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Abstract We address an interesting question in the present
paper that whether the acoustic gravity can be applied as a
tool to the study of regular black holes. For this purpose, we
construct a general acoustic regular black hole in the spher-
ically symmetric fluid, where its regularity is verified from
the perspective of finiteness of curvature invariants and com-
pleteness of geodesics. In particular, we find that the acoustic
interval not only looks like a line element of a conformally
related black hole in which the fluid density can be regarded
as a conformal factor, but also gives rise to a non-vanishing
partition function which coincides with that of a conformally
related black hole. As an application, we provide a specific
acoustic regular black hole model, investigate its energy con-
ditions and compute its quasinormal modes. We note that the
strong energy condition of our model is violated completely
outside the horizon of the model but remains valid in some
regions inside the horizon, which may give a new insight
into the relation between the regularity and strong energy
condition. Moreover, we analyze the oscillating and damp-
ing features of our model when it is perturbed.

1 Introduction

Since the Hawking radiation from black holes (BHs) was
discovered [1], it has become one of the central subjects to
study the quantum behaviors of BHs. However, this ther-
mal radiation is too small to be directly detected by any
conceivable experiments. When the Schwarzschild BH with
one solar mass is taken as an example, its radiation tem-
perature is approximately 6 × 10−8 K, while the cosmic
background is of 3 K microwave radiation. Therefore, the
former is completely covered up by the latter. In other
words, even if the thermal radiation is emitted, it will be
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drowned out by the background noise. This situation moti-
vates the researches to shift from astrophysical phenom-
ena to their analogues in laboratories on Earth, which was
pioneered by Unruh [2] who proposed an acoustic anal-
ogy.

An acoustic black hole (ABH), being one of the realiza-
tions of analogue BHs, can be formed in laboratories on Earth
when the velocity of moving fluid exceeds the local veloc-
ity of sound, where the horizon is located [3] at the junc-
tion of the supersonic and subsonic regions. Several attempts
have been done in recent decades, including surface waves in
Bose-Einstein condensates [4], water flows [5], optical sys-
tems [6], quantum many-body systems [7], and so on. For
the early progress in analogue BHs, see, for instance, the
review article [8] and the references therein. Recently, there
have been many theoretical and experimental advances in
various aspects of analogue gravity, such as in the Hawking
radiation [9–13], the superradiation [14–16], the quasinor-
mal modes (QNMs) [17], and the Lyapunov exponent [18],
etc. Moreover, ABHs have been generalized [19] to curved
spacetimes. In particular, the experimental advances reflect
the applicability of analogue gravity.

Although the analogue gravity has been developed and
regarded as a tool of gaining insight into general relativity, the
first simulation of Schwarzschild and Reissner–Nordström
BHs was not realized until 2021 [20]. Prior to this work,
some analogue BH models, such as the draining bathtub
model [3,21], may contain the necessary features that give
rise to the astronomical phenomena, but can hardly have
the direct counterparts in the universe. And the differences
between astronomical black holes and their acoustic coun-
terparts may appear distinctly in the desired phenomena in
the earth laboratory. For instance, in the acoustic simulation
of the Painlevé–Gullstrand spacetime [8], the astronomical
metric differs from the acoustic one by a conformal factor.
Thus, the study of the quasi-normal modes from the acoustic
counterpart may not provide the full information of spectra
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for the Painlevé–Gullstrand geometry, because the conformal
factor affects the quasi-normal modes except in the eikonal
limit [22].

Moreover, it is widely known that singular black holes
(SBHs) suffer [23] from the UV incompleteness at both clas-
sical and quantum levels because of the spacetime singular-
ity. Many phenomenological models have been proposed for
avoiding the singularity at the center of BHs, see, for instance,
the review [24]. These nonsingular solutions of general rel-
ativity are called regular black holes (RBHs), being of finite
curvature invariants on the entire manifold of spacetime. In
fact, Bardeen proposed [25] the first RBH which was recog-
nized [26] later on as a product created by nonlinear electro-
dynamics (NED). This model is currently dubbed as Bardeen
black hole (BBH). The further developments of the BBH have
been presented, see, e.g., Refs. [27–29]. Besides the BBH,
the other RBHs have also been proposed [30–32].

Our aim in the current work is to construct RBHs in acous-
tic gravity named as acoustic RBHs (ARBHs) and to investi-
gate their energy conditions and dynamic properties, such as
QNMs [33]. Here we note that the energy conditions refer to
the constrains on the matters generating the RHBs in the Uni-
verse, not on the fluid for simulation in a laboratory. Since we
dedicate to study the RBHs with the aid of analogue gravity,
we investigate whether the RBHs we construct in fluid are
reasonable or not, that is, if their counterparts in the Universe
have the possibility of existence. As a by-product, we find that
ARBHs have different characteristics from those of RHBs
generated by NED, in particular, they should be classified
into conformal gravity [34–36]. The seeming reason is that
the acoustic interval looks like a line element of a conformally
related black hole, where the fluid density can be regarded
as a conformal factor, but the virtual reason is that the acous-
tic interval leads to a non-vanishing partition function if it is
interpreted in the context of conformally invariant theory.

In general relativity, the energy conditions give [37,38]
constraints upon the energy–momentum tensor of matter
fields, such as positivity of energy density and validity of
causality. For instance, one can determine whether the mat-
ter field of RBHs created by NED is physically reasonable
in terms of the dominant energy condition and whether the
superradiance occurs by checking the weak energy condition
which is also associated with the second law of BH mechan-
ics [39]. In the context of ARBHs, we define the analogue
energy–momentum Tμν and thus explore the corresponding
energy conditions by supposing the linear relation between
the analogue Einstein tensor and energy–momentum tensor.
We find that the energy conditions of ARBHs have novel
properties when ARBHs are dealt with in the framework of
conformal gravity.

As QNMs play an important role in the stability analysis
of analogue BHs, see, for instance, an example of optical
BHs [40], we focus on the QNMs of ARBHs by studying the

propagation of scalar fields in the effective curved spacetime
manifested as the acoustic disturbance. As shown in Ref.
[2], the equation of motion for the acoustic disturbance is
identical to the d’Alembertian equation of a massless scalar
field propagating in a curved spacetime. We can thus compute
the QNM frequencies of ARBHs by using the WKB method
[41–45] as usual.

This paper is organized as follows. We propose a general
method to construct ARBHs in Sect. 2, where the regular-
ity is verified in the perspective of finiteness of curvature
invariants and completeness of geodesics. We then give one
specific ARBH model in Sect. 3. In Sect. 4, based on the com-
plete form of Euler’s equation we analyze the importance of
an external-force term in the realization of acoustic analogy.
The energy conditions of the model are discussed and com-
pared with those of the conformally related Schwarzschild
black holes (CRSBHs) [35] in Sect. 5. In Sect. 6, we ana-
lyze the effective potential and calculate the QNMs for the
ARBH model. Finally, we give our summary in Sect. 7. The
Appendices A and B include the detailed analyses of energy
conditions of CRSBHs and the repulsive interaction of the
specific ARBH model outside the model’s event horizon.
Throughout this paper, we adopt the units with the speed of
sound c = 1 and the sign convention (−,+,+,+).

2 Acoustic regular black hole in fluid

In this section, we construct a general ARBH in the spheri-
cally symmetric fluid. The fluid is assumed to be locally irro-
tational, barotropic, inviscid, and compressible. The acoustic
interval then takes the form [8],

ds2 = ρ

c

[
−c2dt2 + (dx − vdt)2

]
, (1)

which can be obtained by combining the equation of conti-
nuity,

∂tρ + ∇ · (ρv) = 0, (2)

and Euler’s equation,

ρ [∂tv + (v · ∇)v] = −∇p−ρ∇ψ, (3)

where ρ, v, and p are density, velocity, and pressure of the
fluid, respectively, and c ≡ √|∂p/∂ρ| is local speed of sound.
In the following discussions c is normalized to unity,1 and
the density ρ and velocity v are supposed to be functions
of radial coordinate r only. In addition, the last term of
Eq. (3) represents [3] an external driving force and ψ is the
corresponding potential. This term does not affect [3] the
wave equation of sound and the acoustic metric, but it is

1 In general, the local speed of sound depends mainly on the temperature
of fluid. Here the temperature of fluid is constant, so it is usual to set
c = 1.

123



Eur. Phys. J. C (2022) 82 :231 Page 3 of 20 231

indispensable in the acoustic analogue of an astronomical
black hole because ψ provides an external field for realizing
the specific fluid, which will be explained in detail in Sect. 4.

If we consider the spherically symmetric fluid with only
non-vanishing radial velocity, vr �= 0, and perform the fol-
lowing transformation,

dt → dt̃ − vr

1 − v2
r
dr, (4)

we rewrite Eq. (1) as follows,

ds2 = ρ
(
− f dt̃2 + f −1dr2 + r2dθ2 + r2 sin2 θdφ2

)
, (5)

or write the metric explicitly,

gμν = ρ g̃μν, g̃μν ≡ diag
{
− f, f −1, r2, r2 sin2 θ

}
,

f ≡ 1 − v2
r . (6)

The density ρ plays the role of a conformal factor if g̃μν

describes a static spherically symmetric black hole. In the
above specific setting, ρ and vr are constrained by the rela-
tion,2

ρvr = A

r2 , (7)

which can be derived by integrating Eq. (2) with respect to
the radial coordinate, where A is integration constant. Note
that ρvr is divergent at r = 0 in the manner of r−2. This
divergence appears at r = 0 in the following three cases:

2 This represents the peculiarity of acoustic intervals which will be
utilized to pick ARBHs out.

• (i) ρ is divergent, while vr is finite;3

• (ii) ρ is finite, while vr is divergent;
• (iii) Both ρ and vr are divergent.

Such a classification will help us construct ARBHs.
In order to check whether gμν , see Eq. (6), together with

Eq. (7) describes an ARBH or not, we have to investigate
the finiteness of curvature invariants and completeness of
geodesics at the center of this ARBH. Next, we discuss the
two issues in two separate subsections.

2.1 Finiteness of curvature invariants

Using Eq. (6) and the definitions of the three curvature invari-
ants, the Ricci scalar R ≡ gμνRμν , the contraction of two
Ricci tensors R2 ≡ RμνRμν , and the Kretschmann scalar
K ≡ Rμνρσ Rμνρσ , we obtain

R = 3 fρ′2

2ρ3 − 3
(
r f ′ρ′ + 2 fρ′ + r fρ′′)

rρ2 − r2 f ′′ + 4r f ′ + 2 f − 2

r2ρ
, (8)

R2 =
(
2rρρ′ f ′ + 2 fρρ′ + 3r fρρ′′ + rρ2 f ′′ + 2ρ2 f ′ − 3r fρ′2)2

4r2ρ6

+
(
r2 f ′ρ′ + 4r fρ′ + r2 fρ′′ + 2rρ f ′ + 2 fρ − 2ρ

)2
2r4ρ4

+
(
2r f ′ρ′ + 2 fρ′ + rρ f ′′ + 2ρ f ′ + r fρ′′)2

4r2ρ4 , (9)

K = 15 f 2ρ′4

4ρ6 − 3 fρ′2 ( f ′ρ′ + 2 fρ′′)

ρ5

+4r fρ′ρ′′ (r f ′ + f
)+ 2r2 f ′2ρ′2 + 2 fρ′2 (r f ′ − r2 f ′′ + 5 f − 1

)+ 3r2 f 2ρ′′2

r2ρ4

+2
[
r3 f f ′′ρ′′ + 2r2 f f ′ρ′′ + ρ′ (4r f f ′ − 4 f + r3 f ′ f ′′ + 2r2 f ′2 + 4 f 2

)]

r3ρ3

+r4 f ′′2 + 4r2 f ′2 + 4 f 2 − 8 f + 4

r4ρ2 , (10)

where the prime denotes the derivative with respect to the
radial coordinate.

Now let us analyze whether the three curvature invariants
are finite or not when r → 0 in the first case mentioned above.
Substituting Eq. (7), i.e., ρ = A/(r2vr ), into Eqs. (8), (9),
and (10), we express explicitly the leading orders of the three
curvature invariants,

R = 2v3
0

A
+ O(r), (11)

R2 = 2v2
0

A2

(
v4

0 − 2v2
0 + 2

)
+ O(r2), (12)

3 Here “finite” includes zero and nonzero constants.
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K = 4v2
0

A2

(
v4

0 − 2v2
0 + 2

)
+ O(r2), (13)

where v0 ≡ limr→0 vr . They are obviously finite as r goes
to zero. As to the asymptotic behaviors of ρ at r → 0, we
know from Eq. (7), ρ(r) ∼ 1/r2+a with a ≥ 0, where a >

0 corresponds to that vr goes to zero in the manner of ra

and a = 0 corresponds to that v0 is a nonzero constant.
Moreover, we have to require the asymptotic flatness of the
metric (Eq. (6) associated with Eq. (7)) in the first case. Let
us analyze the leading orders of vr (r) and ρ(r). If vr (r) →
A/r2 and ρ(r) → 1 when r → ∞, the asymptotic flatness is
ensured. As a result, the models constructed in the first case
can be regarded as a candidate of ARBHs.4

For the second case in which ρ is finite, while vr is diver-
gent at r = 0, we can judge by following the way for the first
case that the three curvature invariants are divergent as r goes
to zero. In fact, we have a shortcut to reach the goal. If we
choose the asymptotic behaviors of ρ and vr , for instance,
to be ρ(r) ∼ 1 and vr (r) ∼ A/r2 as r → 0, respectively,
the shape function of Eq. (6) tends to 1 − A2/r4, which def-
initely describes a singular spacetime. Thus, no ARBHs can
be given in the second case.

As to the third case where both ρ and vr are divergent as
r → 0, we can easily determine from Eqs. (8)–(10) that no
ARBHs can be constructed in this case, either.

In summary, Eq. (6) associated with Eq. (7) indeed
describes an ARBH when the fluid density is divergent while
the radial velocity is finite at r = 0, where the fluid density
plays the role of a conformal factor, see footnote 4 for a
detailed explanation.

2.2 Completeness of geodesics

To check the geodesic completeness of the metric Eq. (6), we
start with the Lagrangian [34] of a test particle constrained
in the equatorial orbit θ = π/2,

2L = ρ

(
f ˙̃t2 − ṙ2

f
− r2φ̇2

)
, (14)

where the dot stands for the derivative with respect to affine
parameter τ . Since t and φ are cyclic coordinates, one has
two integrations of motion,

Pt = fρ ˙̃t ≡ E, Pφ = −r2ρφ̇ ≡ −L, (15)

where the energy E and angular momentum L are conserved
quantities for a free radially infalling particle in static space-
times. Then replacing the velocities in Eq. (14) by Eq. (15)

4 We note that the densityρ can indeed be regarded as a conformal factor
due to its asymptotic behaviors: ρ(r) ∼ 1/r2+a at zero and ρ(r) ∼ 1 at
infinity. Based on such asymptotic behaviors, one of the possible forms

reads, ρ(r) =
(

1 + L2

r2

)2b
, where b ≡ 2+a

4 and L ≡ A1/(4b), see, for

instance, the conformal factors chosen in Refs. [22,36].

we obtain

ṙ2 = Veff , Veff = E
2

ρ2 − L
2 f

r2ρ2 − δ
f

ρ
, (16)

where δ = 0 corresponds to null and δ = 1 to timelike
geodesics, respectively. For simplicity, we consider the radial
geodesic motion, which implies that the angular momentum
vanishes,L = 0. Now we can write down the affine parameter
by the following integral,

τ =
∫ ri

r f

dr√
Veff

, (17)

where ri and r f represent the initial and final positions,
respectively.

For a null geodesic, δ = 0, the integrand of Eq. (17) can
be written as follows:

1√
Veff

= ρ

E
. (18)

Since ρ diverges at r = 0, Eq. (18) implies that the proper
time is also divergent.

For a timelike geodesic, δ = 1, the integrand can be writ-
ten as

1√
Veff

= ρ√
E2 − fρ

. (19)

From Eq. (16), we deduce that E2 − fρ � 0, which means
that E goes to infinity if f > 0 inside the innermost hori-
zon. That is to say, the test particle needs infinite energy to
reach the center of ARBHs, so there are no particles that can
reach the center. Alternatively, considering that f < 0 inside
horizons and E is finite but ρ goes to infinity when r → 0,
we have 1/

√
Veff → √

ρ/
√− f . Thus, the integrand is also

divergent, i.e., the timelike geodesic is complete as well.
As a matter of fact, Eq. (16) describes a particle that is

moving in a negative potential well but has vanishing total
energy. Intuitively, this test particle cannot reach the center of
ARBHs within finite “time” because Veff vanishes at r = 0.

In this section, we have proven that the Ricci scalar R, the
contraction of two Ricci tensors R2, and the Kretschmann
scalar K are finite at r = 0, and both the null and time-
like geodesics are complete in the ARBH spacetimes, which
means that the ARBHs we constructed have no spacetime
singularity.

3 A specific model

A direct way to construct a RBH is to substitute a shape func-
tion into Eq. (6), which is similar to the case of Schwarzschild
BHs, then one can determine ρ and the metric gμν with the
help of Eq. (7). Nevertheless, such a RBH is the lack of
asymptotic flatness. Therefore, considering the asymptotic
behaviors of the fluid density at zero and at infinity together
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with the constraint between the density and the radial veloc-
ity, we give such an ARBH model,

ρ = ρ∗
(

1 + L2

r2

)2N

, vr = A

ρ∗r2
(

1 + L2

r2

)2N , (20)

where ρ∗ is a constant with the dimension of density and
the integration constant A has been introduced in Eq. (7). As
explained in Refs. [35,36,46], L is a typical length scale of
this model, such as the horizon radius or the Planck length,
and N , a dimensionless constant, determines whether the
scalar curvatures are regular at the center of this model. Fur-
ther, we perform such a transformation,

r →
√

A

ρ∗
r, L →

√
A

ρ∗
L , (21)

in Eq. (20), and substitute the transformed Eq. (20) into the
line element, Eq. (5), and then let the line element absorb ρ∗.
In this way, we make the new line element look like Eq. (5) but
associate with the dimensionless density and radial velocity5

as follows:

ρ =
(

1 + L2

r2

)2N

, vr = 1

r2
(

1 + L2

r2

)2N . (22)

We emphasize that the new line element is independent of
the constant density ρ∗ and the integration constant A but
dependent only on the parameters L and N .

Now we substitute Eqs. (5), (6), and (22) into Eqs. (8)–
(10) and thus derive the leading orders of curvature invariants
near r = 0. We notice that the leading orders depend on N .
When N ≤ 1/2, the leading orders near r = 0 are

R = 6 − 4N (2N + 1)

L12N r6(2N−1), (23)

R2 = 8N
[(

4N 2(6N − 17) + 86N
)− 51

]+ 90

L24N r12(2N−1), (24)

K = 16N
[(

4N 2(27N − 76) + 329N
)− 160

]+ 468

L24N r12(2N−1);
(25)

when N > 1/2, they have the following forms,

R = 12(1 − 2N )N

L4N r2(2N−1), (26)

R2 = 16N 2[2N (6N − 7) + 5]
L8N r4(2N−1), (27)

K = 16N 2[4N (3N − 4) + 7]
L8N r4(2N−1). (28)

From Eqs. (23)–(28), we can confirm that the curvature
invariants are finite when N ≥ 1/2.

5 Due to the setting, c = 1, the radial velocity is dimensionless, which
gives rise to the dimensionless length and new line element in our units.

To illustrate the finiteness of curvature invariants and com-
pleteness of geodesics for the specific model, we take two
different cases, N = 1/2 and N = 1, where the former is
critical while the latter is a sample of N > 1/2.

• (i) N = 1/2. In this case, there exists only one horizon
whose radius equals r+ = √

1 − L2, where the existence
of horizons requires L2 < 1. Eq. (22) reduces to

ρ = 1 + L2

r2 , vr = 1

r2 + L2 . (29)

Correspondingly, the leading orders of the three curvature
invariants near r = 0 read

R = 2

L6 + O(r2), R2 = 4L8 − 4L4 + 2

L12 + O(r2),

K = 8L8 − 8L4 + 4

L12 + O(r2). (30)

They are obviously finite. As to the completeness of
geodesics, for the null geodesics with δ = 0, substitut-
ing Eq. (29) into Eqs. (17) and (18), we obtain the affine
parameter,

τ = 1

E

(
ri − r f − L2

ri
+ L2

r f

)
, (31)

which goes to infinity when the initial position is fixed
and the final position goes to zero. Moreover, for the time-
like geodesics with δ = 1, Eq. (17) cannot be expressed
analytically because of the complicated integrand, but the
expansion of the integrand near r = 0 can be written as

1√
Veff

= L3
√

(1 − L4)

1

r
+ O(r), (32)

which implies that the affine parameter diverges when
the final position goes to zero.

• (ii) N = 1. For this case, the horizon radii are r± =√
(1 − 2L2)/2 ± √

1 − 4L2/2, where “+” means the
outer horizon and “−” the inner horizon, and the exis-
tence of horizons gives the condition, L2 ≤ 1/4. Eq. (22)
gives the density and radial velocity as follows:

ρ =
(

1 + L2

r2

)2

, vr = 1

r2
(

1 + L2

r2

)2 , (33)

and thus the expansions of curvature invariants near r = 0
read

R = − 12

L4 r
2 + O(r4), R2 = 48

L8 r
4 + O(r6),

K = 48

L8 r
4 + O(r6). (34)
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It is obvious that the curvature invariants converge at r =
0. For the completeness of the null geodesics with δ = 0,
we derive the affine parameter,

τ = 1

E

(
L4 + 6L2r2

f − 3r4
f

3r3
f

− L4 + 6L2r2
i − 3r4

i

3r3
i

)
,

(35)

which is divergent when r f → 0, i.e., the particles mov-
ing along the radial geodesic can never reach the center
within a finite proper time. For the completeness of the
timelike geodesics with δ = 1, we give the expansion of
the integrand of Eq. (17) near r = 0,

1√
Veff

= L2

r2 + O(r2), (36)

which diverges at r = 0 as expected.

Now we illustrate the regularity of this specific ARBH
model in four figures. We plot the graphs of shape function
f (r) in Fig. 1 for the cases of N = 1/2 and N = 1. The three
curvature invariants as a function of the radial coordinate are
plotted in Fig. 2 for the case of N = 1/2 and in Fig. 3 for
the case of N = 1 according to Eqs. (8)–(10) and Eqs. (29)
and (33). Moreover, we plot the graph of the affine parameter
of null geodesics as a function of the final position in Fig. 4
according to Eqs. (31) and (35).

4 Potentials of external driving force

Our approach to construct the acoustic metric in Sect. 3 is
based on the following assumptions:

• The speed of sound is a position-independent constant
and can be normalized to unity, c = 1;

• The fluid is irrotational, i.e., its vorticity w vanishes, w ≡
∇ × v = 0;

• The fluid is spherically symmetric, i.e., the velocity v

has only radial component vr and all physical quantities,
such as ρ, vr , etc., depend only on radial coordinate r .

Therefore, if Euler’s equation Eq. (3) did not involve an
external-force term, the above items would lead to a problem
on consistency when we are going to establish the acoustic
counterpart of a gravitational metric. On the premise of the
above three assumptions, the continuity equation and Euler
equation are reduced to

∂r

(
r2ρvr

)
= 0, (37)

and

∂r

(
v2
r

2

)
+ ∂r ln(ρ) = −∂rψ, (38)

respectively. Thus, if there were no the external-force term,
−∂rψ , one would fix vr (or ρ) via the continuity equation
when ρ (or vr ) is given to mimic a gravitational metric, but
such a treatment would probably contradict to the Euler equa-
tion. In other words, we have actually only one unknown vari-
able vr (or ρ) but two dynamical equations, i.e., one redun-
dant condition appears. Nonetheless, this case will never hap-
pen when the external-force potential exists.

Now we calculate the external potential for our ARBH
model established in Sect. 3. The first integral of Euler’s
equation in Eq. (38) provides

ψ = ψ0 − ln(ρ) − v2
r

2
, (39)

where ψ0 is an integration constant. Then, substituting Eq.
(22) into Eq. (39), we arrive at

ψ = ψ0 − 2N ln

(
1 + L2

r2

)
− 1

2r4
(

1 + L2

r2

)4N , (40)

whose asymptotic behaviors at r → 0 and r → ∞ take the
forms,

ψ
r→0−−→ 4N ln(r), ψ

r→∞−−−→ ψ0 − 2N
L2

r2 , (41)

respectively. In other words, the external force is asymptotic
to −4N/r around the center and vanishes at infinity. It is
obvious that the Euler equation of our ARBH model, Eq. (39),
has a consistent asymptotic behavior when vr is finite and ρ

divergent as r → 0.
Because the external-force term in Euler’s equation does

not affect [3] acoustic metrics, so it has rarely been drawn
much attention [8]. As we have discussed above, this term
suggests a way to realize the specific fluid when we study
the acoustic analogue of an astronomical black hole, so it is
critical.

5 Energy conditions

As is known, the energy conditions can examine cosmolog-
ical models and strong gravitational fields, and give restric-
tions on the forms of energy–momentum tensors of matter
fields. In general, the energy conditions are classified [37]
into four categories: Null energy condition (NEC), weak
energy condition (WEC), strong energy condition (SEC), and
dominant energy condition (DEC).

Based on Refs. [35,38], we briefly explain the meanings
of the four energy conditions. The NEC requires that both
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Fig. 1 f (r) with respect to r for the cases of N = 1/2 (left) and N = 1 (right), only one horizon in the former case but normally two horizons in
the latter. Note that the values of L satisfy L2 < 1 in the left graph and L2 ≤ 1/4 in the right graph, respectively

(a) (b)

Fig. 2 R, R2, and K with respect to r for the case of N = 1/2, where L = 0.45 which satisfies L2 < 1. Note that R is separated from the right
graph and presented in the left graph in order to show its detail features

Fig. 3 R, R2, and K with respect to r for the case of N = 1, where
L = 0.45 which satisfies L2 ≤ 1/4

energy density and pressure cannot be negative when mea-
sured by an observer traversing a null curve, or if one of them
is negative, the other must be positive and its magnitude must
be larger than the absolute value of the negative quantity. The
WEC states that the energy density of any matter distribution
measured by any observer traversing a timelike curve must

Fig. 4 τ with respect to r f for the two cases of N = 1/2 and N = 1,
where L = 0.45, the initial position ri = 0.8, and energy E = 0.1

be nonnegative. The SEC requires
(
Tμν − 1

2
Tgμν

)
vμvν ≥ 0, (42)

where vμ is future-directed, normalized, and timelike vec-
tor, Tμν is energy–momentum tensor, and T = gμνTμν .
The DEC states that the energy flow cannot be faster than
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the speed of light, i.e., it ensures the causality. The energy–
momentum tensor can be written as Tμ

ν ≡ gμαTαν =
diag{−ρ0, P1, P2, P3}, see Appendix A for the derivation
and discussion. Thus, the four energy conditions can be
expressed in terms of the components of the energy–
momentum tensor as follows:

NEC: ρ0 + Pi ≥ 0, i = 1, 2, 3,

WEC: ρ0 ≥ 0, ρ0 + Pi ≥ 0, i = 1, 2, 3,

SEC: ρ0 +∑3
i=1 Pi ≥ 0, ρ0 + Pi ≥ 0, i = 1, 2, 3,

DEC : ρ0 ≥ 0, ρ0 − |Pi | ≥ 0, i = 1, 2, 3.

(43)

5.1 Energy conditions of our ARBH model

Let us investigate various energy conditions for the ARBH
model we just constructed. We suppose the energy–momentum
tensor is proportional to the Einstein tensor of the acoustic
gravity because our strategy is to investigate the physicality
of a gravitational BH equivalent to our ARBH, and therefore
derive the four components of Tμ

ν . Using Eqs. (6) and (7)
together with Eq. (29) for the case of N = 1/2 or Eq. (33)
for the case of N = 1, we can verify the relation,6 P2 = P3,
so there are only six independent inequalities in Eq. (43) that
are listed below.

For the case of N = 1/2, we compute the six independent
quantities,

ρ0 = L8 − 3(L4 + 1)r4 − 2L2r6 + 4L2r2

8π(L2 + r2)5
, (44)

ρ0 + P1 = −6L2r2
[
(L2 + r2)2 − 1

]

8π(L2 + r2)5
, (45)

ρ0 + P2 = 2L8 + 6L6r2 + L4(6r4 − 1) + 2L2r2(r4 − 1) − 9r4

8π(L2 + r2)5
, (46)

ρ0 +
3∑

i=1

Pi = 2L8 + 6L6r2 + 2L4(3r4 − 1) + 2L2r2(r4 − 3) − 12r4

8π(L2 + r2)5
, (47)

ρ0 − |P1| = L8 − 3(L4 + 1)r4 − 2L2r6 + 4L2r2

8π(L2 + r2)5

−
∣∣∣∣
L8 + 3(3L4 − 1)r4 + 4L2r6 + 2(3L4 − 1)L2r2

8π(L2 + r2)5

∣∣∣∣ , (48)

ρ0 − |P2| = L8 − 3(L4 + 1)r4 − 2L2r6 + 4L2r2

8π(L2 + r2)5

−
∣∣∣∣
L8 + 6L6r2 + L4(9r4 − 1) + L2(4r6 − 6r2) − 6r4

8π(L2 + r2)5

∣∣∣∣ . (49)

6 In fact, this condition is valid for a general static and spherically
symmetric BH.

The energy conditions require that these quantities should be
nonnegative. We plot the allowed regions on the r − L plane
in Fig. 5.

Combining the six subfigures in Fig. 5 with the four energy
conditions in Eq. (43), we can determine the domains that
the energy conditions are satisfied for the case of N = 1/2,
which is plotted in Fig. 6.

We can see from Fig. 6 that the SEC is completely vio-
lated in the entire parameter range and spacetime, L2 < 1 and
r ∈ [0,∞). This is actually what we expected because the
spacetime with f = 1 − 1/r4 is asymptotic to the metric of
our ARBH model, see Eqs. (6) and (29) in the limit of r � L ,
and such a spacetime is of repulsive interaction which breaks
the SEC, see Appendix B for a detailed explanation. How-
ever, the situation of our ARBH model is more complicated
than usual. We see in Fig. 5d that ρ0 +∑3

i=1 Pi � 0 is sat-
isfied in one region outside the horizon, i.e., the ARBH pro-
duces an attractive interaction outside the horizon although
the SEC is violated based on Ref. [47]. The reason that makes
the SEC invalid is that ρ0 + P1 ≥ 0 is violated outside the
horizon, which is different from the situation in the usual BH
models with f = 1−1/r4. In addition, the NEC, WEC, and
DEC are satisfied in a piece of domains inside the horizon
(also including the horizon as boundary) for the parameter
range 0.8 < L ≤ 1.0.

For the case of N = 1, we compute the six independent
quantities,
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ρ0 = −r4
[
4L10 + (16L4 + 3)r6 + (16L4 + 3)L4r2 + 4L2r8 + 2(12L4 − 7)L2r4

]

8π(L2 + r2)8 , (50)

ρ0 + P1 = 4L2r2(L2 + r2 − r)(L2 − 3r2)(L2 + r2 + r)[(L2 + r2)2 + r2]
8π(L2 + r2)8 , (51)

ρ0 + P2 = r2
[
4L12 + 20L10r2 + (20L4 − 9)r8 + (40L4 − 1)L4r4 + 4L2r10 + 2(20L4 + 7)L2r6

]

8π(L2 + r2)8 , (52)

ρ0 +
3∑

i=1

Pi = 4r2
[
3L12 + 13L10r2 + 22L8r4 + 18L6r6 + 7L4r8 + L2r6(r4 + 3) − 3r8

]

8π(L2 + r2)8 , (53)

ρ0 − |P1| = − r4
[
4L10 + (16L4 + 3)r6 + (16L4 + 3)L4r2 + 4L2r8 + 2(12L4 − 7)L2r4

]

8π(L2 + r2)8

−
∣∣∣∣∣
r2
[−4L12 − 8L10r2 + 8L8r4 + 32L6r6 + L4(28r8 + r4) + 2L2(4r10 + r6) − 3r8

]

8π(L2 + r2)8

∣∣∣∣∣ ,
(54)

ρ0 − |P2| = − r4
[
4L10 + (16L4 + 3)r6 + (16L4 + 3)L4r2 + 4L2r8 + 2(12L4 − 7)L2r4

]

8π(L2 + r2)8

−
∣∣∣∣∣
2r2

[
2L12 + 12L10r2 + 32L6r6 + 3(6L4 − 1)r8 + (28L4 + 1)L4r4 + 4L2r10

]

8π(L2 + r2)8

∣∣∣∣∣ .
(55)

The energy conditions require that these quantities should
be nonnegative. We plot the allowed regions on the r − L
plane in Fig. 7. Similarly, the corresponding valid domains
of energy conditions are shown in Fig. 8 for the case of N = 1
when Fig. 7 is combined with Eq. (43).

We can see from Fig. 8 that the NEC and SEC are satisfied
in two pieces of domains for the parameter range 0 < L ≤
1/2, where one is located inside the inner horizon and the
other between the inner and outer horizons (also including
the horizons as boundaries). It is worthy to emphasize that the
situation of SEC in our model is a counterexample of the work
[48] in which the breaking domain of SEC for a regular black
hole with metric gμν = diag

{− f, f −1, r2, r2 sin2 θ
}

must
be located inside horizon. The reason is that our ARBH model
does not satisfy the simple relation, −gtt grr = 1. Therefore,
our situation of SEC becomes complicated. Moreover, the
WEC and DEC are satisfied in only one piece of domains
between the inner and outer horizons (also including the two
horizons as boundaries for WEC and only the outer horizon
as boundary for DEC) for the parameter ranges 0 < L ≤ 1/2
(WEC) and 0 < L < 1/2 (DEC), respectively.

Besides the above discussions of energy conditions on the
r − L plane, for our ARBH model depicted by Eq. (22), we
further investigate its energy conditions by plotting the valid
domains on the r − N plane in Fig. 9c. The NEC, WEC and
SEC are satisfied in two pieces of domains for the parameter
range 1/2 < N ≤ 1 and L = 1/2, where one piece is located
inside the inner horizon and the other between the inner and
outer horizons (also including the horizons as boundaries).
However, the DEC is satisfied in only one piece of domains
between the inner and outer horizons (also including the outer

horizon as boundary) for the parameter range 1/2 < N < 1
and L = 1/2. In particular, Fig. 9c shows that the SEC is
completely violated in the entire spacetime r ∈ [0,∞) in the
vicinity of N = 1/2.

5.2 Energy conditions of conformally related
Schwarzschild black holes

In Sects. 2 and 3, we have seen that our ARBH model can
be regarded as a conformally related BH in the perspec-
tive of finiteness of curvature invariants and completeness of
geodesics, where the density of fluid acts as the scale factor.
It is just a seeming reason that the line element of our ARBH
model, Eq. (5) and Eq. (22), looks like that of a conformally
related BH. The virtual reason is that the acoustic analog
leads to a non-vanishing partition function if it is interpreted
in the context of conformally invariant theory. Let us extend
this discussion. If the Euclidean action of our ARBH model
were constructed [49] by

Ĩ =
∫

dx4√−g R + · · · , (56)

where the ellipsis represents the surface term and matter sec-
tors, it would be divergent since

√−g is divergent at r = 0.
As a result, all the thermodynamic variables computed by the
path-integral method would be trivial because the partition
function Z = e− Ĩ vanishes. Nevertheless, if we construct
our ARBH model in the conformal theory [50], i.e.,

I =
∫

dx4√−g

[
1

12
ϕ2R − 1

2
ϕgμν∇μ∇νϕ

]
+ · · · , (57)
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(a) (b) (c)

(d)

(e) (f)

Fig. 5 The blue shadows show the physical regions in which the corresponding inequalities are satisfied for the case of N = 1/2, where the red
curves are horizons. Note that the existence of horizons gives the constraint, L2 < 1, in this case

where ϕ is a massless scalar field and ∇μ covariant derivative,
the situation will be improved because the scalar field ϕ can
absorb the divergence of the measure

√−g based on the
conformal symmetry.

Here we intend to emphasize that this analogue BH has
its own specific properties in the energy conditions that are
distinct from those of a conformally related BH. We shall
take CRSBHs as an example, analyze its energy conditions
and compare them with our ARBH model’s.

The scale factor of CRSBHs takes [22] the form,

S(r) =
(

1 + L̄2

r2

)2N̄

, (58)

where N̄ and L̄ have the same meanings as those of N and
L in Eq. (22), and L̄ and N̄ are independent of each other
but L and N are related to each other due to the existence
of horizons. We can verify that the regularity of CRSBHs
requires N̄ � 3/4.

Following the same procedure as that in the above sub-
section, we plot the valid domains of energy conditions of
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Fig. 6 The blue shadows show
the valid domains of NEC,
WEC, and DEC for the case of
N = 1/2, where no valid
domains exist for the SEC. The
red curves are horizons in this
case

(a) (b)

(c) (d)

CRSBHs7 on the r − L̄ plane in Figs. 10 and 11 for the two
cases of N̄ = 3/4 and N̄ = 1, respectively. We can see that
the energy conditions are satisfied only outside the horizon
of CRSBHs, which is completely different from the situation
of our ARBH model in Figs. 6 and 8. We also notice that the
valid domains in Figs. 10 and 11 are located in the areas with a
minimum value of L̄ , and that they expand when L̄ increases.
However, it is obvious that the expansion of domains does
not happen in our ARBH model, see Figs. 6 and 8, because
L is constrained by the value of N . Especially, the NEC and
SEC are satisfied at r = 0 for our ARBH model, see Figs. 8
and 9, which does not appear in the CRSBHs. This feature
(the SEC is not violated at r = 0) implies that the interaction
is attractive in the vicinity of r = 0 in our ARBH model,
which presents the characteristic of this acoustic analog.

In addition, we plot the valid domains of energy conditions
of CRSBHs on the r − N̄ plane in Fig. 12. When comparing
it with Fig. 9, we find that the domains of energy conditions
of CRSBHs are located outside the horizon while those of
our ARBH model inside the outer horizon. This is the main
difference between the ARBHs and CRSBHs in the energy
conditions, and the other differences are similar to those men-
tioned above between r − L and r − L̄ graphs.

7 The energy conditions of CRSBHs were analyzed in Ref. [35] in
which the sign of energy density is wrong. See Appendix A for our
explanations.

6 Quasinormal modes of acoustic regular black holes

In this section, we discuss the sound propagation in the space-
time of our ARBH model. As mentioned in Introduction, the
equation of motion for an acoustic disturbance is identical [2]
to the d’Alembertian equation of a massless scalar field prop-
agating in a curved spacetime. That is, the sound propagation
in our ARBH spacetime manifests as the propagation of a
massless scalar field in an effective curved spacetime, which
is described by the Klein–Gordon equation. As a result, we
can analyze the stability of our ARBH model by comput-
ing its QNMs in terms of the WKB method [41–45], where
the 6th-order WKB method is adopted in order to have the
balance between precision and complexity of numerical cal-
culations. The Klein–Gordon equation for a massless scalar
field � in a curved spacetime can be written as

1√−g
∂μ

(√−ggμν∂ν�
) = 0, (59)

where � represents the disturbance to the background fluid,
i.e., the potential function of acoustic waves [3]. In order
to separate the variables in Eq. (59), the function � can be
chosen as

� = 1

r
√

ρ
�(r)Ym

� (θ, φ)e−iωt , (60)
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(a) (b) (c)

(d1) (d2)

(e) (f)

Fig. 7 The blue shadows show the physical regions in which the cor-
responding inequalities are satisfied for the case of N = 1, where the
dotted red curves are inner horizons while the solid ones outer horizons.

Note that the existence of horizons gives the constraint, L2 ≤ 1/4, in
this case. Subfigure (d2) shows the detail features of the left shadow in
subfigure (d1)

Fig. 8 The blue shadows show
the valid domains of various
energy conditions for the case of
N = 1. The dotted red curves
are inner horizons while the
solid ones outer horizons in this
case

(a) (b)

(c) (d)
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Fig. 9 The blue shadows show
the valid domains of various
energy conditions for the case of
L = 1/2. The dotted red curves
are inner horizons while the
solid ones outer horizons in this
case. The existence of horizons
gives the constraint,
1/2 � N � 1, in this case (a) (b)

(c) (d)

Fig. 10 The blue shadows
show the valid domains of
various energy conditions for
the case of N̄ = 3/4. The red
lines are horizons

(a) (b)

(c) (d)
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Fig. 11 The blue shadows
show the valid domains of
various energy conditions for
the case of N̄ = 1. The red lines
are horizons

(a) (b)

(c) (d)

Fig. 12 The blue shadows
show the valid domains of
various energy conditions for
the case of L̄ = 10. The red
lines are horizons

(a) (b)

(c) (d)
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where Ym
� (θ, φ) is spherical harmonic function of degree

l and order m, and l is also called the multipole number.
Substituting Eq. (60) into Eq. (59), we get the Schrödinger-
like equation [22],

d2�

dr2∗
+ ω2� = V (r)�, (61)

with the effective potential,

V (r) = f (r)

[
l(l + 1)

r2 + 1

Z

d

dr

(
f (r)

dZ

dr

)]
, (62)

where Z ≡ r
√

ρ and r∗ is the tortoise coordinate defined by
dr∗ = dr/ f (r). For our ARBH model, substituting Eq. (29)
for the case of N = 1/2 and Eq. (33) for the case of N = 1
into Eq. (62), we write down explicitly the effective poten-
tials,

VN=1/2(r) =
[

1 − 1

(L2 + r2)2

]

×
[
l(l + 1)

r2 + L2(L2 + r2)2 − L2 + 4r2

(L2 + r2)4

]
,

(63)

and

VN=1(r) =
⎡
⎢⎣1 − 1

r4
(

1 + L2

r2

)4

⎤
⎥⎦

×
[
(l + 1)l

r2 + 2(L12 + 5L10r2 + 10L8r4 + 10L6r6 + L4(5r8 + r4) + L2r6(r4 − 5) + 2r8)

r2(L2 + r2)6

]
. (64)

Now we plot the effective potentialV (r)with respect to radial
coordinate r for different values of parameter L but a fixed
l = 10 in Fig. 13. It can be seen that the potential has only
one maximum value for the case of N = 1/2, while it has
one minimum value and one maximum value for the case of
N = 1. When l is fixed, both minimum and maximum values
increase as L increases.

The QNMs solved from Eq. (61) together with the effec-
tive potential Eq. (62) can be cast in the complex form,
ω = Re ω + i Im ω, where the real part, Re ω, represents the
oscillation of perturbation, while the imaginary part, Im ω,
characterizes the dissipation of perturbation. We use the 6th-
order WKB method to provide numerical solutions. It should
be noted that the WKB method requires that the effective
potential V (r) has one single maximum outside the horizon
and that the multipole number l is larger than the overtone
number which is taken to be zero for the fundamental mode
of scalar field perturbation [44]. We can see from Fig. 13 that
our ARBH model meets the requirement.

The QNMs satisfy [45] the following formula in the 6th-
order WKB method,

i

(
ω2 − V0

)
√

−2V ′′
0

−
6∑

i=2

�i = n + 1

2
, (65)

where V0 is the maximum of the effective potential V (r),

V ′′
0 = d2V (r)

dr2∗

∣∣∣
r∗=(r∗)0

, r0 is the position of the peak value

of the effective potential, n is overtone number, and �i

(i = 2, 3, . . . , 6) are constant coefficients related to the cor-
rections from the 2nd- to 6th-orders. By substituting Eq. (63)
or Eq. (64) into Eq. (65), we can obtain the QNMs numeri-
cally for our ARBH model in the case of N = 1/2 or N = 1.

In Fig. 14, we show the results of the QNMs depending on
the characteristic parameter l, where L = 0.45 and n = 0 are
set. The left diagram of Fig. 14 correspond to the change of
Re ω with respect to l for the cases of N = 1/2 and N = 1,
respectively, and the right diagram of Fig. 14 correspond to
the change of −Im ω with respect to l for the cases of N =
1/2 and N = 1, respectively. We note that the real parts of two
cases have similar behaviors, so do the negative imaginary
parts. In the left diagram Re ω depends on l linearly, and the
slope is approximately 0.66 and 0.73 for the cases of N =
1/2 and N = 1, respectively. We deduce that the oscillating
frequency of case N = 1/2 is smaller than that of case N = 1
for a fixed l, and that the difference of oscillating frequency

between the two cases becomes large when l increases. In
the right diagram −Im(ω) has a peak at l = 2, where the
peak is approximately 0.63 for the case of N = 1/2 and
0.56 for the case of N = 1; in particular, −Im(ω) goes to
constant when l ≥ 5, which equals 0.61 and 0.55 for the
cases of N = 1/2 and N = 1, respectively. We deduce that
the damping time (inversely proportional to −Im(ω)) of the
former case is smaller than that of the latter, and that there
exists a minimum damping time at l = 2 for the two cases. We
further know that our ARBH model is more stable in the case
of N = 1 than in the case of N = 1/2 for a fixed l, where the
minimum damping time at the peak corresponds to the state
with the least stability, and that the stability decreases quickly
when l takes values from one to two, and increases slowly
when l takes values from two to five, and finally maintains
unchanged when l ≥ 5 for the two cases.

In Fig. 15, we draw the results of the QNMs depending on
the characteristic parameter L , where l = 3 and n = 0 are
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Fig. 13 V (r) with respect to r for the cases of N = 1/2 (left) and N = 1 (right)

Fig. 14 QNMs with respect to l, where L = 0.45 and n =
0 are set. The left diagram represents the real parts of ω with
respect to l for the cases of N = 1/2 and N = 1, respec-

tively; the right diagram represents the negative imaginary parts of
ω with respect to l for the cases of N = 1/2 and N = 1,
respectively

set. For the two cases of N = 1/2 and N = 1, the real parts
increase while the negative imaginary parts decrease when
L increases. For a fixed L , the real part of case N = 1/2
is smaller than that of case N = 1, which shows that the
oscillating frequency for the former is smaller than that for the
latter after our ARBH model is perturbed; when L becomes
large, the difference of oscillating frequency between the two
cases becomes large. However, the negative imaginary part of
case N = 1/2 is larger than that of case N = 1 for a fixed L ,
which shows that the damping time for the former is smaller
than that for the latter; when L becomes large, the difference
of damping time between the two cases also becomes large.
In addition, our ARBH model is stable after it is perturbed
because the imaginary part is negative, and it is more stable
in the case of N = 1 than in the case of N = 1/2 for a fixed
L , and on the other hand it is more stable for a larger L in
the both cases.

We also calculate the QNMs of CRSBHs and compare
them with those of the ARBH. In Fig. 16, we draw the
results with respect to the multiple number l in the cases
of N̄ = 3/4 and N̄ = 1, respectively. In the left diagram of
Fig. 16, we find that the real parts of QNMs increase when
l increases, which is similar to that of the ARBH. The right

diagram of Fig. 16 shows that the negative imaginary parts
decrease monotonically when l increases. However, we note
that the negative imaginary parts of the ARBH oscillate when
l increases and reach the maximum at l = 2, see Fig. 14 for
the details.

At last, we investigate the QNMs of CRSBHs with respect
to L̄ and compare them with those of the ARBH. We plot
Fig. 17 for the two cases of N̄ = 3/4 and N̄ = 1, where
the real parts decrease while the negative imaginary parts
increase when L̄ increases. For a fixed L̄ , the real part of case
N̄ = 3/4 is larger than that of case N̄ = 1, which shows that
the oscillating frequency for the former is larger than that
for the latter after a CRSBH is perturbed; when L̄ becomes
large, the difference of oscillating frequency between the two
cases also becomes large. On the other hand, the negative
imaginary part of case N̄ = 3/4 is smaller than that of case
N̄ = 1 for a fixed L̄ , which shows that the damping time for
the former is larger than that for the latter; when L̄ becomes
large, the difference of damping time between the two cases
also becomes large. Comparing Fig. 15 with Fig. 17, we find
that the relative positions of the blue and orange curves are
just opposite and the changes of them with respect to L and
L̄ are opposite, too.
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Fig. 15 QNMs with respect to L , where l = 3 and n = 0
are set. The left diagram represents the real parts of ω with
respect to L for the cases of N = 1/2 and N = 1, respec-

tively; the right diagram represents the negative imaginary parts of
ω with respect to L for the cases of N = 1/2 and N = 1,
respectively

Fig. 16 QNMs of CRSBHs with respect to l, where L̄ = 0.45 and
n = 0 are set. The left diagram represents the real parts of ω with
respect to l for the cases of N̄ = 3/4 and N̄ = 1, respectively; the right

diagram represents the negative imaginary parts of ω with respect to l
for the cases of N̄ = 3/4 and N̄ = 1, respectively. Note that the curves
of the two cases are almost overlapped

Fig. 17 QNMs of CRSBHs with respect to L̄ , where l = 3 and n = 0
are set. The left diagram represents the real parts of ω with respect to
L̄ for the cases of N̄ = 3/4 and N̄ = 1, respectively; the right diagram

represents the negative imaginary parts of ω with respect to L̄ for the
cases of N̄ = 3/4 and N̄ = 1, respectively

7 Summary

In the present work, we construct a general ARBH model
in the spherically symmetric fluid. Unlike the current ABH
model [21] whose velocity of fluid diverges at r = 0, our

model has a finite velocity but divergent density, where the
density plays the role of the scale factor of a conformally
related BH. The fluid flow is realized with the aid of a cer-
tain external field, which may offer a possibility to produce
ARBHs in laboratory. Moreover, we give the valid domains
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of various energy conditions. As we have shown in Fig. 9, the
violated domains of the strong energy condition are located
outside the horizon rather than inside the horizon, which may
change our current knowledge on the relation between the
regularity and strong energy condition. In addition, we com-
pare our ARBH model with conformally related BHs in the
aspect of energy conditions, and find the similarity and diver-
sity between the two types of BHs.

In order to study ARBHs experimentally, it is necessary to
analyze the QNMs of ARBHs. Using the WKB method, we
calculate the QNMs of our ARBH model characterized by
Eq. (22) in the cases of N = 1/2 and N = 1. The results show
that the imaginary parts of QNMs are negative, which implies
that our ARBH model is stable after it is perturbed. Moreover,
the detail features of oscillating frequency and damping time
are also given. In particular, we reveal the dependence of
stability on the characteristic length of the scale factor (the
density of fluid), L , i.e., our ARBH model is more stable
for a larger L . When N is larger, the oscillation is faster. In
summary, we have shown that the acoustic gravity is able to
be employed as a means of studying the scalar perturbation
of RBHs.

The simulation method we proposed is suitable for a large
class of RBHs and provides a basis for further researches of
the Hawking radiation and superradiance. Meanwhile, there
is plenty of room for improvement in our method if we strictly
follow certain physical principles, such as maintaining the
energy conditions, which will be reported soon in our next
work.

In addition, our further considerations also focus on the
divergence of the classical action in the ARBH model we
construct. This issue may lead to a vanishing partition func-
tion. Since the metric of our ARBH model has a conformal
structure, we try to deal with the issue in the framework of
conformal gravity, where the divergence will be improved
when a scalar field is introduced. This will be reported else-
where.
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A Energy conditions of CRSBHs

In this appendix, we reanalyze the energy conditions of CRS-
BHs which have been considered in Ref. [35]. Because the
sign of the energy density is wrong in Ref. [35], all the energy
conditions related to it have to be reconsidered.

A.1 The difference between Tμ
ν and e(a)

μ Tμνe(b)
ν

Let us start with the perfect fluid whose energy–momentum
tensor takes the form,

Tμν = (ρ0 + p)UμU ν + pgμν, (66)

where gμνUμU ν = −1. In the rest frame, one can set
Uμ = (1/

√−g00, 0, 0, 0), thus the diagonalized form can
be written as

Tμ
ν = (ρ0 + p)UμUν + pδμ

ν , (67)

namely,

T 0
0 = G0

0

8π
= −ρ0, T i

j = Gi
j

8π
= pδij . (68)

Therefore, one has

Tμ
ν = diag{−ρ0, p, p, p}, (69)

where the 00 component of Tμ
ν is negative energy density

and the trace of Tμ
ν equals

Tr Tμ
ν = −ρ0 + 3p. (70)

Alternatively, one can diagonalize Tμν by using orthonor-
mal tetrads. If the metric is diagonal, gμν = diag

{gtt , grr , gθθ , gφφ}, the tetrads e(a)
μ are of the following form,

e(a)
μ = diag

{√−gtt ,
√
grr ,

√
gθθ ,

√
gφφ

}
. (71)

Using Eq. (71), one can get

e(0)
μ Tμνe(0)

ν = ρ0, e(i)
μ Tμνe( j)

ν = pδij . (72)

Therefore, an alternative diagonalized form is

e(a)
μ Tμνe(b)

ν = diag{ρ0, p, p, p}, (73)

and the corresponding trace is

Tr e(a)
μ Tμνe(b)

ν = ρ0 + 3p. (74)
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A.2 The correct sign of the energy density of CRSBHs

For the CRSBHs, the metric is

gμν = S(r) diag{− f, f −1, r2, r2 sin2 θ}, (75)

where

S(r) =
(

1 + L̄2

r2

)2N̄

, f (r) = 1 − 2M

r
. (76)

The 00 component of Tμ
ν can be computed,

T 0
0 = −ρ0 = −e(0)

μ Tμνe(0)
ν = 4L̄2 N̄r4N̄−3

8π
(
L̄2 + r2

)2(N̄+1)

×
[
L̄2 (−2MN̄ + M + N̄r − r

)+ r2(r − 3M)
]
,

(77)

namely, the energy density is

ρ0 = − 4L̄2 N̄r4N̄−3

8π
(
L̄2 + r2

)2(N̄+1)

×
[
L̄2(−2MN̄ + M + N̄r − r) + r2(r − 3M)

]
,

(78)

which is different from Eq. (A.1) of Ref. [35] up to a minus
sign. Thus, all the inequalities will be different, e.g.,

ρ0 +
3∑

i=1

pi = − 4L̄2 N̄r4N̄−3

8π
(
L̄2 + r2

)2(N̄+1)

×
[
L̄2(M(8N̄ + 2) − (4N̄ − 1)r) − (r − 6M)r2

]
(79)

is different from Eq. (33) of Ref. [35].

B Energy conditions of the toy model f (r) = 1 − rn

In order to analyze the SEC and DEC outside the event hori-
zon, we analyze the model with the metric,

gμν = diag
{
−(1 − rn), (1 − rn)−1, r2, r2 sin2 θ

}
, (80)

where n ∈ R. The SEC is then represented via ρ0 and Pi
(i = 1, 2, 3),

ρ0 + P1 = 0, (81)

ρ0 + P2 = ρ0 + P3 = − (n − 2)(n + 1)

16π
rn−2, (82)

ρ0 +
3∑

i=1

Pi = −n(n + 1)

8π
rn−2. (83)

From Eqs. (81)–(83), we note that n must satisfy −1 ≤ n ≤ 0
in order to ensure that the SEC is satisfied. For the DEC, one

has the following form,

ρ0 − |P1| = (n + 1 − |n + 1|)
8π

rn−2, (84)

ρ0 − |P2| = (2n + 2 − |n||n + 1|)
16π

rn−2, (85)

which leads to −1 ≤ n ≤ 2 if the DEC is satisfied. For our
ARBH model, the metric function is asymptotic to 1 − 1/r4

at infinity, i.e., n = −4, which means that both SEC and
DEC are violated outside the event horizon.

From the point of view of Raychaudhuri’s equation [47],
when the expansion, rotation, and shear can be neglected,
one obtains

dξ

dτ
= −4π

(
ρ0 +

3∑
i=1

Pi

)
, (86)

where ξ denotes expansion of geodesics and τ affine param-
eter. The violation of Eq. (83) implies dξ/dτ > 0, i.e., the
gravity is repulsive outside the horizon for n = −4.
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