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Abstract Teleparallel Horndeski theory offers an avenue
through which to circumvent the speed constraint of grav-
itational waves in an efficient manner. However, this pro-
vides an even larger plethora of models due to the increase
in action terms. In this work we explore these models in the
context of cosmological systems. Using Noether point sym-
metries, we classify the dynamical systems that emerge from
teleparallel Horndeski cosmologies. This approach is very
effective at selecting specific models in the general class of
second-order teleparallel scalar—tensor theories, as well as
for deriving exact solutions within a cosmological context.
By iterating through the Lagrangians selected through the
Noether symmetries, we solve for a number of cosmologi-
cal systems which provides new cosmological systems to be
studied.

1 Introduction

General relativity (GR) as the fundamental theory that
describes gravity in the standard model of cosmology
(ACDM) has seen overwhelming successes in describing
the evolutionary processes in the Universe [1-3]. In this
scenario, the current phase of expansion is being driven by
the vacuum energy associated with spacetime [4,5]. How-
ever, fundamental issues remain prevalent for a cosmolog-
ical constant A scenario [6-8]. Along a similar vein, the
prospect of direct observations of cold dark matter (CDM)
particles remains elusive [9,10]. More recently, ACDM has
been met by challenges from observational cosmology in the
form of the Hubble tension [11-14] where a disagreement in
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the value of the Hubble constant has appeared between late-
time cosmology-independent measurements of Hy [15,16]in
contrast to observations from the early Universe which are
then used to predict the value of Hy using ACDM [3,17].

In order to better meet these challenges, a possible solution
may be to reconsider GR as the fundamental description of
gravitation within the standard model of cosmology [2, 18-
20]. The possible directions that theories modified beyond
GR can take has branched out into several directions over
the years with the Lovelock theorem as one key guide [21]
in these studies. One of these proposals is the addition of
a single nonminimally coupled scalar field to the Einstein—
Hilbert action which has led to the umbrella of Horndeski
gravity [22] which is dynamically equivalent to most modi-
fied theories of gravity in curvature-based scenarios. Horn-
deski gravity is a rich arena for constructing cosmological
models [23]. However, recent multimessenger signals have
put tight constraints on the speed of gravitational waves of at
most one part in 10! in comparison with the speed of light
[24,25]. This has led to a severely restricted form of regular
Horndeski gravity that continues to be observationally viable
[26].

This adds a strong motivation to consider possible alter-
natives that may revitalize the search for a viable model in
terms of phenomenological within this framework. One such
possibility is the transformation from curvature- to torsion-
based theories of gravity [27-30]. In this setting, we consider
teleparallel gravity (TG) which embodies the exchange of the
Levi-Civita to the teleparallel connection [27,31], which is
torsion-full but continues to satisfy metricity. This represents
a transformation in the geometry of the theory and thus the
regular measures of curvature identically vanish, such as the
Ricci scalar R (over-circles represent quantities calculated
with the Levi-Civita connection), which in TG gives R = 0.
By relating both geometries, it can is found that the regular
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Ricci scalar is dynamically equal to a torsion scalar 7', up to
a boundary term B. This guarantees that GR is dynamically
equivalent to a teleparallel equivalent of general relativity
(TEGR). Thus, in TG the division between the second- and
fourth-order contributions to the Einstein—Hilbert action are
decoupled which produces a softened version of the Love-
lock theorem in this setting [21,32,33].

TEGR can be generalized in a number of interesting ways,
using the same reasoning as f (R) [18,34-36] we can con-
sider f(T) gravity [37-42],oreven f (T, B) gravity [43-50]
which have both shown interesting results in the literature.
Another interesting generalization of TEGR that has gained
interest in the literature is that of using the teleparallel ana-
logue of the Gauss—Bonnet scalar 7 which can be used to
produce f (T, Tg) gravity [51-54]. A novel approach in this
direction has been recently suggested in Ref. [33] where a
TG analogue of Horndeski theory was developed. Due to
the organically lower order nature of TG, this produces a
much richer landscape in which to produce scalar—tensor
models. This inadvertently also helps revive previously dis-
qualified models since the gravitational wave propagation
equation becomes much more intricate [55]. Most models
in the teleparallel Horndeski theory also satisfy the param-
eterized post-Newtonian conditions [56] and produce a var-
ied polarization structure for gravitational waves [57]. More
recently, teleparallel Horndeski gravity has been studied for
its self-tuning properties in Refs. [58,59].

In this work, we aim to use the Noether symmetry
approach [60] to classify the ensuing models that can be pro-
duced within the teleparallel Horndeski plethora of models.
This approach is a vital tool to probing physical models of a
landscape of scalar—tensor theories such as Horndeski grav-
ity since it can use symmetries to reduce the complexity of
a system of equations [61]. In practice, the method depends
on a point-like Lagrangian and a symmetry that leaves the
Lagrangian invariant, which are then used to reduce the com-
plexity for a systems so that analytic solutions may poten-
tially be found [62]. These symmetries are always connected
with conserved quantities in a system under investigation.
Now, this investigative technique has been used in several
settings [63] such as f (1%) [64,65], scalar—tensor theories
[66-69], as well as non-local theories [70]. In TG, this has
been used in f(T') gravity [71], f(T, B) gravity [46] and
f(T, Tg) gravity [72]. As an approach of classification of
theories in regular Horndeski gravity, this approach was pre-
sented in Ref. [73] where only the invariance of the field
equations under a Noether point symmetry was considered.
This work also led to a number of interesting new solutions.
In the present work, we generalize this approach to teleparal-
lel Horndeski gravity to broaden this classification approach
and to obtain novel solutions.

Our study first opens with a brief discussion of TG and the
construction of the teleparallel analogue of Horndeski grav-
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ity which takes place in Sect. 2. We then discuss our use of
the Noether symmetry approach in Sect. 3 where our point-
like Lagrangian is written down together with the Noether
symmetries that are then investigated. In Sect. 4 we use the
Noether symmetry approach for the point-like Lagrangian to
classify the ensuing classes of models that emerge. Here, we
discuss how the regular Horndeski models are complemented
by the new additions from this larger form of Horndeski grav-
ity. Finally, we give a summary of our main results in Sect. 5.

2 Teleparallel Horndeski cosmology

The curvature associated with GR is recast in TG with the tor-
sional geometric framework offered by the teleparallel con-
nection which replaces the Levi-Civita connection for grav-
itational interactions [27-30]. By reconsidering the founda-
tions of GR, TG can offer an alternative approach by which
to construct gravitational theories.

In TG the metric tensor is replaced as the fundamental
dynamical variable by the tetrad ¢4 M and spin connection

B Cuo where Greek indices refer to coordinates on the gen-
eral manifold while Latin ones represent local Minkowski
space nap. In this way, the tetrads can be used to raise
Minkowski indices to the general manifold through [74]

g =e" e® nap. and nap=E,"Ep'gu, ey
which also adhere to orthogonality conditions

et Ept =53, and e E," =3, )
where E A“ represents the inverse tetrad. Given a metric,
there exists an infinite number of the tetrad components that
satisfy these relations due to the six local Lorentz degrees
of freedom A4 - These degrees of freedom are represented
by the spin connection. Together, the tetrad-spin connection
pair represented the fundamental variables of the theory.

The Levi-Civita connection I'® 1 (to recall, over-circles
refer to any quantities based on the Levi-Civita connection)
associated with curvature-based theories is replaced in TG
with the teleparallel connection I'? .. This can also be done
in GR but is much less common [75]. The teleparallel con-
nection is curvature-less and satisfies metricity [31], and can
be expressed as [29,30]

A rg A A, A B
My =Ep " e, + Ef 0" 07, (3)
where the spin connection must satisfy [27]
A A C —
@ gy T O @ ) =0 “)

in order to be the flat connection associated with TG. In this
way, the tetrad-spin connection pair balance each other in
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terms of the freedom of theory. It is important to point out
that tetrad frames exist which are compatible with zero spin
connection components (as long as they satisfy the corre-
sponding field equations). This is called Weitzenbock gauge
[30].

Teleparallel geometry is based on the replacement of the
Levi-Civita with the teleparallel connection, which means
that the Riemann tensor identically vanishes (R* Bye (re ) =
0).! Thus, we consider the torsion tensor which is defined
through the antisymmetry operator on the connection [28,76]

A . A
T4, =204, . 5)

which acts as a measure of the field strength of gravitation
in TG [27], and where the square brackets denote antisym-
metric operator. The torsion tensor transforms covariantly
under local Lorentz transformations and diffeomorphisms
[77], and can be decomposed into irreducible pieces, namely
axial, vector and purely tensorial parts given by [78,79]

1

au:zgew;\pT”)‘p, (6)
v =T%,,. @

1 1 1
tkuv:ZE (Tkuv + T;Mv) + g (gV)LU/J, + gvuv}») - gg)»uvvy
(3)

where €, is the totally antisymmetric Levi-Civita tensor in
four dimensions. Naturally, when contracted with each other
these irreducible parts vanish. This decomposition can also
be used to form parts of the torsion scalar invariant through
the scalars

1
Ti=aa" = -7 (T THY = 2T5,, TH) ©9)
Tyeci=vy 0" = T4, T, ", (10)

1
Tten::tkuutAMV = z (T)L;LVTMW + T)L;LVTM)LU)

1
_ETMLTPW’ (11)
which are parity preserving [44]. These three scalars form
the most general gravitational Lagrangian formed only by
parity preserving scalars, f(Tyx, Tvec, Tten), that is quadratic
in contractions of the torsion tensor. Together, the torsion
scalar can be formed by

3 2

2
T::ETax + then - gTveC

1 1
= (EAAg’)“EB”-I—ZEBngEA” + EWABgMng> 74,75,
(12)

! Naturally, this does not mean that the regular Riemann tensor vanishes
in general, i.e. R%; (I',,) # 0.

which can be shown to be equivalent to the Ricci scalar R up
to a total divergence term [44]

o 2 A w
R=R+T =20, (er}") =0, (13)

where R is the teleparallel connection calculated Ricci scalar
(which identically vanishes since the teleparallel connection

is curvature-less), e = det (eA ) = ./—g is the tetrad deter-

0
minant. The total divergence term defined the boundary quan-

tity B through

o 2 A
R:—T—i—zaﬂ(eTA )::—T+B. (14)
The boundary term nature of B guarantees that an action
formed by a linear contribution of 7" will produce a telepar-
allel 3 equivalent of general relativity (TEGR) [28,80], while
modifications of this may produce novel constructions of
gravity [27,29].

The equivalence principle offers a procedure by which to
relate local Minkowski frames and the general manifold in
GR. TG is not dissimilar in that the gravitational sector is
indeed formed by the teleparallel connection but its interac-
tion with matter preserves the minimal coupling prescription,
namely [28,81]

3y — Vi, (15)

where partial derivatives are raised to the regular Levi-Civita
covariant derivative for matter fields. Thus, both the gravita-
tional and scalar field sectors are developed enough to con-
sider the recently proposed teleparallel analog of Horndeski
gravity [33,55,56], also called Bahamonde—Dialektopoulos—
Levi Said (BDLS) theory. This construction of gravity in this
framework depends on three limiting conditions which arise
due to the organically lower-order nature of TG, namely (i)
the field equations must be at most second order in their
derivatives of the tetrads; (ii) the scalar invariants will not
be parity violating; and (iii) the number of contractions with
the torsion tensor is limited to being at most quadratic. With-
out these three conditions, the theory will admit an infinite
number of terms which may not contribute appreciably to
the physics. Automatically, this implies a weaker form of the
generalized Lovelock theorem [21,32,82].

The teleparallel analog of Horndeski gravity or BDLS con-
ditions leads directly to a finite number of contributing scalar
invariants, which give the linearly coupled with the scalar
field term [33]

L= UH¢;#1 (16)

where ¢ is the scalar field, and while for the quadratic sce-
nario, we find

Ji = auavfﬁ;ufﬁ;u, )
J3= Uatalw¢;u¢;w (18)

@ Springer
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JS = taﬂvtgav¢;ﬂ¢;ar (19)
J6 = taﬂvtgaﬂqb;uqb;vqb;aqs;ﬁv (20)
JS = tgwjtg,ua(p;u(b;aa (21)

JlO = eupgpavtapo¢;ﬂ¢;ﬂtv (22)

where semicolons represent covariant derivatives with respect
to the Levi-Civita connection. In addition the regular Horn-
deski Lagrangian terms (which can be calculating using the
regular Levi-Civita connection due to the minimum coupling
prescription) [22]

L2:=Ga(¢. X), (23)
L3:=G3(¢, X)[g, (24)
L4:=G4(¢, X) (=T + B)
o \2 .
+Gax (¢, X) <(D¢>) - ¢W¢W> : ©5)

Ls:=G5($, X)G ™"
1 o \3
— <Gsx(®. 1) ((D¢)

+2¢;MV¢;va¢;au =3¢ D¢) , (26)
we also arrive at the additional term [33]

Ltele := GTele (¢, X, T, Tax, Tyec,

I, 1, J3. J5. T, Js. 1o ). 27)

where the kinetic term is defined as X:= — %8“¢8M¢, and
where the theory action is represented by

1
SBDLS = 22 d*x eLrele
e
—i—m Z/d4x el +/d4x eLn, (28)
i=2

with £y, is the matter Lagrangian in the Jordan conformal
frame, k2:=87 G, G wv 18 the standard Einstein tensor, and
comma represents regular partial derivatives. We denote the
gravitational Lagrangian as £ = e (ETele + Zf:z Ei). One
small difference to the original form of Horndeski gravity is
that the tetrad is being used to make the calculations rather
than the metric, but the resulting terms will be identical for the
Lo — Ls contributions. Clearly, the standard form of Horn-
deski gravity is recovered for the limit where Gee = O.
Another important point is that due to the invariance under
local Lorentz transformations and diffeomorphisms, BDLS
theory will also be invariant under these transformations.

@ Springer

3 Noether symmetries

Cosmological models identified through Noether symmetries
offer an interesting approach by which to produce candidate
models for further investigation. In this section, we present
the teleparallel Horndeski Lagrangian followed by a brief
review of the Noether approach to producing such cosmo-
logical solutions.

3.1 The point-like Lagrangian

Here, we will construct the point-like Lagrangian for the
Lagrangian in Eq. (28) given a spatially flat Friedmann—
Lemaitre—Robertson—Walker (FLRW) metric. To this end,
our core task is to incorporate the new torsion scalars into
the formulation of the Lagrangian. This generalizes previ-
ous works on the topic [73] rendering a much more general
set of solutions. Indeed, as will be explored in the Sect. 4
this will pose a problem in terms of the presentation of these
solutions.
Consider the spatially flat FLRW metric described by

ds? = =N + a()*(dx? + dy? + dz?), (29)

where N (¢) represents the lapse function and a(¢) the scale
factor. This represents the maximally symmetric metric for
this spacetime and thus can be used to produce the ensu-
ing equations of motion. Aside from this, the scalar field
¢ inherits all the symmetries of the spacetime, namely the
position-independence ¢ = ¢ ().

The metric in Eq. (29) can be reproduced by the tetrad
eA# = diag(N (1), a(t), a(t), a(t)) which turns out to be
compatible with the Weitzenbock gauge [27], meaning a van-
ishing spin connection. Now, we consider the scalar contri-
butions to the point-like Lagrangian by first calculating the
torsion scalar

64>
e e
which is the Lagrangian density for TEGR. The only linear
contraction scalar (16) is then given by

_ 3a¢

= —.
27 uN?

3D

Interestingly, all the quadratic contraction scalars (17)—(22)
vanish since only the vector irreducible is nonzero for this
tetrad.

For completeness we also show the other scalars that are
used to form the point-like Lagrangian where the derivative
operators on the scalar field produce
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L b ab  gN

AR AT R e
. 3320 1 (. N\
AT +W<¢‘¢7> , 33)
. 3806 1 (. GNY
(vuvu¢)3=—a‘§]f6 ‘W(d"%) , (34)

while the kinetic term and the Ricci scalar are given by

$? . 6d 64>  6aN

2N2’ + aN? +a2N2 aN3

X (35)

Additionally, we apply the Lagrangian multiplier approach
to the point-like Lagrangian by introducing the multipliers A1
and A, which correspond to the scalars 7" and I, respectively.
The reasoning behind the use of Lagrangian multipliers is to
identify any possible problematic features that may appear
in the behaviour of the model. Moreover, this will provide a
more convenient approach to investigating the properties of
the theory more effectively.

By incorporating the Lagrangian multipliers as well
as the scalar substitutions into the teleparallel Horndeski
Lagrangian, we determine the point-like Lagrangian to be

L=a’N (G2(¢, X) + Grete(d, X, T, )

+TGa(9, X) — LGrete,12(¢, X, T, 12)

_TGTCIS,T(¢’ X! T? 12))
6(1(‘1. 2 .

+ 5 (aN*G4(9, X) + Gs5(d)ag)

+ 58 (@N2G(6, X) + 363 @) + 6aGi x (6, X)id)
a*N ) :

-V (6G4(¢, X)a +aG3(¢, X))
3ac'1]\"q'5

Nt
3aa . .

+ (aG3(¢, X)¢ + aGrete,12(¢, X. T, 1)

+2GTele,7 (¢, X, T, I)a)
3add
N3

(3Gs(¢, X)a +2aG4 x (¢, X))

+

(Gs(¢. X)a +2aGa x (¢, X)) . (36)

For this setting, the Lagrangian coordinates are a(t), ¢ (t),
N(t), T(t), I(¢t) which implies a configuration space setup
0 = (a, ¢, N, T, Ib). Another feature of this Lagrangian is
that the second-order derivatives can readily be eliminated
through integration by parts. On the other hand, the only
problematic term in this process is the a’¢ G3/N contri-
bution which fails to be taken away using this approach. In
order to resolve this issue, a reasonable choice is made in
which we set

Gixx =0= G3(¢. X) = g(P)X + h(d). 37)

While not physically motivated, the choice that G3xx = 0
provides a route by which most of the physically interest-
ing and well-posed formulations can be derived. On this
point, observational data cannot yet differentiate between
the plethora of models available, and so we pursue the set
of models that result from this setting providing a new range
of possible cosmological models to probe.

Hence, the point-like Lagrangian in this setting is given
by

L=a’N(G2(¢. )+TG4(d. X)~LGrete,12(9, X, T. In)
~TGrete1(®, X, T, ) + Grae(¢, X, T, 1))
3aa® /. ,
5 (97 (5@ —2Gax (0. X))
+2N? 2G4(¢, X) = G (8. X, T, 1))
a’ag
N3
~2G4,4(6. X)) + 8($)¢?)
_adY @) PP (@)
6N3 N '

+ (3N2 (Grete.12(¢, X, T, I)

(38)

which is the minimal form of the teleparallel Horndeski in
this setting.

3.2 Noether symmetries

We briefly review how a general differential equation behaves
under the action of a point transformation. Consider a sys-
tem governed by a Lagrangian £ with n generalized coor-
dinates ¢’ and an independent variable 7. The general form
of an infinitesimal transformation acting on that system is
expressed as follows.

Suppose that the dynamics of a system are governed by a
Lagrangian £ in terms of n generalized coordinates ¢’ while
t is the independent variable.

1= =t+e&q, 0, ¢ =q¢ =¢' +en' g\, (39

which can be encapsulated in the generator vector of the
transformation

. B o d
X = L) — "', 1) —. 40
§lg. 05 +n(q )8q, (40)

For any differentiable function F, the action of this transfor-
mation is given by

F(q, 1) = F(g,1) + €X(F(q, 1)) + O(e?), (41)

which can readily be extended for the case where F' also has
a velocity dependence

F(q,q,t)=F(q,q,0)+eXV(F(q,q,1))+0(?), 42)

@ Springer
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where
. .9
XV =x+ @m0 —4¢'é)—, (43)
aq’

is the first prolongation of the generator vector. For the case
in which F = F(t, q, q, g), the second prolongation will be
applied giving

X0 = X 4G g ) o

and so on for the nth order time derivative of g.

For the system under study consider the Lagrangian £ =
L(t, q, q), the action of the system is said to invariant under
infinitesimal transformations (up to a total divergence term),
if the Rund—Trautman identity holds, namely [61]

mpp 9, _df
X [,—f—dtﬁ—dt, (45)
where XD is the first prolongation of the generating vec-
tor. Then, the generator vector X is a Noether symmetry of
the dynamical system described by £. For any such Noether
symmetry, there exists a function

oL . ;
I(t,q,é)=f—£§—8—q,-(n’—q"$), (46)

which is a first integral of the equations of motion. In the
following, we will give explicit examples of the above general
scenario.

4 Classification of teleparallel Horndeski cosmologies

For our configuration space, namely Q = (a, ¢, N, T, I),
of the point-like Lagrangian in Eq. (38), together with the
independent variable of cosmic time ¢, the generator vector
is described by

ng(t?a7¢7Na T7 12) at

+277qi(t, a, ¢1N7 Ts 12) 8611, ql =a, ¢1N7 T: 12

(47)

By applying the Rund-Trautman identity in Eq. (45) to the
point-like Lagrangian (38) produces 62 differential equations
for the coefficients of the Noether vector &, nq, ng, Ny, 7,
N1, f and the arbitrary Lagrangian functions G; (¢, X). As
already discussed, the Lagrangian functions are not all inde-
pendent of each other [33,55,56] and may feature some over-
lap.

Considerations from Noether symmetries alone are not
necessarily enough to fully determine G; (¢, X) models. In
some works, specific forms of the G;(¢, X) functions are
assumed in standard Horndeski theories [66—69] which aides
in the full determination of cosmological models, as well as
the Noether vector coefficients. Our strategy is rather to con-
sider the most general Lagrangian and to constrain as much

@ Springer

as possible the unknown functions of the model Lagrangian
and Noether vector coefficients. This involves treating the
symmetries in the most general way possible and investigat-
ing each possible symmetry in turn. This will produce par-
ticular models for the various scenarios that are produced in
the teleparallel analogue of Horndeski gravity. In our case,
if at least one coefficient of the generating Noether vector
is nonzero, then a Noether symmetry is said to exist. The
existence of such symmetries leads to different forms of the
G (¢, X) functions which may be physically interesting.

In this work we exhaustively explored every possible
cases that arise from considering the Noether symmetries
as applied to the teleparallel analogue of Horndeski gravity.
These symmetries are determined by the system of equations
that come about by using the point-like Lagrangian (38) in
conjunction with the Noether condition in Eq. (45) which
leads to the over-constrained system of 62 equations. Now,
these solutions are impacted by whether the g(¢) function is
vanishing or not in the redefinition in Eq. (37), this leads to
genuinely distinct solutions. Moreover, the Noether classifi-
cation cases result by considering the vanishes or not of each
Noether vector coefficient, which lead to distinct solutions
in most cases. The enormity of the teleparallel analogue of
Horndeski gravity means that this process will result in many
cases some of which may involve lengthy solutions not appro-
priate for such a setting. For this reason, we show below four
specific examples of these cases, and retain the full set of
classification case solutions separately.”

Case 1 (2.a.ii.1.a.i.1.b.i.1.b in Table 2a):
In this first example, we find a solution to the 62 differential
equations in which the Noether coefficients turn out to be

£(t,a,¢,N, T, 12) =E(@t), (48)
na(t,a,¢, N, T,12) = —%cla, 49)
c18(¢)
ca,p, N, T, 12) = , 50
ne(t,a, ¢ ) @) (50)
nn(t.a.¢.N. T, 12)=N<c1 —s(r)—%‘gz(@), (51)
8 (@)
nr(t,a,é, N, T, 12) = 2¢,T (% _ 1) , (52)
c1g(®)g" (@)
T][z(t, a, ¢, N, T, 12) =C] (Iz <_W - 1)

4 Lo,
el GOLLIAT)

+Ga@) (3(6)8" (@) — 28 (9)?) ))
(53)
ft,a, ¢, N, T, 12) =c7, (54)

2 The full set of Noether symmetry solutions can be found at

https://github.com/jacksonsaid/BDLS_Noether_classification.git.
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while the BDLS model functions are given by

G2, %) = 5 (263 + 03X +2X7) ~ Gre(@, X),
(55)
G3($, X) = cq + () (cs + X)) , (56)
~ (2c2 +3)Xg(9)?
G , X)=G _ 57
46,3 = Ga(@) + == T (57)
® 2
Gs(¢, X) =c6+/ ng;(x) dx, (58)
1 &)
- 1 -
Grete(d. X, T. 1) = Grete(@, X) + 7 <4G4(¢)T
+2g(@)r(c3 —4cs +2X (3 + 2¢3))
- g(¢>2T> ,
4GTele| ———
+ 4Gl (g’(¢)2 g @)+
=) (2c2 4+ 3)8(@) LT
81HLG
T8R0@) + ¢'(¢)?
2 ’ _ "
| 280X QeTg (;)@)2(2@ +3)hg (¢)>>‘ 59)

which satisfies, as all the cases in the work, the speed con-
straint of gravitation waves [55]. In this and the other clas-
sification cases, the denominators cannot vanish due to the
particular case not allowing it. This renders each case safe
from divergences. This is an interesting case where the G4
functional expresses some dependence on the kinetic while
the G5 function is nonzero. This is balanced by an intricate
form of GTele Which now must contain several terms to sat-
isfy the gravitational wave constraint condition. It is difficult
to relate these models to their standard Horndeski analogue
since they do not regularly allow for so much of the dynamics
to feature in the G5 function. On the other hand, we do note
the dependence G5 = Gs(¢) which omits the kinetic term,
while the other functions do feature this term.

Case 2 (2.a.ii.1.a.ii.2.a.ii in Table 2a):
In other case of the solutions of the two differential equa-
tions, we find the Noether coefficients have values

E(t,a, ¢, N, T,12) = E(1), (60)
301 - a3ﬁ¢(t7 a, ¢1 N? IZ)g/(d))
at,a, ¢, N, T, I12) = ,
Na(t,a, ¢ ) 3d23(9)
(61)
ne(t,a, ¢, N, T, 12) = n¢(t,a,¢, N, 12), (62)
ny(t,a,¢,N, T, 12)
:N<— 330] +ﬁ¢,(t,a,¢,N, Iz)g (d’)
a’g(¢) 8(9)
_" _ ﬁ¢(t’a’ d)’N’ Iz)g”(¢)) 63
E(r) o , (63)

nT(t’ a’ ¢’ N? T’ 12)

_ 1 / / 2
T 22a®Ng ()28 (@) (ros'@
+a'Nijg(t.a.9. N, 12)( = 202T5(@)8' @)+

+2e2Tg(9)*8" ($) — §'(9)* Gl (@)

+8'@)8" @C1e(®)) ). (64)
nt,a,¢, N, T,12) =np,(t,a,¢,N, T, 12), (65)
ft,a,¢,N, T, I2) = f(1), (66)

where some of these results remain very general, and where
the BDLS model functions now take on the form

G2(¢, X) = Ga2(¢, X), (67)

G3(¢, X) =c3+ g(@) (ca + X), (68)
c28(¢)?

Gy, X) = ————, 69

4(¢, X) ) (69)

Gs(¢, X) = cs, (70)

. 4
Grele(¢, X, T, ) = —G2(¢, X) + Grete(9) + 56212g(¢)
+2c4Xg () + X8 (¢)—

8 o 208(¢)°Dhg"(¢)
- 502Xg (¢) — @2 (71)
This case is different because the G5 function is fully deter-
mined to be a constant while the G4 functional does not
depend on the kinetic term. To that end, these parts of the
model would survive the gravitational wave speed constraint
in standard Horndeski gravity. The BDLS correction term
then adds news dynamics distinct to this standard Horndeski
model. What is interesting in this case is that the Gele term
inherits directly the functional from the G term producing
a coupling between the basic standard term and the BDLS
correction term.

Case 3 (2.b.i2.b.ii.2.b.ii.2 in Table 2b):

In a similar vein, the generality of the G» functional and
the independence of G4 from the kinetic term remains the
case with this case in which the Noether coefficients assume
the values

E(t,a,¢,N, T, 12) = E(1), (72)
Na(t,a, ¢, N, T, 12) = —, (73)
cra
n(t,a, ¢, N, T, 12) =0, (74)
nn(t,a, ¢, N, T, 12) = —NE(¢), (75)
3¢12GTere () + T G5($))

nr(t,a, ¢, N, T, 12) = —

)

c2a3G5($)
(76)

@ Springer



259 Page 8 of 15

Eur. Phys. J. C (2022) 82:259

7712(I7a,¢7N, T7]2)=n12(t9a7¢9N7 T912)7 (77)
f,a,¢,N, T, 12) =c3, (78)

while the Horndeski functions take the form

G2(¢, X) = Ga(¢. X), (79)

G3(¢, X) = cs +¢5X, (80)
~ X

Ga(¢. X) = G4(9) + §G§(¢), (81

Gs(@, X) = Gs(¢), (82)

GTele(¢s Xa T’ 12) = _G2(¢a X)
n (GTele () + TG (@) (2G4(9) + XG5(9))
G5(9)
+1 (c6 +2G(¢) + X (GL() — cz)) . (83)

This case generalizes the G5 functional to arbitrary depen-
dence on the scalar field, while also putting some kinetic term
dependence on the G4 term. This is an example of a model
that satisfies the gravitational wave constraint for BDLS the-
ory but not for standard Horndeski gravity. As in the previous
two cases, there is an I, dependence on Gele, together with
a coupling with both G4and G5 functionals.

Case 4 (2.b.il.a.ii.2.b.i in Table 2b):
The final case we consider that solves the 62 differential
equations of the Noether symmetries gives

E(t,a,¢,N, T, 12) = £(1), (84)
_

Na(t,a, ¢, N, T, 12) = 7 (85)

ne(t,a, ¢, N, T, 12) =0, (86)

nn(t,a, ¢, N, T, 12) = —NE(1), (87)
3¢1T

nrt,a, ¢, N, T, 12) = -5 (88)
3c1 1

Nt a, ¢, N, T, 12) = —%, (89)

f(t,a, ¢, N, T, 12) = cs, (90)

where the model functionals take the form

G2(¢, X) = G2(¢) — Grete (9, X), (91)

G3(¢, X) = c3, (92)

G4(¢, X) = Gy(¢) + XGy(9). (93)

Gs(¢, X) = G5(¢), 94)

Grele (@, X, T, ) = —G2(¢) + Greie (@, X)

+ GTete (@) bV T +Grete (9) T —Ga(@) T X 4 212(Gy(¢)

-, 3XT ,
+ XGy(9) + TG5(¢)~ (95)

Asin case 3, one of the Noether coefficients vanishes making
the system slightly easier to solve. Here, we again observe
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nonvanishing G4 and G5 showing another case which is only
possible, in an observationally consistent manner, in BDLS
as compared with standard Horndeski theory.

5 Conclusions

Horndeski gravity is the most general scalar—tensor frame-
work giving to second-order field equations [22]. Its telepar-
allel analogue [33] offers a larger framework in which to
construct model since torsion naturally produces lower-order
theories of gravity. The teleparallel of Horndeski gravity
[55] is especially interesting because provides a direct way
to circumvent the recent speed constraint on the propaga-
tion of gravitational waves [26]. Moreover it is well known
that most higher order theories in curvature-based gravity
can be mapped onto a dynamically equivalent Horndeski
model, it follows that the teleparallel analogue allows for
even more higher order dynamically equivalent theories. For
these reasons, in this work, we studied the symmetries that
emerge from the Noether symmetry approach. When such
symmetries arise, the equations of motion become reducible
and solvable in most cases. This means that exact solutions,
which are rare in general, become more obtainable within
this approach.

We do this by first determining the point-like Lagrangian
for our setting in Sect. 3.1 using the maximally symmetric
form of the flat FLRW metric. This is performed using a tetrad
that is compatible with the Weitzenbock gauge. We then
remove second-order derivatives in this Lagrangian using
integration by parts. However, one of the terms, related to G3
poses a problem for this procedure and so we take the still
general form of Eq. (37) for its functional form. In the end,
this produced the point-like Lagrangian in Eq. (38) where
the second-order derivatives have been removed. We then
lay out the general approach taken in the remainder of the
work in Sect. 3.2 where the first order equation of motion
that emerges out of the Noether symmetry is given.

Thus, by applying the Rund—Trautman identity in Eq. (45)
to the point-like Lagrangian (38) we find a system of 62 dif-
ferential equations for the Noether vector coefficients and
model functionals. This in turn leads to a large number of
cases of this general system of equations. Given the enor-
mity of these cases we display them elsewhere (GitHub).
Saying that, in Sect. 4 we showcase 4 of these cases which
display the power of this approach. To varying degrees, these
cases give a determined system of model functionals and
Noether symmetry coefficients. To display some informa-
tion about the remainder of the other cases we present Tables
in Appendix A where all the solution scenarios are enumer-
ated together with the conditions which defines them. These
are divided by whether the G4 xx vanishes or not which is
then subdivided into subcases.


https://github.com/jacksonsaid/BDLS_Noether_classification.git
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These tables show the complexity available through the
teleparallel analogue of Horndeski gravity. Moreover, they
provide a wealth of models which may provide interesting
dynamics for further investigation. Given the breadth of clas-
sification cases, it would not be feasible to explore the cos-
mology that they instigate in a systematic way. However, it
would be very interesting to consider the viable models fur-
ther and to determine their cosmological evolution.
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Appendix A: Noether classifications

In the appendix we present on a table all the different classes
of theories that appear through the classification process. Not
all of them lead to symmetries because in some cases the
system of equations was too complicated to be solved, or
not all the functions are fully determined. In greater detail,
meaning the Noether vector coefficients and the form of the
G, functions of the Lagrangian, can be found in the notebook
files in GitHub.

1.: G4,XX # 0

la:h(p) #0

lai  Gree,nn(@, X, T, ) #0 1.bi
lLaii  Grele,n1, (¢, X, T, ) =0 Lbiii
Laii.l Gree2,7(¢, X, T) #0
1.a.ii.2 Grele2,7(¢p, X, T) = 0

1b:h () =0

Grele,,, (¢, X, T, ) #0
GTe]eA,Izlz (¢a X, T,L)=0
Lbii.l Greie2, 11 (9. X, 1) #0
1.b.ii.2 GTe]eZ.Izlz ((b’ Xv 12) =0

2.:Gaxx =0

2.a: Gree,xi2(¢, X, T, I2) # 2G, (¢) — g(9)

2.a.l. GTele,XT (d)’ X, Ta 12) 7& G,S(d))

2.ai.l. 8(@) #0

2.ai.la. Grele2a,77(®, T) # —Greter,r7 (9, T, 12)
2.ai.1.b. Grete2a.17(@. T) = —Grele1,77(9, T, 12)
2.a.i.1.bi. Gelelp, 1, (¢, 1) #0

2.ai.1.b.ii. Grelels, 1, (¢, 1) =0

2.a.i.1.bii.l. Grelesrn (¢, 1, 1), # 0

2.a.i.1.b.ii.2. Grele3, 7L (¢, 1, 10) =0

2.ai.lbii2a. Grele2e,77 (@, T) + Grelesa,77(¢, T) #0
2.ai.1.b.ii.2.b. Grele2e,77 (9, T) + Greleza,77(9, T) =0
2.ai.2. g(®)=0

2.ai2.a. Gap(d) # G5(9)/2

2ailai GTelel, (9, T, 1) # 2G)y, (9)

2ail.ail. H(p) 0

2.ai2aila. Grele3, 1, (9, T, 1) #0

2.a.i.2.a.i.1.b. Grele3, b (¢, T, 1) =0

2.a.i2.ai.1.b.i. Grele3b, 7(9, T) # 0

2.ai.2.ai.1.bii.
2.ai2.ai.l.biil.
2.ai.2.ai.1.bii.2.
2.ai2.ailbii2.a
2.ai.2.a.i.1.bii.2.b

Grele3n,7(¢. T) =0
Gretel,tn (@, T, ) #0
Grelel,70,(¢, T, 1) =0
Grelel, i, (9, 2) #0
Grelel, b, (¢, [2) =0

2.ai.2.a.1.2.
2.a.i.2.a.ii.
2.a.i.2.a.i.l.
2.a..2.a.i.l.a.
2.a.i.2.a.ii.1.b.
2.ai.2.a.i.l.bi
2.a.i.2.a.ii.1.b.ii
2.ai.2.a.ii.2.
2.a.i.2.a.ii.2.a
2.ai.2.a.ii.2.b
2.a.i.2.a.ii.2.b.i
2.a.i.2.a.ii.2.b.ii
2.a.i.2.b.
2.ai.2.b.i
2.a.i.2.b.ii
2.a.ii.

2.a.i.l.
2.a.i.l.a
2.a.i.l.a.i
2.aii.l.a.i.l
2.a.i.l.ai.l.a
2.a.i.l.a.i.l.a.i

2.a.ii.l.ail.aii
2.aii.l.ailb

2.a.i.l.ai.lbi
2.aii.l.a.i.l.bi.l

2.aii.l.ailbila
2.aii.l.ai.l.bi.l.b

2.a.ii.l.ail.bi2
2.a.i.l.a.il.b.ii

h($) =0

Gretel,, (9, T, I) = 2G )y, (¢)
Gap(9) # 2/ W (d) + G5()/2
c3#0

c3=0

Grete3, i (9, T, 1) #0
Greles, i (@, T, 1) =0
Gap(d) = 2/ G, (d) + G5(9)/2
Grele3. i (9, T, I2) #0
Grele3, 1, (9, T, 1) =0
Grele3b, 7 (9, T) # 0
Grele3n, 7 (9, T) =0

Ga(9) = G5(9)/2

h'($) #0

h'(p)=0

Grele x7(¢, X, T, 1) = G5(¢)
g(g) #0

Gap(9) # G5(9)/2

Grele2, i (9, T, I2) #0
G5(®) #0

GTelel, x1, # 2G;,(9)

38(¢)? + 28 (#)(—2Ga(¢) + G5(9)) +
(@) (=6G, () +3G1etel x1, (¢, X, [2)) #0
38() + 28 () (—2Gap(¢) + G5(9)) +
2(9)(—6G;, (¢)+3G1ele1, x1, (¢, X, 1)) =0

Grelel,x 1, = 2Gy,(¢)

Gap(p) # 38(9)*/4g () + G5(¢)/2

&) #0
e # —9/5
e =-9/5
g@=0

Gap(¢) =38(9)*/4¢'(§) + G5(¢)/2
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2.a: Gree xi2(¢, X, T, I2) # 2G; (¢) — g(o)

2.a: Gree xi2(¢, X, T, I2) # 2G; (¢) — g(o)

2.aii.l.a.i.l.bii.l

2.aii.l.a.i2
2.a.i.l.a.i.2.a

2.a.i.l.a.i.2.a.i

2.a.ii.l.a.i.2.a.ii

2.aii.l.ai2.b

2.aii.l.a.i2.bi
2.aii.l.ai2.bi.l

2.aii.l.ai2bil.a

2.aii.l.a.i.2.bi.l.a.i
2.a.i.l.a.i.2.bi.l.a.ii
2.a.i.l.a.i.2.b.i.l.b

2.a.ii.l.ai2.bi2.

2.a.i.l.a.i.2.b.ii
2.a.ii.l.a.i.2.b.ii.1
2.a.i.l.a.i.2.b.ii.2
2.a.ii.l.a.ii
2.a.i.l.a.ii.l
2.a.i.l.a.i.l.a
2.a.i.l.a.ii.l.a.i

2.aii.l.a.i.l.ai.l
2.aii.l.a.ii.l.ai.2
2.aii.l.a.ii.l.ai2.a
2.a.i.l.a.i.l.a.i.2.a.i

Gree2(9, T, I2)
= —Grele1s (¢, 2) + Gele2a (9. T)
+3LTg@)’/(4g'(#)*) +21G),(¢)

+ Dg(p)(—4Xg'(¢) —4h' ()
+TG5(¢) +2G2.x(¢, X)

+ 2GTele|a.X(¢v X)) / 28,(¢)

Gy(¢)=0

GTe]eI (¢» X, 12) 7& GTelela(¢s X)

+ Grele1s (9, I2) + 21 XGly (¢)

GTe]el 7$ _I2Xg(¢) + GTelela(¢a X)
+ Grele1s (9, I2)
+40LXGap(9)g' (¢)/38(9)
+2X1,G), (¢)

GTelel = _IZXg(d)) + GTe]ela(¢s X)
+ Grele1 (9, I2)
+40LXGap(9)g' (@)/38(9)
+2X1,G),(¢)

Grete1 (@, X, 1) = Greleta (¢, X)

+ Grele1s (9, 1) + 21 XGl (¢)

g'(P) #0

Grele2(9, T, I2) =
3T Xg($)* —3T¢($)G),(¢)

+28" (@) 2T G44(p) — Gele1s (9, I2)
+ Grele2a (¢, 2 +3Tg(9)/(4g"(#))))

GTeleZa (¢s T, 12)
= GTele2a1(®) + 2(I2
+3Tg(¢)/(4g'(#)))/OT)(OT G, ()

+ (613 — 6L (I, + 3Tg($)/(4g' ($)))
+2(1 +3Tg(¢)/(4g' (9)))?
—-9TX)g(¢9)

—6h'(§)(—1r + 3T g(¢)/ (48" (9)))
+3(=1 +3Tg(9)/(4g () (G2 x (¢, X)
+ GTelela,x (¢, X)))

h(¢) = c2 + c38(P)

h($) # c2 + c3g(@)

Grele2a (P, T, I2)

# GTele2a1 (@) + 2(12
+3Tg(¢)/(4g'(#)))/OT)OT G, (¢)

+ (613 — 6 (I, + 3Tg(9)/(4g' ($)))
+2(L +3Tg($)/(4g' () — 9T X)g(¢)

—6h' (p)(—1r + 3T g(p)/(4g'($)))
+3(=1 +3Tg(¢)/(4g () (G2, x (¢, X)
+ Gelela,x (¢, X)))

Gree2(¢, T, 1) #
3T Xg($)* —3T¢($)G),(¢)

+28" (@) 2T G44(p) — Grete1n (9, 1) +
Gete2a (P, I + 3T g(9) /(48" (#))))

g'@) =0

Gap(@) =2/ h'(¢)

Gap(d) # c2/ W' (¢)

Grete2,1, (@, T, ) =0

G5(9) #0

GTelel» x1, # 2GY,

3g%($) + 28" () (—2Gap(9)

+ G5(9) + g(9)(—6G, ()
+3G05V (@, X, 1) #0

Gele2a 77 # 0

GTeleZa;TT =0

n¢(@) =0

cq #—1/2

2.aii.l.a.i.l.ai.2.a.i.1
2.aii.l.a.ii.l.ai2.ai2
2.aii.l.a.i.l.ai2.ai2.a
2.aii.l.a.ii.l.ai.2.ai2.b
2.a.ii.l.a.i.l.a.i.2.a.ii
2.aii.l.a.i.l.a.i.2.a.ii.l
2.aii.l.a.i.l.a.i.2.a.ii.2
2.a.i.l.a.ii.l.a.i.2.a.ii.2.a
2.aii.l.a.i.l.a.i.2.a.ii.2.b
2.aii.l.a.ii.l.ai2.b
2.aii.l.a.i.l.a.i.2.b.i
2.aii.l.a.i.l.ai.2.b.i.l
2.aii.l.a.i.l.a.i.2.b.i.2
2.a.ii.l.a.ii.1.a.i.2.b.ii
2.a.i.l.a.ii.l.a.ii

2.a.i.l.a.i.l.a.ii.l
2.a.i.l.a.i.l.a.ii.l.a
2.a.i.l.a.ii.l.aii.l.b
2.a.i.l.a.ii.l.a.ii.1.b.i
2.a.i.l.a.i.l.a.ii.l.b.i.l

2.a.ii.l.aii.l.aii.l.bi2

2.a.i.l.a.ii.l.a.ii.1.b.ii
2.a.i.l.a.ii.l.a.ii.1.b.ii.1
2.a.i.l.a.ii.l.a.ii.1.b.ii.2
2.a.i.l.a.ii.l.a.ii.1.b.ii.2.a
2.a.i.l.a.i.l.a.ii.1.b.ii.2.b
2.a.ii.l.a.ii.1.a.ii.2
2.a.i.l.a.ii.l.b
2.a.i.l.a.ii.1.b.i
2.a.i.l.a.ii.1.b.i.l
2.a.i.l.a.i.l.bi.l.a
2.a.i.l.aii.l.bi.l.a.i

2.a.i.l.a.i.l.b.i.l.a.ii
2.a.i.l.a.ii.l.bi.l.b
2.a.i.l.a.ii.1.b.i.2
2.aii.l.aii.l.bi2.a
2.a.i.l.a.ii.1.b.i.2.a.i
2.a.i.l.a.ii.1.b.i.2.a.ii
2.a.i.l.a.ii.1.b.i.2.b
2.a.i.l.a.ii.l.b.i.2.bi
2.a.i.l.a.ii.1.b.i.2.b.i.1
2.a.i.l.a.ii.1.b.i.2.b.i.2

2.adi.l.a.ii.1.bi.2.bii
2.a.i.l.a.ii.l.bi.2.b.i.1

2.a.i.l.a.ii.1.bi.2.b.ii.2

Gap(9) =0
Gap(9) #0
nnt,a,¢,N, T, 1) #0
nn(t,a,¢, N, T, 1) =0
cy =—1/2
Naze # 0
Na3c = 0
npt,a,¢,N, T, 1) #0
nn(t,a, ¢, N,T,b) =0
ng (@) #0
GTelelc 7é _1/2
GTelelc 7& -2
GTelelc =-2
GTeIelc = _1/2
38%(¢) + 28" ($)(—2Gap(9)
+ G5(9) + g(@)(—6G, (¢)
+3Gtele1, xn (¢, X, 12)) =0
77¢(t, ¢7 N, 12) = n¢(tv ¢)
ng(t, ¢) #0
ne(t, ) =0
Grele2a,77(9, T) #0
Grele2p (P, I2) = —Grrele1s (P, I2)
+ Grele2o1 (@) + 12Grele2s2(9)
Grele2n (@, I2) # —Grele1s (¢, 12)
+ Grele2p1 (@) + 12Grele2s2 ()
Grete2a,77(9, T) =0
Na3c = 0
Na3c 75 0
G4a(¢) 7é 0
G4a(¢) =0
ne(t, ¢, N, L) # ne(t, ¢)
Grelel, x1, = 2G,(¢)
Gape # 1
Gape # 2
Grele2a. 779, T) #0
Grelelp, b1, (9, I2) +
Grele2n. 1, (¢, I2) # 0
Grelelp, b1, (P, I2) +
Gele2b, 1,1, (P, I2) =0
GTeIeZa,TT (¢’ T) =0
G4bc =-2
GTeIeZa,TT (¢’ T) 7'é 0
Gelelv, 1, (P, I2)
+ Grele2p, 1,1, (9, 12) #0
Grelelv, b1, (P, 12) +
GTe]eZb,Iz[z (d)? 12) =0
Grele2a,77(9, T) =0
ng(@) =0
Gelelp, 1 (P, I2)
+ Grete2n, b1, (@, I2) #0
Gelelv, b1 (P, I2)
+ Grele2, 11, (@, 12) =0
ne(P) #0
Gelelb, b1, (P, 12)
+ Grele2v, 1, (@, 12) #0
Gelelb, 1, (P, 12)
+ Grele2p, 1,1, (@, [2) =0
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2.a: Gree xi2(¢, X, T, I2) # 2G; (¢) — g(o)

2.b : Grele x12(¢, X, T, Ip) = 2Gyp,(¢) — g(9)

2.a.i.l.a.ii.1.b.i
2.a.i.l.a.ii.2
2.aii.l.a.ii.2.a

2.aii.l.a.ii.2.ai
2.a.ii.l.a.ii.2.a.ii
2.aii.lb
2.a.ii.1.b.i
2.aii.l.bi.1
2.a.ii.1.b.i.2
2.a.i.1.b.i.2.a
2.a.ii.1.b.i.2.b
2.a.ii.1.b.i.2.b.i
2.a.ii.1.b.i.2.b.ii
2.a.ii.1.b.i.2.b.ii. 1
2.a.ii.1.b.i.2.b.ii.2
2.a.ii.1.b.i.2.b.ii.3
2.a.ii.l.b.ii
2.a.ii.1.b.ii.1
2.a.ii.1.b.ii.2
2.a.i.l.b.ii.2.a
2.a.ii.1.b.ii.2.b
2.a.ii.2.

2.a.i.2.a
2.a.ii.2.a.i
2.aii.2.a.i.l
2.aii.2.a.i.l.a
2.a.i.2.a.i.1.a.1
2.a.ii.2.a.i.1.a.ii
2.aii.2.a.i.l.b
2.a.ii.2.a.i.2
2.a.di.2.a.i.2.a
2.a.i.2.a.1.2.a.i
2.aii.2.a.i.2.ai.1
2.a.ii.2.a.i.2.a.i.2
2.aii.2.a.i.2.a.ii
2.aii.2.a.i.2.b
2.aii.2.a.i.2.bi

2.a.i.2.a.i.2.b.i.1
2.a.ii.2.a.i.2.b.i.2
2.a.ii.2.a.1.2.b.ii

2.aii.2.a.1.2.b.ii.l
2.a.ii.2.a.i.2.b.ii.2
2.a.ii.2.a.ii
2.aii.2.a.ii.l
2.a.i.2.a.i.l.a
2.aii.2.a.ii.l.b
2.aii.2.a.ii.2
2.aii.2.a.ii.2.a
2.a.ii.2.a.ii.2.b

Gape =1
Gi(¢)=0
Grele1 (¢, X, ) =
—DLXg(P) + Greleta (@, X) + Grele1s (9, 12)
+4LXGap(P)g' (9)/38(p) + 20X Gl (d)
G4bc 7& 0
Gape =0
Gap(9) = G5(¢)/2
g(@) — G5(¢) + Grelel x.1,(¢, X, ) #0
Grele2a, 77 # 0
Gele2a, 77 = 0
Gi(9)=0
Gi(¢p) #0
Grete2b, 1, (@, T) + Gretel, 1, (9, X, ) # 0
Grete2b, 1, (@, T) + Gretet, b, (9. X, ) =0
Gele2a1 () = 2G14(P), np # 0
Grele2a1(9) = 2G4q(9), 1y =0
GTe]eZa] (¢) 5& 2G4a (¢)v N # 0
8(¢) — G{(¢) + Grete1. x1, (9. X, L) =0
Gele2a1(P) # 2Gaq(P)
Gele2a1 (@) = 2G 44 (@)
Grele1s, (@5 12) + Grele2s, 1, (95 12) # 0
Grele1p, 11, (P, 12) + Gele2v, 1,1, (@, [2) =0
g)=0
G5(d) #0
GTelel.xn (¢, X, 1) # 2G,(¢)
G5(¢) #2Gap(9)
Grele2,7i (@, T, I2) #0
Grelel, x1,1, #0
Gretel,xnn =0
Grete2,70, (@, T, ) =0
G5(#) = 2G4 (o)
2G44(¢) — Grele2,7(¢, T, In) #0
Grele2, i (@, T, I2) #0
h'($) #0
h'(p)=0
Grete2,70, (@, T, ) =0
2G44(#) — Grete2,7(¢, T, ) =0
GTelel =
—GTele4 + GTetela + 12(Gye3 + XG5(9))
h'($) #0
h'(p)=0
GTelel #
—GTeled + GTetela + 2(Gy3 + XG5(9))
h'($) #0
h'(p)=0
Grelel,x 1 (¢, X, I2) = 2G),,(¢)
G5(¢) #2Gap(9)
h'($) #0
h'(p)=0
G5(¢) = 2G4 ()
Grelelp, 1, (@, 1) # —Grele2, 1,1, (P, T, )
Grele1p, 11, (9, 1) = —Grete2, 1,1, (@, T, I2)

2.a.ii.2.a.ii.2.b.i
2.a.ii.2.a.ii.2.b.ii
2.a.ii.2.b
2.a.i1.2.b.i
2.a.ii.2.b.i.1
2.a.i1.2.b.i.2
2.a.ii.2.b.ii
2.a.i1.2.b.ii.1
2.a.ii.2.b.ii.2
2.b.i

2.b.i.1

2.bi.l.a
2.b.i.l.a.i
2.b.i.l.a.i.l
2.bi.l.a.i.2
2.bi.l.ai2.a
2.bi.l.a.i2.b
2.b.i.l.a.ii
2.b.i.l.a.i.l
2.bi.l.aii.l.a
2.bi.l.adi.l.a.i
2.b..l.a.ii.1.a.ii
2.bi.l.a.ii.l.b
2.b.i.l.a.ii.1.b.i

2.bi.l.aii.l.b.ii

2.bi.l.aii.2
2.bi.l.aii2.a
2.bi.l.aii.2.b
2.bi.lb
2.b.i.l.bi
2.bi.l.bi.l
2.b.i.1.b.i.2
2.b.i.1.b.ii
2.b.i.1.bii.1

2.b.i.1.b.ii.2

2.bi.l.bii.2.a
2.b.i.1.bii.2.b
2.b.i.1.bii.2.b.i
2.b.i.1.bii.2.b.i.1
2.b.i.1.b.ii.2.b.i.2
2.b.i.1.b.ii.2.bii
2.bi.1.b.i.2.b.i.1
2.bi.l.bii2.bii.l.a
2.bi.1.bii.2.b.ii.1.b
2.b.i.1.b.ii.2.b.ii.2
2.bi.2

2.bi2.a

2.bi2.ai
2.b.i.2.a.i

2.bi2.b

2.b.i.2.bi
2.bi2.bi.l

Grele2n,7(¢, T) #0

Gretean,7(9, T) =0

Gi() =0

Gap(¢) #0

Grete2, 779, T, I2) #0

Greie2,r7(#, T, ) =0

Gap(¢) =0

Grete2,7(#, T, o) # 2G44(h)

Grele2,7(P, T, 1) = 2G44(d)

g(®) #0

g #0

Ga(9) # G5(9)/2

3G5(9) —2Gap(9) +2GTele1 x7(p, X, T) #0

N4ce 7& -2

N4ce = —

h(¢) = c5 + c48(9)

h(®) # c5 + cag(p)

3G5(¢) —2G4p(d) +2GTete1, x7 (9, X, T) =0

Gap(¢) #0

Nade 7 0

Nade = _3/2

Nadc # _3/2

Nade = 0

—2G44(9) + Greletn,7($, T) +
Grele2,7(¢, T, 1) #0

—2G44(9) + Greletn,7(¢, T) +
Grele2,7(¢, T, 1) =0

Gap(¢) =0

Na3e # —2

Na3c = -2

Gup(d) = G5(¢)/2

G5(9) # Greter x7 (9, X, T)

Na4c 7é 0

Nade = 0

G5(#) = Grele1.x7 (¢, X, T)

2G44(9) — Gretetn.7(9, T) —
Greie2,7(¢, T, I2) #0

2G44(9) — Greletp, 7(P, T) —
Greie2,7(¢, T, 1) =0

Grele2a. 1, (¢, 12) # 0

GTeleZa,1212 (¢a 12) =0

Nadc 7& 0

h($) # cs + cag(p)

h(¢) = c5 + c48(9)

Nade =0

Grele2a2(¢) = ¢78(9) +2G, (9)

h(¢) # ca + Grele2a2c8 (@)

h(¢) = c4 + Grele2a2c8(P)

Grele2a2(9) # ¢78(¢) +2G,(d)

g'(@) =0

3G5(¢) —2(Gap(@) + Grelet, x7 (¢, X, T)) # 0

G5(#) # Greter. xr(#, X, T)

G5(¢) = Grele1x7 (¢, X, T)

3G5(9) —2(Gap($) + Greler. x7(p, X, T)) =0

G5(#) # 2Gap(#)

Grele1p, 77(®, T) + Grete2, 77 (9, T, ) # 0
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2.b : Grele x12(¢, X, T, I) = 2Gpp,(9) — g(9)

2.b : Grele x12(¢, X, T, Ip) = 2Gyp,(¢) — g(9)

2.bi2.bi.l.a

2.bi2.bi.l.b

2.b.i.2.b.i.2
2.bi.2.bi2.a
2.b.i.2.b.i.2.b
2.b.i.2.b.ii
2.b.i.2.b.ii.1
2.bi2.bii.l.a
2.b.i.2.b.ii.1.b
2.b.i.2.b.ii.1.b.i
2.b.i.2.b.ii.1.b.i.1
2.b.i.2.b.ii.1.b.i.2
2.b.i.2.b.ii.1.b.i.2.a
2.b.i.2.b.ii.1.b.i.2.b
2.b.i.2.b.ii.1.b.ii
2.b.i.2.b.ii.1.b.ii.1
2.b.i.2.b.ii.1.b.ii.2
2.b.i.2.b.ii.1.b.ii.2.a
2.b.i.2.b.ii.1.b.ii.2.b
2.b.i.2.b.ii.2
2.b.i.2.bii.2.a
2.b.i.2.b.ii.2.a.i
2.b.i.2.b.ii.2.a.ii
2.b.i.2.b.ii.2.b
2.b.i.2.b.ii.2.b.i
2.b.i.2.b.ii.2.b.ii
2.b.i.2.b.ii.2.b.ii. 1
2.b.i.2.b.ii.2.b.ii.2
2.b.ii

2.b.ii.1

2.bii.l.a
2.bii.l.a.i
2.b.ii.l.a.ii
2.b.i.1.a.ii.1
2.bii.l.aii.l.a
2.b.ii.l.a.ii.1.b
2.bii.l.a.ii.1.b.i
2.b.ii.1.a.ii.1.b.ii
2.b.i.l.a.ii.1.b.ii. 1
2.b.ii.1.a.ii.1.b.ii.2
2.b.ii.l.a.ii.2
2.b.i.l.a.ii.2.a
2.b.ii.l.a.ii.2.b
2.b.i.l.a.ii.2.b.i
2.b.ii.1.a.ii.2.b.ii
2.b.ii.1.a.ii.2.b.ii.1
2.b.ii.1.a.ii.2.b.ii.2
2.b.ii.1.b
2.b.ii.1.b.i
2.b.ii.1.b.i.1
2.b.ii.1.b.i.2
2.b.ii.1.b.i.2.a

Gree2(¢, T, I2) #

Greie2a(®, T) + D Grete2n (¢, T)
Grele2(p, T, ) =

Greie2a(®, T) + D Grete2n (P, T)
Gretels, 77(®. T) + Grele2, 77(¢. T, I2) =0
G4n(¢) 7& 0
Gaa(¢) =0
G5(9) =2G4p(9)
h'(¢) #0
Greie2,rn (@, T, 1) #0
Grele2,71,(¢, T, 1) =0
Grete2b, 1, (9, ) #0
Grele1s, 77(@. T) + Grele2a, 77(9, T) # 0
Grete1s, 77(®, T) + Grele2a, 77 (9, T) =0
Gi(9) #0
Gi(¢9)=0
Grele2b, 1, (9, [2) =0
Grete1n,77(®, T) + Grele2a, 77(¢, T) #0
Grele1p, 77(®, T) + Grete2a,77(¢, T) =0
Gi(#) #0
Gi(9)=0
h(¢)=0
Greie2, (@, T, 1) #0
Gi(#) #0
Gi(9)=0
Greie2, (@, T, 1) =0
Grete2n,7(¢, T) #0
Grete2s,7(¢, T) =0
Grete1n,77(®, T) + Grele2a, 77($, T) # 0
Grele1s, 77(®, T) + Grele2a, 77(9, T) =0
g(@)=0
Gup(d) # G5()/2
Gy, (@) # Grerea,1, (9, X, 1) /2
3G5(9) —2G4p(9) —2GTele1. x7 (P, X, T) # 0
3G5(9) —2Gap(P) — 2GTeter xT($, X, T) =0
W' (¢) #0
Greie2, (9, T, 1) #0
Grele2, 1,1, (9, T, 1) =0
Grele2n,7(¢, T) #0
Grele2p,7(¢, T) =0
Grete1v,77(®, T) + Grele2a, 77(¢, T) # 0
Grele1p. 77(@, T) + Grele2a, 77(P, T) =0
h(¢)=0
Grele2, b, (9, T, 1) #0
Greie2, (@, T, 1) =0
Grele2n,7(¢, T) #0
Grele2n,7(¢, T) =0,
Grete1s, 77(®. T) + Gele2a, 77(9, T) # 0
Grete1s, 77(®, T) + Grele2a, 77 (9, T) =0
G4 (@) = Gree2, 1, (¢, X, [2)/2
—G5(®) + Grelel,x7 (¢, X, T) #0
3G5(9) —2Gap(9) —2Gele1 x7 (¢, X, T) #0
3G5(¢) —2G4p(¢) —2GTetel, x7 (9, X, T) =0
Grele1s,77($, T) + Grele2a,77(¢, T) #0
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2.bii.1.bi.2.ai
2.bii.l.b.i.2.a.ii
2.bii.1.b.i.2.b
2.b.ii.1.b.i.2.b.i
2.b.ii.1.bi.2.b.ii
2.b.i.1.b.ii
2.b.i.1.b.i.1
2.bii.l.bii.l.a
2.bii.1.bii.1.b
2.b.i.1.b.ii.2
2.bii.1.bii.2.a
2.bii.l.bii.2.a.i
2.b.ii.1.b.ii.2.a.ii
2.b.i.1.b.ii.2.b
2.b.ii.2

2.bii.2.a
2.bii.2.a.i
2.bii.2.a.i.l
2.bii.2.a.i.2
2.bii2.ai2.a
2.bii.2.ai2.ai
2.bii.2.ai.2.aii
2.bii.2.a.i.2.a.i.l
2.bii.2.a.i.2.a.i.2

2.bii.2.ai2.aii.2.a
2.bii.2.a.i.2.a.ii.2.b

2.bii.2.a.i2.b
2.bii.2.a.i.2.b.i
2.bii.2.a.i.2.b.ii
2.b.i.2.a.i.2.b.ii.1
2.b.i.2.a.i.2.b.ii.2

2.bii.2.a.i2.bii.2.a
2.bii.2.a.1.2.b.ii.2.b

2.b.i.2.a.ii
2.bii.2.a.i.l
2.bii.2.a.ii.2
2.bii.2.aii.2.a

2.bii.2.a.ii.2.b

2.b.ii.2.b
2.b.ii.2.b.i

2.b.ii.2.b.i.1
2.bii2.bi.l.a

2.bii.2.bi.l.ai
2.bii.2.bi.l.ai.l
2.bii.2.bi.l.ai2
2.bii.2.bi.1.a.ii
2.b.ii.2.b.i.1.b

2.b.ii.2.b.i.2
2.b.i.2.b.ii

h'(¢) #0
h'($)=0
Grele1s, 77(®, T) + Grele2a, 77(9, T) =0
I (p) #0
h(p)=0
—G5(®) + Grelel,x7 (9, X, T) =0
Gup(¢) #0
W' (¢) #0
h(¢)=0
Gap(¢) =0
=21 (¢) + G2, x (¢, X) + GTeleta,x (¢, X) #0
Gele1s,77(P, T) + Gele2a, 77(9, T) # 0
Grele1p, 77(P, T) + Grele2a,77(9, T) =0
—2h'(¢) + G2, x (¢, X) + Grelela,x (¢, X) =0
Gap(d) = G5(¢)/2
—G5(®) + Gretel,x7 (9, X, T) #0
2G,,(9) # Grete2,1, (¢, T, I2)
nal,q)(av ) # 0
Nat,¢(a, ) =0
h'(¢) #0
Grete2,,1, (9, T, I2) #0
Gree2,n (@, T, 1) =0
Grele2n, 7 (9, T) # 0
Grele2s,7(¢, T) =0
Grete2a.77(®, T) + Greler, 77 (¢, X, T) # 0
Grete2a.77(®, T) + Grele1,77(¢, X, T) =0
h($)=0
Grele2. 1, (9, T, I2) #0
Gree2, (9, T, ) =0
Grele2b, 7(9, T) # 0
Grele2n,7(9, T) =0
Grele2p1(9) # 2G), ()
Grele2p1 () = 2G),,, (¢)
2G}, (@) = Grele2, 1, (@, T, I)
I (p) #0
h(p)=0
Grete1 (@, X, T) = 2T G44($) — Grele2a (P, T)
+ GTelela (¢, X) + TXG5()
GTele] (¢a X, T) ?é 2TG4a (¢) - GTeIeZa (¢s T)
+ Grelela(®, X) + TXG5($)
—G5(®) + Gretel,xr (9, X, T) =0
Greie2(9, T, I2) =
2T G4q(P) — Gele1s (@, T) + Grele2a (P, 12)
GTete2a(9: I2) = Grele2q1(9) + 212Gy, (¢)
4’ (¢p) — TG5(¢) — 2(G2,x (¢, X)
+ GTelela,x (¢, X)) =0
h'($)=0
G2p(P) + Grete2a1 (@) + TGaa (@) =0
G2p(P) + Grele2a1 (P) + T Gaq(Pp) # 0
h'(¢) #0
4’ (¢p) — TG5(d) — 2(G2,x (¢, X) +
Gelela, x (¢, X)) #0
GTele2a (9, 1) # GTete2a1 (@) + 201G, (d)
Greie2(¢, T, 1) #
2T G44(P) — Grele16(@, T) + Grele2a (P, I2)
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