, Tbilisi,
USSR, (1968)

4. K.A. Bronnikov, V.N. Melnikov, G.N. Shikin, K.P. Staniukovich,
Scalar, electromagnetic, and gravitational fields interaction: Parti-
clelike solutions. Ann. Phys. 118(1), 84–107 (1979)

5. P.F. Gonzalez-Diaz, The space-time metric inside a black hole.
Nuovo Cimento Lettere, 161–163 (1981)

6. E. Poisson, W. Israel, Structure of the black hole nucleus. Class.
Quantum Gravity 5, L201–L205 (1988)

7. Irina Dymnikova, Vacuum nonsingular black hole. Gen. Relativ.
Gravit. 24(3), 235–242 (1992)

8. Cosimo Bambi, Leonardo Modesto, Rotating regular black holes.
Phys. Lett. B 721(4–5), 329–334 (2013)

9. Manuel E. Rodrigues, Ednaldo LB. Junior, Marcos V de S. Silva,
Using dominant and weak energy conditions for build new classe
of regular black holes. JCAP 2018(2), 059 (2018)

10. Ansoldi, S. Spherical black holes with regular center: A Review
of existing models including a recent realization with Gaussian
sources, in Conference on Black Holes and Naked Singularities, 2
(2008)

11. Mazur, P. O., Mottola, E. Gravitational condensate stars: an alter-
native to black holes. arXiv:gr-qc/0109035 (2001)

12. Matt Visser, David L. Wiltshire, Stable gravastars—an alternative
to black holes? Class. Quantum Gravity 21(4), 1135–1151 (2004)

13. Celine Cattoen, Tristan Faber, Matt Visser, Gravastars must have
anisotropic pressures. Class. Quantum Gravity 22(20), 4189–4202
(2005)

14. Francisco SN. Lobo, Stable dark energy stars. Class. Quantum
Gravity 23(5), 1525–1541 (2006)

15. Cecilia BMH. Chirenti, Luciano Rezzolla, How to tell a gravastar
from a black hole. Class. Quantum Gravity 24(16), 4191–4206
(2007)

16. Philip Beltracchi, Paolo Gondolo, An exact time-dependent interior
Schwarzschild solution. Phys. Rev. D 99(8), 084021 (2019)

17. Philip Beltracchi, Paolo Gondolo, Formation of dark energy stars.
Phys. Rev. D 99(4), 044037 (2019)

18. Saibal Ray, Rikpratik Sengupta, Himanshu Nimesh, Gravastar: An
alternative to black hole. Int. J. Modern Phys. D 29(5), 2030004–
260 (2020)

19. Banerjee, A., Jasim, M.K., Pradhan, A. Analytical model of dark
energy stars. Modern Phys. Lett. A 35(10), 2050071 (2020)

20. R.K. Pathria, The Universe as a Black Hole. Nature 240(5379),
298–299 (1972)

21. V.P. Frolov, M.A. Markov, V.F. Mukhanov, Through a black hole
into a new universe? Phys. Lett. B 216(3–4), 272–276 (1989)

22. V.P. Frolov, M.A. Markov, V.F. Mukhanov, Black holes as possible
sources of closed and semiclosed worlds. Phys. Rev. D 41(2), 383–
394 (1990)

23. Nikodem Popławski, Universe in a Black Hole in Einstein-Cartan
Gravity. ApJ 832(2), 96 (2016)

24. Lee Smolin, The life of the cosmos (Oxford University Press, New
York, 1997)

25. Vitor Cardoso, Luís. C. B. Crispino, Caio F B. Macedo, Hirotada
Okawa, Paolo Pani, Light rings as observational evidence for event
horizons: Long-lived modes, ergoregions and nonlinear instabili-
ties of ultracompact objects. Phys. Rev. D 90(4), 044069 (2014)

26. L.D. Landau, Theory of elasticity (Butterworth-Heinemann,
Oxford England Burlington, MA, 1986)

27. S. Chandrasekhar, Themathematical theory of black holes (Claren-
don Press Oxford University Press, Oxford England New York,
1998)

28. Paolo Pani, Emanuele Berti, Vitor Cardoso, Yanbei Chen, Richard
Norte, Gravitational wave signatures of the absence of an event
horizon: nonradial oscillations of a thin-shell gravastar. Phys. Rev.
D 80(12), 124047 (2009)

29. Dymnikova, I., Galaktionov, E. Stability of a vacuum non-singular
black hole. arXiv:gr-qc/0409049 (2005)

30. V.S. Popov, V.D. Mur, A.V. Sergeev, Quantization rules for quasis-
tationary states. Phys. Lett. A 157(4–5), 185–191 (1991)

31. Sebastian H. Völkel, Kostas D. Kokkotas, A semi-analytic study of
axial perturbations of ultra compact stars. Class. Quantum Gravity
34(12), 125006 (2017)

32. Matthew Giesler, Maximiliano Isi, Mark A. Scheel, Saul A. Teukol-
sky, Black hole ringdown: the importance of overtones. Phys. Rev.
X 9(4), 041060 (2019)

33. Swetha Bhagwat, Xisco Jiménez Forteza, Paolo Pani, Valeria Fer-
rari, Ringdown overtones, black hole spectroscopy, and no-hair
theorem tests. Phys. Rev. D 101(4), 044033 (2020)

34. Arnab Dhani, Importance of mirror modes in binary black hole
ringdown waveform. Phys. Rev. D 103(10), 104048 (2021)

35. Eliot Finch, Christopher J. Moore, Modeling the ringdown from
precessing black hole binaries. Phys. Rev. D 103(8), 084048 (2021)

36. Naritaka Oshita, On the ease of excitation of black hole ringing:
Quantifying the importance of overtones by the excitation factors.
arXiv:2109.09757 (2021)

37. B.P. Abbott, Anonymous, Tests of general relativity with
gw150914. Phys. Rev. Lett. 116, 221101 (2016)

38. B.P. Abbott, Anonymous. Erratum: Tests of general relativity with
gw150914 [phys. rev. lett. 116, 221101 (2016)]. Phys. Rev. Lett.
121, 129902 (2018)

39. Vitor Cardoso, Alex S. Miranda, Emanuele Berti, Helvi Witek,
Vilson T. Zanchin, Geodesic stability, lyapunov exponents, and
quasinormal modes. Phys. Rev. D 79, 064016 (2009)

40. Cunha, P.V.P., Berti, E., Herdeiro, C.A.R. Light-ring stability for
ultracompact objects. Phys. Rev. Lett. 119(25) (2017)

41. Vitor Cardoso, Paolo Pani, Mariano Cadoni, Marco Cavaglià,
Ergoregion instability of ultracompact astrophysical objects. Phys.
Rev. D 77(12), 124044 (2008)

42. Raúl. Carballo-Rubio, Pawan Kumar, Lu. Wenbin, Seeking obser-
vational evidence for the formation of trapping horizons in astro-
physical black holes. Phys. Rev. D 97(12), 123012 (2018)

43. Chen, B., Chen, Y., Ma, Y., Lo, K.L.R., Sun, L. Instability of exotic
compact objects and its implications for gravitational-wave echoes.
arXiv:1902.08180 (2019)

44. Andrea Addazi, Antonino Marcianò, Nicolás Yunes, Gravitational
instability of exotic compact objects. Eur. Phys. J. C 80(1), 36
(2020)

45. Elisa Maggio, Vitor Cardoso, Sam R. Dolan, Paolo Pani, Ergore-
gion instability of exotic compact objects: Electromagnetic and
gravitational perturbations and the role of absorption. Phys. Rev.
D 99(6), 064007 (2019)

46. J.W. Guinn, C.M. Will, Y. Kojima, B.F. Schutz, LETTER TO THE
EDITOR: High-overtone normal modes of Schwarzschild black
holes. Class. Quantum Gravity 7(2), L47–L53 (1990)

47. B.M. Karnakov, WKB approximation in atomic physics (Springer,
Berlin New York, 2013)

123

http://arxiv.org/abs/gr-qc/0109035
http://arxiv.org/abs/gr-qc/0409049
http://arxiv.org/abs/2109.09757
http://arxiv.org/abs/1902.08180

	Detectable universes inside regular black holes
	Abstract 
	1 Introduction
	2 The cosmological black hole solution spectrum
	3 Fluid entropy
	4 Quasi-normal modes
	5 Discussion
	A Derivation of the Poisson–Israel solution
	B Analytical expressions of the cosmological black hole spectrum
	C Radial perturbations
	D Tortoise coordinate
	E Generalized Bohr–Sommerfeld rule
	References




