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Abstract The cosmological constant Λ is a measure of the
energy density of the vacuum. Therefore properties of the
energy of the system in the metastable vacuum state reflect
properties of Λ = Λ(t). We analyze properties of the energy,
E(t), of a general quantum system in the metastable state in
various phases of the decay process: In the exponential phase,
in the transition phase between the exponential decay and the
later phase, where decay law as a function of time t is in the
form of powers of 1/t , and also in this last phase. We found
that this energy having an approximate value resulting from
the Weisskopf–Wigner theory in the exponential decay phase
is reduced very fast in the transition phase to its asymptotic
value E(t) � Emin + α2/t2 + . . . in the late last phase of
the decay process. (Here Emin is the minimal energy of the
system). This quantum mechanism reduces the energy of the
system in the unstable state by a dozen or even several dozen
orders or more. We show that if to assume that a universe was
born in metastable false vacuum state then according to this
quantum mechanism the cosmological constant Λ can have
a very great value resulting from the quantum field theory
calculations in the early universe in the inflationary era, Λ �
Λq f t , and then it can later be quickly reduced to the very,
very small values.

1 Introduction

Many physical processes including some cosmological pro-
cesses are quantum decay processes. Attempts to solve the
problem of a description of the evolution in time and decay
of quantum unstable (or metastable) states were made practi-
cally since the birth of the Quantum Theory. Difficulties with
this problem are caused by the fact that unstable states are
not eigenvectors of the self-adjoint Hamiltonian H govern-
ing the time evolution in the system containing such states.
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The problem is important because one can meet unstable (or
metastable) states in many quantum processes: Starting from
the spontaneous emission of electromagnetic radiation by
excited quantum levels of molecules or atoms [1,2], through
the radioactive decay of radioactive elements (e.g., α-decay
[3]), decays of almost all known elementary particles, to the
problem of the false vacuum decay, which is a quantum pro-
cess [4,5]. Therefore if one wants to search for properties of
the universe born in the false vacuum state, one must know
how to describe the quantum decay process of such a state.

In fact, the problem of describing the decay process
appeared as early as in the pre-quantum theory era, when
it was necessary to quantify the changes in time of a number
of decaying radioactive elements. The radioactive decay law
formulated by Rutherford and Sody in the nineteenth century
[6–9] allowed to determine the number N (t) of atoms of the
radioactive element at the instant t knowing the initial num-
ber N0 = N (0) of them at initial instant of time t ini t0 = 0
and had the exponential form: N (t) = N0 exp [−λt], where
where λ > 0 is a constant. Since then, the belief that the
decay law has the exponential form has become common.
This conviction was upheld by Wesisskopf–Wigner theory
of spontaneous emission [1,2]: They found that to a good
approximation the quantum mechanical non-decay probabil-
ity of the exited levels is a decreasing function of time having
exponential form. Further studies of the quantum decay pro-
cess showed that basic principles of the quantum theory does
not allow it to be described by an exponential decay law
at very late times [10,11] and at initial stage of the decay
process (see e.g. [11] and references therein). Theoretical
analysis shows that at late times the survival probability (i.
e. the decay law) should tends to zero as t → ∞ much
more slowly than any exponential function of time and that
as function of time it has the inverse power-like form at this
regime of time [10,11]. All these results caused that there is
rather widespread belief that a universal feature of the quan-
tum decay process is the presence of three time regimes of
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the decay process: the early time (initial), exponential (or
“canonical”), and late time having inverse-power law form
[12]. This belief is reinforced by a numerous presentations in
the literature of decay curves obtained for quantum models
of unstable systems.

The theoretical studies of unstable states mentioned
resulted in discovery some new quantum effects, such as
the Quantum Zeno (and anti-Zeno) effects [13–17] resulting
from early time properties of the time evolution of the unsta-
ble state, and which were confirmed experimentally [18–23],
or a reduction of the energy of the system in the unstable state
at late times [24–28], which is connected with the asymptotic
late time behavior of the survival probability.

As it was already mentioned, the theory of quantum decay
processes has found its applications in cosmology: e.g. in the
studies of cosmological models in which there is a metastable
false vacuum and, consequently, the decaying dark energy.
Coleman et al. in seminal papers [4,5] discussed the instabil-
ity of a physical system, which is not at an absolute energy
minimum, and which is separated from the absolute mini-
mum by an effective potential barrier. They showed that if
the early Universe is too cold to activate the energy transition
to the minimum energy state then a quantum decay, from the
false vacuum to the true vacuum, is still possible through a
barrier penetration via the macroscopic quantum tunneling.
In other words they showed that quantum decay processes can
play an important role in the early Universe. What is more,
it appears that asymptotic late time properties of of quan-
tum decay processes can be responsible for some cosmolog-
ical effects. This idea was formulated by Krauss and Dent
[29,30]. They analyzing a false vacuum decay pointed out
that in eternal inflation, many false vacuum regions can sur-
vive up to the times much later than times when the exponen-
tial decay law holds. Krauss and Dent gave a simple explana-
tion of this effect: It may occur even though regions of false
vacua by assumption should decay exponentially, gravita-
tional effects force space in a region that has not decayed yet
to grow exponentially fast. In general, the space grows expo-
nentially fast only in the inflationary phase of the evolution
of the Universe (see, e.g. [31,32]). Therefore a realization
of Krauss and Dent’s hypothesis in our Universe is possible
only if the lifetime of the false vacuum is much shorter than
the duration of the inflationary epoch because only then the
quantum decay of the false vacuum takes place in its canoni-
cal regime. The mentioned Krauss and Dent’s idea was used
in [27,28] to show that when analyzing cosmological pro-
cesses not only late time properties of the survival probability
of decaying false vacua should be considered but also, what
seems even more important, the late time properties of the
energy in the false vacuum state of the system. In cosmology,
when we study the decay of a false vacuum, the Universe is
the quantum system under consideration.

The late time effect considered by Krauss and Dent [29]
is impossible within the standard approach of calculations
of decay rate Γ for decaying vacuum state (see e.g., [4,5]
and many other papers). Calculations performed within this
standard approach cannot lead to a correct description of the
evolution of the Universe with false vacuum in all cases when
the lifetime of the false vacuum state is such short that its sur-
vival probability exhibits an inverse power-law behavior at
times which are of the order of the age Universe or shorter.
This conclusion is valid not only when the dark energy den-
sity and its late time properties are related to the transition of
the Universe from the false vacuum state to the true vacuum
but also when the dark energy is formed by unstable “dark
particles”. In both cases the decay of the dark energy density
is the quantum decay process and only the formalism based
on the Fock–Krylov theory of quantum unstable states and
used by Krauss and Dent [29] is able to describe correctly
such a situation.

In the analysis performed in this paper we will assume the
model of the dark anergy close to that considered by Landim
and Abdalla, in which the observed vacuum energy is the
value of the scalar potential at the false vacuum [33]. (Simi-
lar idea was used in many papers – see eg. [34,35]). In other
words, we will assume that the current stage of accelerated
expansion of the universe will be described by a canonical
scalar field Φ such that its potential, V (Φ), has a local and
true minimums. So, the field at the false vacuum will rep-
resent the darkenergy. In such a situation, the quantum state
of the system in the local minimum is described by a state
vector corresponding to the false vacuum state whereas the
quantum state of the system in the true minimum corresponds
to the state of the lowest energy of the system and it is a true
vacuum. This means that the density of the energy of the sys-
tem in the false vacuum state, ρ F

vac, will be identified with the
density of the dark energy, ρ F

vac ≡ ρde, (or, equivalently, as
the cosmological term Λ) in the Einstein equations [31,32].
Implications of the assumption that, ρ F

vac = ρde = ρde(t),
behaves as the asymptotically late form of the energy of the
system in the false vacuum state, i.e. cosmologies with decay-
ing dark energy were studied, e.g., in [36–39]. In these stud-
ies, the problem of the possible reaction of the system to
energy changes during the transition from the time epoch of
exponential decay to the epoch with the decay law of the form
of powers of 1/t was not analyzed. In particular, it was not
analyzed how fast the energy tends to its asymptotic form in
the era in which the decay law is proportional to the powers
of 1/t . The aim of this paper is to investigate this problem
and also to analyze the possible influence of this effect on the
currently observed properties of the system (i.e., in the case
under consideration, the Universe): Here we show that there
exists a mechanism that reduces the energy of the system in
the unstable state by a dozen or even several dozen orders or
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more, which can help to explain the cosmological constant
problem.

The paper has the following structure. Section 2 con-
tains preliminaries: a brief introduction in the Fock–Krylov
approach to the description of quantum unstable states, a
brief derivation of the effective Hamiltonian governing the
time evolution of the unstable state, and short discussion of
properties of the instantaneous energy of the system in the
unstable state as well as of the instantaneous decay rate is
presented here for readers convenience. Necessary model
calculations and numerical results in a graphical form are
presented in Sect. 3. Section 4 contains a discussion of pos-
sible cosmological implications results presented in previous
sections. Section 5 contains final remarks.

2 Preliminaries

Understanding the basic features of an unstable system
requires isolating this system from the influence of the envi-
ronment on the decay process, including the possible dis-
tortion of these features by repeatedly interactions, at dif-
ferent times, with measuring instruments. These conditions
are met in the case of quantum decay processes occurring in
a vacuum. Therefore, further considerations will only cover
decays that occur in a vacuum. The standard approach to
study properties of quantum unstable systems decaying in
the vacuum and evolving in time is to analyze their decay law
(survival probability) P(t), which describes the probability
od finding the system at the instant of time t in the metastable
state |φ〉 ∈ H prepared at the initial instant t ini t0 < t :

P(t) = |A(t)|2, (1)

where

A(t) = 〈φ|φ(t)〉 (2)

is the survival amplitude and |φ(t)〉 is the solution of the
Schrödinger equation

i h̄
∂

∂t
|φ(t)〉 = H|φ(t)〉. (3)

Here H denotes the complete (full), self-adjoint Hamiltonian
of the system acting in the Hilbert space H of states of this
system |φ〉, |φ(t)〉 ∈ H, 〈φ|φ〉 = 〈φ(t)|φ(t)〉 = 1 The ini-
tial condition for Eq. (3) in the case considered is usually
assumed to be

|φ(t = t ini t0 ≡ 0)〉 def= |φ〉, or equivalently, A(0) = 1.

(4)

Using the basis in H build from normalized eigenvectors
|E〉, E ∈ σc(H) = [Emin,∞) (where σc(H) is the continu-
ous part of the spectrum of H) of H and using the expansion

of |φ〉 in this basis one can express the amplitude A(t) as the
following Fourier integral

A(t) ≡ A(t − t ini t0 ) =
∫ ∞

Emin

ω(E) e−
i
h̄ E (t − t ini t0 ) dE,

(5)

where ω(E) = ω(E)∗ and ω(E) > 0 is the probability to
find the energy of the system in the state |φ〉 between E and
E + dE and Emin is the minimal energy of the system. The
last relation (5) means that the survival amplitude A(t) is a
Fourier transform of an absolute integrable function ω(E).
If we apply the Riemann-Lebesgue lemma to the integral (5)
then one concludes that there must be A(t) → 0 as t → ∞.
This property and the relation (5) are an essence of the Fock–
Krylov theory of unstable states [40,41].

So, within this approach the amplitude A(t), and thus the
decay law P(t) of the metastable state |φ〉, are determined
completely by the density of the energy distribution ω(E)

for the system in this state [40,41] (see also [11,42], and so
on. (This approach is also applicable to models in quantum
field theory [43,44]).

In [10] assuming that the spectrum of H must be bounded
from below and using the Paley–Wiener Theorem [45] it was
proved that in the case of unstable states there must be

|A(t)| ≥ A e−b tq , (6)

for |t | → ∞. Here A > 0, b > 0 and 0 < q < 1. This
means that the decay law P(t) of metastable states decaying
in the vacuum, (1), can not be described by an exponential
function of time t if time t is suitably long, t → ∞, and
that for these lengths of time P(t) tends to zero as t → ∞
more slowly than any exponential function of t . The analysis
of the models of the decay processes shows that P(t) �
e−

Γ0t
h̄ , (where Γ0 is the decay rate of the considered state

|φ〉), to a very high accuracy for a wide time range t : At
canonical decay times, i.e., from t suitably greater than some
T0 � t ini t0 = 0 but T0 > t ini t0 = 0 (P(t) has nonexponential
power-like form for short times t ∈ (t ini t0 , T0) – see, e.g.
[10,11,46]) up to t � τ0 = h̄

Γ0
and smaller than t = T1,

where τ0 is a lifetime and t = T1 denotes the time t for
which the long time nonexponential deviations ofA(t) begin
to dominate (see e.g., [10,11,47]). So, a notion canonical
decay times denotes such times t that t ∈ (T0, T1). From
a more detailed analysis it follows that in the general case
there is time T2 � T1 such that the decay law P(t) takes
the inverse power-like form t−λ, (where λ > 0), for suitably
large t ≥ T2 � T1 � τ0 [10,11,47,48]. This effect is in
agreement with the general result (6). Effects of this type are
sometimes called the “Khalfin effect” (see eg. [49]).

The problem how to detect possible deviations from the
exponential form of P(t) in the long time region has been
attracting attention of physicists since the first theoretical
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predictions of such an effect [50–52]. The tests that have
been performed over many years to examine the form of the
decay laws for t � τ0 have not indicated any deviations from
the exponential form of P(t) in the long time region. Nev-
ertheless, conditions leading to the nonexponential behavior
of the amplitude A(t) at long times were studied theoreti-
cally [53–61]. Conclusions following from these studies were
applied successfully in experiment described in [62], where
the experimental evidence of deviations from the exponential
decay law at long times was reported. This result gives rise
to another problem which now becomes important: if and
how the long time deviations from the exponential decay
law depend on the model considered (that is, on the form of
ω(E), and if (and how) these deviations affect the energy of
the metastable state and its decay rate in the long time region.

Note that in fact the amplitude A(t) = 〈φ|φ(t)〉 contains
information about the decay law P(t) of the state |φ〉, that
is about the decay rate Γ0 of this state, as well as the energy
of the system in this state. This information can be extracted
from A(t). Using Schrödinger equation (3) one finds that
within the problem considered

i h̄
∂

∂t
〈φ|φ(t)〉 = 〈φ|H|φ(t)〉. (7)

From this relation one can conclude that the amplitude A(t)
satisfies the following equation

i h̄
∂A(t)

∂t
= h(t)A(t), (8)

where

h(t) = 〈φ|H|φ(t)〉
a(t)

≡ 〈φ|H|φ(t)〉
〈φ|φ(t)〉 , (9)

or equivalently

h(t) ≡ i h̄

A(t)

∂A(t)

∂t
, (10)

The effective Hamiltonian h(t) governs the time evolu-
tion in the subspace of unstable states H‖ = PH, where
P = |φ〉〈φ| (see [63] and also [24–26] and references
therein). The subspaceH
H‖ = H⊥ ≡ QH is the subspace
of decay products. Here Q = I − P. One meets the effec-
tive Hamiltonian h(t) when one starts from the Schrödinger
equation for the total state space H and looks for the rigor-
ous evolution equation for a distinguished subspace of states
H|| ⊂ H [63–65]. In general h(t) is a complex function of
time and in the case of H‖ of two or more dimensions the
effective Hamiltonian governing the time evolution in such
a subspace is a non-hermitian matrix H‖ or non-hermitian
operator. There is

h(t) = E(t) − i

2
Γ (t), (11)

where E(t) = � [h(t)], Γ (t) = −2 � [h(t)], are the instan-
taneous energy (mass) E(t) and the instantaneous decay rate,

Γ (t). (Here � (z) and � (z) denote the real and imaginary
parts of z, respectively).

The quantity Γ (t) = −2 � [h(t)] is interpreted as the
decay rate, because it satisfies the definition of the decay rate
used in quantum theory. Simply, using (10) it is easy to check
that

Γ (t)

h̄
def= − 1

P(t)

∂P(t)

∂t

= − 1

|A(t)|2
∂|A(t)|2

∂t
≡ − 2

h̄
� [h(t)].

(12)

The formula (9) for h(t) can be used to show that h(t) can
not be constant in time. Indeed, if to rewrite the numerator
of the righthand side of (9) as follows,

〈φ|H|φ(t)〉 ≡ 〈φ|H|φ〉 a(t) + 〈φ|H|φ(t)〉⊥, (13)

where |φ(t)〉⊥ = Q|φ(t)〉, and 〈φ|φ(t)〉⊥ = 0, then one
can see that there is a permanent contribution of decay prod-
ucts described by |φ(t)〉⊥ to the energy of the metastable
state considered. The intensity of this contribution depends
on time t . This contribution into the instantaneous energy is
practically very small and constant in time to a very good
approximation at canonical decay times, whereas at the tran-
sition times, when t > T1 (but t < T2, it is fluctuating func-
tion of time and the amplitude of these fluctuations may be
significant. What is more relations (9) and (13) allow one to
proof that in the case of metastable states � [h(t)] �= const
for t > 0. Namely, using these relations one obtains that

h(t) = Eφ + 〈φ|H|φ(t)〉⊥
A(t)

, (14)

where Eφ is the expectation value of H: Eφ = 〈φ|H|φ〉.
From this relation one can see that h(0) = Eφ if the matrix
elements 〈φ|H|φ〉 exists. It is because |φ(t = 0)〉⊥ = 0 and
A(t = 0) = 1.

Note now that from (9) and (10) it follows that h(t) must
be a continuous function of time t for t ≥ 0. So, if to assume
a contrario that h(t) = const. for all t ≥ 0 then using (9)
and (13) one immediately infers that it is possible only if for
all t ≥ 0 there is 〈φ|HQ|φ(t)〉 ≡ ch〈φ|φ(t)〉, where ch =
const. From the definition of P and Q it results that in such
a case there must be 〈φ|HQ|φ(t)〉|t=0 = 〈φ|HQ|φ〉 = 0,
but at the same time there is, 〈φ|HQ|φ(t)〉|t=0 = ch〈φ|φ〉
at t = 0. So only solution is ch ≡ 0. Now because of the
continuity of h(t) the solution ch = 0 is valid also for all
t > 0. Thus the case h(t) = const for all t ≥ 0 occurs
only if 〈φ||HQ|φ(t)〉 = 0 for all t ≥ 0. It is possible only
if [Q,H] ≡ [P,H] = 0 but then the vector |φ〉 defining the
projector P = |φ〉〈φ| can not describe a metastable state. In
a result there must be h(t) �= const for a metastable state
|φ〉.
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Using projectors P, Q, Eq. (10) can be rewritten as follows
(see, eg. [28,63])

h(t) ≡ Eφ + v(t), (15)

and

v(t) = 〈φ|HQ|φ(t)〉
A(t)

= 〈φ|H|φ(t)〉⊥
A(t)

. (16)

From the definition of P it follows that |φ(t = 0)〉⊥ = 0,
which means that v(0) = 0 and h(0) = Eφ and thus

E(0) = E(t = 0) = Eφ = 〈φ|H |φ〉, (17)

(if the matrix element 〈φ|H |φ〉 exists), and

E(t) � Eφ = 〈φ|H |φ〉, for t → 0. (18)

So, in a general case, at canonical decay times t < T1,
there is (see [28,63])

E(t) � E0
def= Eφ − Δ

(1)
φ ≡ E(0) − Δ

(1)
φ , (19)

where Δ
(1)
φ = −� [v(t)] , wherein v(t) � const. at canoni-

cal decay times, and |Δ(1)
φ | � |Eφ |.

The representation of the survival amplitude A(t) as the
Fourier transform (5) can be used to find the late time asymp-
totic form of A(t), P(t) and the instantaneous energy E(t)
and decay rate Γ (t) (see [24,25]). There is,

E(t) ∼
t→ ∞

def= Elt (t) = Emin + α2

t2 + α4

t4 + · · · , (20)

and

Γ (t) ∼
t→ ∞

def= Γlt (t) = α1

t
+ α3

t3 + · · · , (21)

where αk , are real numbers for k = 1, 2, . . . and α1 > 0 and
the sign of αk for k > 1 depends on the model considered
(see [25]).

An important property of h(t) can be found using
the relation |φ(t)〉 = exp [− i

h̄ tH]|φ〉, which means that
the amplitude A(t) can be written as follows: A(t) ≡
〈φ| exp [− i

h̄ tH]|φ〉. It is not difficult to see that this form
of A(t) and hermiticity of H imply that [11]

(A(t))∗ = A(−t). (22)

The conclusion resulting from (22) and from the relation
(10) is that

h(−t) = (h(t))∗ . (23)

Therefore there must be

E(−t) = E(t) and Γ (−t) = −Γ (t), (24)

That is, the instantaneous energy E(t) = � [h(t)] is an even
function of time t and the instantaneous decay rate Γ (t) =
−2 � [h(t)] an odd function of t .

3 Calculations and results

As it was said in the previous Section in order to calculate
the survival amplitude A(t) within the Fock–Krylov theory
of unstable states we need the energy density distribution
function ω(E). From an analysis of general properties of
the energy (mass) distribution functions ω(E) of real unsta-
ble systems it follows that ω(E) has properties analogous
to the scattering amplitude, i.e., it can be decomposed into
a threshold factor, a pole-function P(E) with a simple pole
and a smooth form factor f (E): There is

ω(E) = Θ(E − Emin) (E − Emin)
αl P(E) f (E), (25)

where αl depends on the angular momentum l through αl =
α + l, [11] (see equation (6.1) in [11]), 0 ≤ α < 1) and
Θ(E) is a step function: Θ(E) = 0 for E ≤ 0 and
Θ(E) = 1 for E > 0 and f (E) is such a function that
P(E) f (E) → 0 as E → ∞. The simplest choice is to take
α = 0, l = 0, f (E) = 1 and to assume that P(E) has a
Breit–Wigner (BW) form of the energy distribution density.
(The mentioned Breit–Wigner distribution was found when
the cross-section of slow neutrons was analyzed [66].) It turns
out that the decay curves obtained in this simplest case are
very similar in form to the curves calculated for the above
described more general ω(E), (see [67,68] and analysis in
[11]). So to find the most typical properties of the decay
process it is sufficient to make the relevant calculations for
ω(E) modeled by the the Breit–Wigner distribution of the
energy density:

ω(E) ≡ ωBW (E)

def= N

2π
Θ(E − Emin)

Γ0

(E − E0)2 + (Γ0
2 )2

,
(26)

where N is a normalization constant. The parameters E0 and
Γ0 correspond to the energy of the system in the metastable
state and its decay rate at the exponential (or canonical)
regime of the decay process. Emin is the minimal (the lowest)
energy of the system. For ω(E) = ωBW (E) one can find rela-
tively easy an analytical form ofA(t) at very late times as well
as an asymptotic analytical form of h(t), E(t) and Γ (t) for
such times. In previous Section it was stated that ω(E) con-
tains information characterizing the given metastable state:
In the case ω(E) = ωBW (E) quantities E0, Γ0 and Emin are
exactly the parameters characterizing the metastable state
considered. The different values of these parameters corre-
spond to different metastable states.

Inserting ωBW (E) into formula (5) for the amplitudeA(t)
and assuming for simplicity that t ini t0 = 0, after some algebra
one finds that

A(t) = N

2π
e−

i
h̄ E0t Iβ

(
Γ0t

h̄

)
(27)
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where

Iβ(τ )
def=

∫ ∞

−β

1

η2 + 1
4

e−iητ dη. (28)

Here τ = Γ0 t
h̄ ≡ t

τ0
, τ0 is the lifetime, τ0 = h̄

Γ0
, and β =

E0−Emin
Γ0

> 0.
Having the amplitudeA(t) we can use it to analyze proper-

ties of the instantaneous energy E(t) and instantaneous decay
rate Γ (t). These quantities are defined using the effective
Hamiltonian h(t) which is build from A(t). In order to find
h(t) we need the quantity i h̄ ∂A(t)

∂t (see (10)). From Eq. (27)
one finds that

i h̄
∂A(t)

∂t
= E0 A(t) + Γ0

N

2π
e−

i
h̄ E0t Jβ(τ (t)), (29)

where

Jβ(τ ) =
∫ ∞

−β

x

x2 + 1
4

e−i xτ dx, (30)

or simply (see (28)),

Jβ(τ ) ≡ i
∂Iβ(τ )

∂τ
. (31)

Now the use of (27), (29) and (10) leads to the conclusion
that within the model considered there is,

h(t) = i h̄
1

A(t)

∂A(t)

∂t
= E0 + Γ0

Jβ(τ (t))

Iβ(τ (t))
, (32)

which means that

E(t) = � [h(t)] = E0 + Γ0 �
[Jβ(τ (t))

Iβ(τ (t))

]
, (33)

and

Γ (t) = −2 �[h(t)] = −2 Γ0 �
[Jβ(τ (t))

Iβ(τ (t))

]
. (34)

Using (27)–(34) one can find analytically within the model
considered late time asymptotic forms of E(t) and Γ (t).
There is for t → ∞ (see [39,69]):

E(t) t→∞ = � [h(t)] t→∞

� Emin − 2
β

Γ0 (β2 + 1
4 )

(
h̄

t

)2

+ . . . ,
(35)

and,

Γ (t) t→∞ = −2� [h(t)] � 2
h̄

t
+ . . . . (36)

In order to visualize properties of E(t) it is convenient to
use the following function

κ(t)
def= E(t) − Emin

E0 − Emin
. (37)

Using (33) one finds that

E(t) − Emin = E0 − Emin + Γ0 �
[Jβ(τ )

Iβ(τ )

]
, (38)

Now, it to divide two sides of Eq. (38) by
(E0 − Emin) then one obtains the function κ(t) (see (37))
we are looking for

κ(τ(t)) = 1 + 1

β
�

[Jβ(τ (t))

Iβ(τ (t))

]
. (39)

Using the above derived formulae one can find numerically
within the model considered the survival probabilityP(t) and
κ(τ(t)) describing the behavior of the instantaneous energy
E(t). Results of these calculations performed for chosen β

are presented in Fig. 1a, b.
From the results of the previous section and those pre-

sented above and also in Fig. 1b it follows that a behavior of
the instantaneous energy E(t) and the instantaneous decay
rate Γ (t) differ depending on the time domain in which we
examine their values. At canonical decay times 0 � t < T1

they are close to a good approximation to the values resulting
from the Weisskopf–Wigner theory of spontaneous emission.
For times t > T2 their behavior is described by late time
asymptotic formulae (20) and (21). At transition time region
of times T1 < t < T2 the instantaneous energy E(t) and
the instantaneous decay rate Γ (t) decrease to their late time
asymptotic forms. Unfortunately the information of how fast
E(t) tends to its asymptotic form (20) at times t > T1 is
invisible in κ(τ(t)) – see Fig. 1b. In order to remove this
deficiency one should come back to the Eq. (37). Namely by
manipulating Eqs. (37)–(39) we get the desired result,

E(τ (t))

Emin
= 1 +

(
E0

Emin
− 1

)
κ(τ(t)). (40)

This last equation can be used to show how fast E(t) tends
to its asymptotic form (20) at times t > T1 for assumed β

and the ratio E0
Emin

. Results obtained for ω(E) = ωBW (E)

are presented in graphical form in Figs. 1, 2, 3 and 4.
We show now that similar results can be obtained not only

in the approximate case ωBW (E) of the density of the energy
(mass) distribution ω(E) but also when one considers a more
general forms of ω(E). As it was mentioned ω(E) should
have a form given by Eq. (25), where the simple pole contri-
bution, P(E), is often modeled by ωBW (E).

Guided by this observation we follow [67,68] and assume
that

ωη(E) = N
√
E − Emin

×
√

Γ0

(E − E0)2 + (Γ0/2)2 e
−η

E−E0+Emin
Γ0 ,

(41)

with η > 0. Inserting this ωη(E) into (5) we can calculate
the survival amplitude A(t) for this case and then the effec-
tive Hamiltonian h(t) and thus E(t) that we want to study.
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Fig. 1 Results obtained for ωBW (E) given by Eq. (26). The case
β = 10. a A decay curve P(τ ) = |A(τ )|2; b an illustration
of the typical behavior of energy E(τ ): The solid line – κ(τ) ≡
(E(τ ) − Emin) / (E0 − Emin), The dashed line – E(τ ) = E0 = const
(κ(τ) = 1); c the modulus of the ratio E(τ )/Emin , the case E0/Emin =
1000. In all figures the time, t , is measured in lifetimes τ0: τ = t/τ0
and τ0 = h̄/Γ0 is the lifetime

Analogously to the above analyzed case of the Breit–Wigner
energy density distribution, ωBW (E), we get

E(τ ) − Emin

E0 − Emin
= κη(τ ), (42)

Fig. 2 The ratio E(τ )/Emin (an enlarged part of Fig 1c). The case
β = 10 and E0/Emin = Λ0/Λbare = 1000. In all figures the time t is
measured in lifetimes: τ = t/τ0: τ = t/τ0 and τ0 = h̄/Γ0

where

κη(τ ) = 1 + + 1

β
�

[J η
β (τ )

Iη
β(τ )

]
. (43)

and

J η
β =

∫ ∞

−β

x
√
x + β

x2 + 1
4

e−x η e−i xτ dx, (44)

Iη
β =

∫ ∞

−β

√
x + β

x2 + 1
4

e−x η e−i xτ dx . (45)

After some algebra, analogously to the result (40), we obtain
the following relation in the considered here case:

E(τ (t))

Emin
= 1 +

(
E0

Emin
− 1

)
κη(τ (t)). (46)

This equation, similarly to the Eq. (40), can be used to show
how fast E(t) tends to its asymptotic form (20) at times t >

T1 for assumed ω(E), and for chosen β, η and the ratio
E0
Emin

. Results obtained for ω(E) = ωη(E) are presented
graphically in Figs. 5, 6, 7, 8 and 9.
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Fig. 3 The ratio E(τ )/Emin ≡ Λ(τ)/Λbare obtained for a ωBW (E)

given by formula (26). In all figures the time t is measured in lifetimes:
τ = t/τ0: τ = t/τ0 and τ0 = h̄/Γ0. The case E0/Emin = Λ0/Λbare =
1020

Fig. 4 The ratio E(τ )/Emin ≡ Λ(τ)/Λbare obtained for a ωBW (E)

given by formula (26). In all figures the time t is measured in lifetimes:
τ = t/τ0: τ = t/τ0 and τ0 = h̄/Γ0. The case β = 10000

4 Discussion: possible cosmological applications

In previous sections we used the Krylov–Fock theory of
unstable states to find late time properties of the survival
amplitude and instantaneous energy. Similar estimations of
the late time behavior of the survival amplitude can be also
found by means another method, e.g. methods of the quan-
tum scattering theory. This method was used in [70], where
the long time deviations from the exponential form of the
decay law were also studied and where one can find attempts
to estimate the value of T1. Newton on page 624 in Chap. 19
of [70] writes:

Let us now take some simple examples. Consider the case
of a nuclear deexcitation by γ -ray emission. In a typical
instance the energy may be E0 ∼ 200 keV and the lifetime
τ ∼ 10−8 sec so that Γ/E0 ∼ 3 × 10−13. .... ............
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Fig. 5 A ratio E(τ )/Emin ≡ Λ(τ)/Λbare obtained for a ωBW (E)

given by formula (26). In all figures the time t is measured in lifetimes:
τ = t/τ0: τ = t/τ0 and τ0 = h̄/Γ0. The case E0/Emin = Λ0/Λbare =
1010

The decay curve should be roughly exponential after 1/8 of
a mean life from the peak and excellently exponential after
2. It then remains exponential for 1017 lifetimes! In order to
destroy most of the exponential-decay curve, one would have
to move the detector away to a distance of about 1022 miles.
..............

Note that 1022 miles equals 1.7×109 light years approxi-
mately, so the effect described by Newton and in other papers
should be visible when analyzing the spectrum of the elec-
tromagnetic radiation emitted by cosmic objects at a distance
of 1.7×109 light years or more from the Earth’s observer. Of
course in this case it is practically impossible to restore the
late time form of the decay curve by means measurements but
as it has already been shown for times t > T1 the following
quantum effect should take place during the late time phase
of the quantum decay process: The energy of the system in
the initial metastable state, which is approximately equal E0

at canonical decay times, is forced to decrease as 1/t2 to
the minimal energy Emin < E0. This effect was described
in previous sections and earlier in [24–28,71]. In the case

Fig. 6 A ratio E(τ )/Emin ≡ Λ(τ)/Λbare obtained for a ωBW (E)

given by formula (26). The case E0/Emin = Λ0/Λbare = 1010. In all
figures the time t is measured in lifetimes: τ = t/τ0: τ = t/τ0 and
τ0 = h̄/Γ0

of the emission of the electromagnetic radiation the excited
atomic level can be considered as an the initial metastable
state of the system. (In Newton’s example the excited state
of a nucleus is the initial state). So, in the case of very distant
cosmic objects emitting electromagnetic radiation this effect
should contribute into the redshift making it apparently larger
than it really is. Such a possibility seems to be very impor-
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Fig. 7 A ratio E(τ )/Emin ≡ Λ(τ)/Λbare obtained for a ω(E) given
by formula (41). The case E0/Emin = Λ0/Λbare = 1010. In all figures
the time t is measured in lifetimes: τ = t/τ0: τ = t/τ0 and τ0 = h̄/Γ0

tant as this effect may distort the observational results (red
shift, luminosity, and so on) and thus lead to wrong conclu-
sions (For example estimations of a tension of the Hubble
parameter are based on the measurements of the red shift of
distant astrophysical objects, etc.). Possible changes of the
red shift caused by this possible effect are described in details
in [24] (see also [71]), where an influence of this property on
measured values of possible deviations of the fine structure
constant α as well as other astrophysical and cosmological
parameters were studied and this is why this is only signal-
ized here.

Let us analyze now results presented in Figs. 1c, 2, 3, 4,
5, 6, 7, 8 and 9. In Fig. 1c, in contrast to Fig. 1b, it can be
seen how quickly in the transition time region, T1 < t < T2,
the energy E(t) is reduced to its late time asymptotic form,
Elt (t) = Emin + α2/t2 + . . .. Namely, if to compare Figs.
1c, 3, 4, 5, 6, 7, 8 and 9 and Fig. 2a a conclusion can be drawn
that at transition times T1 < t < T2 the instantaneous energy
E(t), (where E(t) � E0 for times t < T1 and t > T0),
decreases like an oscillatory modulated exponential function
until reaching its asymptotic form Elt (t). This quantum effect

Fig. 8 A ratio E(τ )/Emin ≡ Λ(t)/Λbare obtained for a ω(E) given
by formula (41). The case E0/Emin = Λ0/Λbare = 1012. In all figures
the time t is measured in lifetimes: τ = t/τ0: τ = t/τ0 and τ0 = h̄/Γ0

is very strong and efficient: as can be seen from Figs. 1c, 3,
4, 5, 6, 7, 8 and 9, the reduction of energy E(t) � E0 (for
t < T1) depending on the values of parameters β and η, may
be more than 10 orders: It can be E(T1)/Elt (T2) ∼ 1012

– see Figs. 3d, 9a, and more. By selecting the appropriate
parameters β in ωBW (E), or β and η in ωη(E), or the other,
more appropriate, energy density distribution function ω(E),
even much greater reduction of the energy E(t) � E0 can be
achieved when time t runs from t = T1 to t = T2. Potentially,
this effect can reduce the energy by tens of orders or more.
Taking this property into account it seems to be reasonable to
hypothesize that this quantum effect can help to explain the
cosmological constant problem, which is consequence of the
interpretation of the dark energy as the vacuum energy: the
observed present value of the cosmological constant is 120
orders of magnitude smaller than we expect from quantum
physics calculations.

One can meet in the large literature cosmological models
with metastable vacuum (see, eg. [72–75] and many others).
Some of these models admit the lifetime of the Universe to
be very small [73] or even smaller than the Planck time (see
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Fig. 9 A ratio E(τ )/Emin ≡ Λ(t)/Λbare obtained for a ω(E) given by
formula (41). In all figures the time t is measured in lifetimes: τ = t/τ0:
τ = t/τ0 and τ0 = h̄/Γ0

[74,75]). Of course this decaying vacuum is described by
the quantum state corresponding to a local minimum of the
energy density which is not the absolute minimum of the
energy density of the system considered. In such a case the
formalism described in this paper is fully applicable. Let us
consider now a cosmological scenario in which the lifetime
of the false vacuum is shorter than the duration of the infla-
tion phase and its decay process began before (or just before)
the beginning of the inflation phase and then it is continued
during the inflationary epoch and later. This scenario cor-
responds with the hypothesis analyzed by Krauss and Dent
[29,30]. Their hypothesis suggests that some false vacuum
regions do survive well up to the time T1 or later. So, let
|φ〉 = |0〉F be a false and |0〉T true vacuum states, respec-
tively, and E0 = E F

0 be the energy of a state corresponding
to the false vacuum measured at the canonical decay times,
which leads to the vacuum energy density calculated using
quantum field theory methods. Let E T = Emin be the energy
of true vacuum (i.e., the true ground state of the system). The
fact that the decay of the false vacuum is the quantum decay

process [4,5,29,30,76] means that state vector correspond-
ing to the false vacuum is a quantum unstable (or metastable)
state. Therefore all the general properties of quantum unsta-
ble systems must also occur in the case of such a quantum
unstable state as the false vacuum. This applies in particular
to such properties as late time deviations from the exponen-
tial decay law and properties of the energy E(t) = E F(t) of
the system in the quantum false vacuum state. In [27] it was
pointed out the energy of those false vacuum regions which
survived up to T1 and much later differs from E F

0 .
If one wants to generalize the above results obtained on

the basis of quantum mechanics to quantum field theory
one should take into account among others a volume fac-
tors so that survival probabilities per unit volume should be
considered and similarly the energies and the decay rate:
E �→ ρ(E) = E

V0
, Γ0 �→ γ = Γ0

V0
, where V0 = V (t ini t0 ) is

the volume of the considered system at the initial instant t ini t0 ,
when the time evolution starts. The volume V0 is used in these
considerations because the initial unstable state |φ〉 ≡ |0〉F

at t = t ini t0 = 0 is expanded into eigenvectors |E〉 of
H, (where E ∈ σc(H)), and then this expansion is used
to find the density of the energy distribution ω(E) at this
initial instant t ini t0 . Now, if we identify ρde(t ini t0 ) with the
energy E F

0 of the unstable system divided by the volume V0:

ρde(t ini t0 ) ≡ ρ F
0 ≡ ρ

q f t
0

def= ρ0
de = E F

0
V0

and ρbare = Emin
V0

,

(where ρ
q f t
0 is the vacuum energy density calculated using

quantum field theory methods) then it is easy to see that the
mentioned changes E �→ E

V0
and Γ0 �→ Γ0

V0
do not changes

the parameter β:

β = E F
0 − Emin

Γ0
≡ ρ0

de − ρbare

γ0
> 0, (47)

(where γ0 = Γ0/V0, or equivalently, Γ0/V0 ≡ ρ0
de−ρbare

β
).

This means that the relations (20), (35), (37), (40), (42), (43),
(46) can be replaced by corresponding relations for the den-
sities ρde or Λ (see, eg., [28,39,77,78]). Simply, within this
approach E(t) = E F(t) corresponds to the running cosmo-
logical constant Λ(t) and Emin to the Λbare. For example,
we have

κ(t) = E F(t) − Emin

E F
0 − Emin

≡
E F(t)
V0

− Emin
V0

E F
0

V0
− Emin

V0

= ρF (t) − ρbare

ρF
0 − ρbare

= ρde(t) − ρbare

ρ0
de − ρbare

= Λ(t) − Λbare

Λ0 − Λbare
.

(48)

and similarly,

E F(t)

Emin
= Λ(t)

Λbare
,

E F
0

Emin
= Λ0

Λbare
, (49)
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etc. Here ρF (t) = E F(t)
V0

≡ ρde(t), Λ(t) = 8πG
c2 ρde(t), (or

Λ(t) = 8πG ρde(t) in h̄ = c = 1 units), etc. Equivalently,
ρde(t) = c2

8πGΛ(t).
Taking into account these relations and analyzing results

presented in Figs. 1c, 2, 3, 4, 5, 6, 7, 8 and 9 one can conclude
that within the assumed scenario there should be,

Λ(t) � Λ0 � 8πG

c2

Eφ

V0
≡ 8πG

c2

F〈0|H|0〉F

V0
, t ∈ (T0, T1),

(50)

at canonical decay times t < T1. (Here we used the rela-
tion (19) and the property that |Δ(1)

φ | � |Eφ | from which
it follows that in our analysis it is enough to assume that
E F

0 � Eφ , i.e., that E F
0 � F〈0|H|0〉F). In other words there

should be Λ(t) � Λ0 ≡ Λq f t = 8πG
c2 ρ

q f t
de at times t < T1.

Then latter, when time t runs from t = T1 to t = T2 the
quantum effect discussed above forces this Λ(t) � Λ0 to
reduce its value for (t > T2) to the following one:

Λ(t) � Λe f f (t) = Λbare + αΛ
2

t2 + αΛ
4

t4 + · · · � Λ0. (51)

Of course in order to reproduce the current value of Λe f f (t)
from Λq f t within the model considered above one should
find suitable ω(E), maybe more complicated that ωBW (E)

or ωη(E) considered in this paper. Such a scenario means,
similarly to the idea presented by Krauss and Dent [29] and
described in Sec. 1, that the inflation epoch takes during
canonical decay times, T0 < t ≤ T1 when ρde(t) � ρ0

de,
and thus Λ(t) � Λ0, are extremely large, then the post-
inflationary epoch begins. At the beginning of the the post-
inflationary epoch Λ(t) is still very large, but is starting to
decrease. It decreases at times T1 ≤ t < T2 as an oscillatory
modulated exponential function to the value Λe f f (t) given
by Eq. (51). Then, at times t > T2, Λ(t) evolves in time as
Λe f f (t) and tends to Λare as t → ∞.

Einstein’s equations with the Robertson–Walker metric in
the standard form of Friedmann equations [31,79] look as
follows: The first one,

ȧ2(t)

a2(t)
+ kc2

R2
0 a

2(t)
= 8πGN

3
ρ + Λ c2

3
, (52)

and the second one,

ä(t)

a(t)
= − 4πGN

3

(
3p

c2 + ρ

)
+ Λ c2

3
. (53)

where “dot” denotes the derivative with respect to time t ,
ȧ(t) = da(t)

dt , ρ and p are mass (energy) density and pressure
respectively, k denote the curvature signature, and a(t) =
R(t)/R0 is the scale factor, R(t) is the proper distance at
epoch t , R0 = R(t0) is the distance at the reference time t0,
(it can be also interpreted as the radius of the Universe now)
and here t0 denotes the present epoch. The pressure p and the
density ρ are are related to each other through the equation of

state, p = wρ c2, where w is constant [31]. There is w = 0
for a dust, w = 1/3 for a radiation and w = −1 for a vacuum
energy.

Now if the system is in the false vacuum state, |0〉F , then at
canonical decay times, T0 < t < T1, the energy of the system
in this state equals E F(t) = E F

0 ≈ F 〈0|H|0〉F to a very good

approximation and then Λ(t) � Λ0 = 8πG
c2

F〈0|H|0〉F

V0
> 0

is very large. We assume now that the lifetime of the false
vacuum state is much shorter then duration of the inflationary
epoch. In such a situation the vacuum energy dominates.
Therefore in such a case we can ignore the matter density
ρ in Eq. (52). In this situation the behavior of expansion rate
ȧ(t) at times T0 < t < T1 is such that the curvature signature
in Eq. (52) can be always approximated as k ≈ 0 (see, e.g.
[31]) and then Eq. (52) simplifies to

ȧ2(t)

a2(t)
� Λ0 c2

3
, (T0 < t < T1), (54)

The solution of this equation is

a(t2) = a(t1) e
(t2 − t1)

√
Λ0 c2

3 , (t1, t2 ∈ (T0, T1)), (55)

which shows that within the considered scenario the scale
factor a(t) grows exponentially fast at times, T0 < t < T1 as
it should be at the inflationary epoch. So, in these times the
universe considered, that is the universe born in a metastable
false vacuum state behaves like de Sitter universe.

Note that if to use the identity ä(t)
a(t) ≡ R̈(t)

R(t) and replace ä(t)
a(t)

on the left side of Eq. (53) by R̈(t)
R(t) , and then multiply this

equation by the product mp R(t), instead of (53) we get an
equation that looks like Newton’s equation of motion (see,
eg. [31,79]),

mp R̈(t) = −G
mp Mef f

R2(t)
+ mp

Λ c2

3
R(t), (56)

for the point mass mp lying a the sphere with the radius R(t).
Here Mef f = 4π

3 R3(t) (ρ + 3p
c2 ) is the effective total mass

of the sphere of the radius R(t) ≡ a(t) R0, p = wρ. This
equation is completely equivalent to Eq. (53). In order to see
that it is enough to put mp = 1 (or to divide it by mp) and
then to use R(t) = a(t) R0. Analyzing (56) one can see that
the term mp

Λ c2

3 R(t) in this equation plays the same role as
a force in Newton’s equations of motion [79]. And now if

there is Λ > 0 then the force F = mp
Λ c2

3 R(t)
def= Frep is

a repulsive force and grows with increasing a(t), (or R(t) =
a(t) R0), whereas for Λ < 0 the force F = Λ c2

3 R(t) = Fatt
is a force of an attraction [31,79].

Now basing on these properties of Λ we can analyze con-
sequences of the behavior of the energy E(t) = E F(t), and
thus Λ(t), at times T1 < t < T2. From Figs. 1b and 2a one
can see that for times T1 < t < T2 there are such time inter-
vals shorter than (T1, T2), that E F(t) is positive at some of
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them and negative for the others. In general E F(t) is oscil-
latory modulated at this time region by changing its value
smoothly over time from positive to negative and vice versa.
These properties of of E F(t) are reflected in corresponding,
analogous behavior of Λ(t) on these time intervals: Λ(t) is
oscillatory modulated for t ∈ (T1, T2). As a result, acceler-
ation R̈(t) ≡ ä(t) R0 increases or decreases depending on
whether time t runs over the interval with a positive Λ(t) or
a negative Λ(t) and thus the radius R(t) = a(t) R0 of the
sphere increases slower or faster: Simply our hypothetical
sphere under consideration with the radius R(t) is vibrating.
In other words, within the considered scenario the Universe in
the decaying false vacuum state is pulsating for t ∈ (T1, T2).
This means that the Universe (i.e. the sphere with the radius
R(t) = a(t) R0) evolving in time and behaving in this way
should generate gravitational waves in this phase of its time
evolution when time t runs from t = T1 to t = T2. From
the point of view of a today’s observer, there is a chance that
these relic gravitational waves can be recorded and this is
potential observational effect of the scenario analyzed in this
paper.

From Eq. (52), one more conclusion follows: If to consider
the time interval t ∈ (T1, T2) only and insert the oscillatory
modulated Λ(t) into this equation than one can conclude that
the Hubble parameter H(t) = ȧ(t)

a(t) should also be oscillatory
modulated at this time region. So, in general, properties of
E F(t) and thus Λ(t) at times t ∈ (T1, T2) generated by quan-
tum mechanism considered in this paper correspond with
some properties of Early Dark Energy (EDE) or New Early
Dark Energy (NEDE) recently discussed in many papers [80–
85]. The effects predicted by EDE are obtained using the
potential V (Φ) having an oscillating form, which leads to
an energy density ρde(t) having a similar property at early
times. The advantage of the above-described quantum mech-
anism over the EDE or NEDE theories lies in the fact that
this mechanism requires neither additional fields generating
EDE nor oscillating potentials (see [80–85]).

Properties of Λ(t) for times t > T2 are described by Eq.
(51): There is Λ(t) � Λe f f (t) for t > T2, where Λe f f (t) is
defined by Eq (51). Detailed analysis and discussion of this
case can be found in separate papers – see: [36–39,78].

5 Final remarks

The results and conclusions presented in the previous section
were obtained on the basis of the following assumptions: (i)
a transition from the false vacuum state to the true vacuum
state (i.e. the decay of the false vacuum) is the quantum decay
process, (ii) the Universe was born in the false vacuum state,
(iii) the lifetime of the false vacuum state, τF = h̄

ΓF
, (where

ΓF is the decay rate, or decay width, of the false vacuum state
|0〉F ), is shorter than the duration of the inflationary phase

of the evolution of the Universe. The picture of the time
evolution of the Universe discussed in Sect. 4 and resulting
from these assumptions seems to be selfconsistent.

Potentially the effect described and discussed in Sects. 3
and 4 may be considered as a candidate to explain and the
problem of the cosmological constant [31,32,86–88]. Such
a conclusion may be substantiated, for example, by the fol-
lowing analysis: namely, based on the the results presented
in Sect. 3 we can estimate the time needed for the value of
Λ(t) to decrease from the value of Λ0 to a value close to
Λbare. So, let us analyze results presented in Fig. 3d. There
was assumed that Λ0/Λbare = 1020. From Fig. 3d we can
conclude that Λ(T2)/Λbare � 108 and that τ = T1 � 50 and
τ = T2 � 100. Next using Eq. (51) one finds that there is,

Λ(τ)

Λbare
− 1 =

(
T2

τ

)2 [
Λ(T2)

Λbare
− 1

]
, (57)

for τ > T2. Now using the values of T2 and of the ratio
Λ(T2)/Λbare deduced from Fig. 3d one concludes that

Λ(τ)

Λbare
− 1 ≈

(
106

τ

)2

. (58)

This means, e.g. that Λ(τ)/Λbare ≈ 2 for τ ≡ t/τF =
106. Hence, e.g. if τF � 10−36 [s] then the value
Λ0/Λbare = 1020 taken by Λ(τ(t)) for τ < T1 � 50, (in this
case τ = T1 = 50 corresponds to t = 50τF = 5×10−35 [s])
reduces to the value Λ(τ(t))/Λbare ≈ 2 at time t ≈ 106τF =
10−30 [s]. Analogously, if to assume that τF � 10−38 [s]
(see, e.g. [31], Chap. 9) then the value Λ(τ(t))/Λbare ≈ 2
can be reached in t ≈ 10−32 [s]. Analyzing results presented
in Figs. 3 and 4 one can conclude that the degree of reduction
of the energy E(t) (or Λ(t)) does not depend on a the ratio
Λ0/Λbare but on the magnitude of the coefficient β. There-
fore one can expect that for β = 104 (as it is presented in
Fig. 3d, 4) there should be Λ(T1)/Λ(T2) ∼ 1012 for, e.g.,
Λ0/Λbare ∼ 10100 too and T2 ∼ 100τF . In such a case there
is Λ(T2)/Λbare ∼ 1088 and thereafter ratio Λ(τ(t))/Λbare

can reach its value Λ(τ(t))/Λbare � 2 in time t � 108 [s] if
τF � 10−38 [s] and in time t � 1010 [s] if τF � 10−36 [s].
This shows that quantum mechanism discussed in this paper
is very effective. So, one can expect that for a suitable ω(E)

the degree of the reduction of Λ(τ) can be much greater. It
seems to be possible that assuming τF ∼ 10−36 [s] (or of a
similar order) this mechanism would be able to reduce even
the value of Λ0/Λbare ∼ 10120 to the value Λ(τ)/Λbare ∼ 2
no later than at time t ∼ 5 × 105 years.

Similarly it seems that this quantum effect can also help
to explain the H-tension problem [80–84,89,90]. The only
problem is to find a suitable model with the required lifetime,
τF , of the false vacuum state and thus a suitable energy den-
sity distribution ω(E), what requires further studies. Note
that cosmological models with lifetime of the false vacuum
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state even shorter than the Planck time were considered in the
literature (see e.g. [74,75]) but such a lifetime seems to be
too short in order that canonical decay times could coincide
with the inflationary phase.

Some hints concerning values of the basic parameters of
the model we are looking for can be found by analyzing
the results obtained numerically and presented in Sect. 3.
For example, let us analyze the results presented in Fig. 3d.
From the Eq. (47) one finds that ΓF = 1

β
(E F

0 − Emin).

The results presented in Fig. 3d were obtained with the

assumption that β = 104 and E0
Emin

≡ E F
0

Emin
= 1020. Hence

Emin = 10−20 E F
0 ≡ 10−20 E0, and ΓF = Γ0 = 10−4 ×

(1−10−20) E0 � 10−4E0 ≈ 10−4〈φ|H|φ〉.Here the approx-
imation E0 ≈ 〈φ|H|φ〉 was used, which is sufficient in
order to find approximate suitable values of parameters of
the model – see explanations below Eq. (50). This means
that there should be Emin ≈ 10−20 〈φ|H|φ〉, where |φ〉 is
the decaying metastable state. (There is |φ〉 = |0〉F in the
considered case.) Thus, it can be expected that the quantum
field theory model with the Hamiltonian H, in which the fol-
lowing approximate relations will take place, E0 ≈ 〈φ|H|φ〉,
Γ0 ≈ 10−4 〈φ|H|φ〉, and Emin ≈ 10−20 〈φ|H|φ〉, will ade-
quately reflect the process presented in Fig. 3d.

There are observational data that can be used to constrain
possible parameters of the theoretical model that implements
the scenario described in this paper, i.e. the form of the poten-
tial V (Φ) and thus the Lagrangian and the Hamiltonian H,
which we are looking for. Namely, from cosmological obser-
vations we have estimations of the time at which inflationary
process begins and ends. These times can be used to limit
the length of the lifetime, τF , of the false vacuum: The sce-
nario described above can be realized only if the lifetime, τF ,
is comparable to the time at which the inflationary process
begins and it is significantly shorter than the time at which
the inflation ends. Having constraints on the lifetime we have
a constrain on the decay rate ΓF = Γ0 = h̄/τF .

Of course, apart from these conditions, ω(E) resulting
from the properties of such Hamiltonian H must lead to Λ(t)
satisfying the constraints imposed by Eq. (52). Namely the
amplitude |Λ(t)| of possible variations of Λ(t) at times t ∈
(T1, T2) must be such that the condition H2(t) > is satisfied.

One more remark concerning Eqs. (54), (55) resulting
from properties of the energy of very short living metastable
false vacuum and possible connection of them with the infla-
tionary process. From discussion presented in the previous
section it follows that at times t < T1 the energy density

ρF (t) ∼ ρF
0 � F〈0|H|0〉F

V0
can be very large. Using equation

of state p(t) = −ρF (t) c2 one finds that in this epoch, when
t < T1, the pressure p(t) = p = −ρF

0 c2 can take a huge
negative values. As a result which the scale factor a(t) grows
exponentially fast for t < T1, which is reflected in the solu-
tion (55) of Eq. (54). This effect is exactly what is needed

in the inflation process (see, e.g. [31,98,99]). Next, at times
t ∈ (T1, T2) the density ρF (t) has an oscillatory form and it is
still large but decreases to the values ρF (t)−ρbare ∼ α

ρ
2 /t2

for times t > T2. This means that the scale factor a(t) con-
tinues to rise rapidly, but slower and slower when time t runs
form t = T1 to t = T2 and the time t = T2 can be con-
sidered as the end of the rapid expansion process. So, there
is potential possibility that this effect can drive the inflation
process. Concluding: If the lifetime, τF , is suitably small
then potentially contribution of this effect into the inflation
process can be significant or even it can be responsible for
this process. The answer to the question whether it is so and
what problems this mechanism solves depends on finding
the appropriate potential V (Φ) and thus the Hamiltonian H,
which requires further researches.

Details concerning the case ρF (t) − ρbare ∼ α
ρ
2 /t2 can

be found in [36–39].
Some time one may ask if a transition from the metastable

false vacuum state to the true vacuum state, i.e. to the state
corresponding with to the absolute minimum of the energy
of the system considered, which is realized as a quantum tun-
neling process, can be correctly described within the Fock–
Krylov theory of quantum decays. The answer is yes, it can
be. In general within the quantum theory the quantum tunnel-
ing is used to model some quantum decay processes, e.g. the
process of α-decay (see, e.g. [3]), and these decay processes
can be also described using the Fock–Krylov theory (see e.g.
[60,91–95]). Strictly speaking in the case of the quantum
tunneling used to model the quantum decay process the sur-
vival probability can be also expressed in the form of the
Fourier transform as it was done in Eq. (5). This means that
the general formalism based on the Fock–Krylov theory is
fully suitable for describing the properties of a decaying false
vacuum and a running dark energy. This is why the Fock–
Krylov theory was used by Krauss and Dent to analyze late
time behavior of false vacuum decay [29,30], which papers
were an inspiration for our studies.

It should be emphasized here that the conclusions resulting
from the formalism used in this paper apply not only to the
quantum metastable state of the system prepared at the initial
moment at the local minimum of the potential V (Φ), but also
to other types of metastable false vacuum states, e.g. false
vacuum states considered in [98,99].

Cosmological model with running Λ having the form
Λ = Λ(t) = Λe f f (t), where Λe f f (t) is given by Eq. (51),
was discussed in details in [39], where it was shown that this
Λe f f (t) should approximate well Λ(t) for times t > T2. (In
[39] the time T2 is denoted as Tq−c, and, among others, dif-
ferent time scales in the process of decaying metastable dark
energy are discussed). It is also shown in [39] that the good
approximation of Eq. (51) valid for times t > T2 is to replace
the cosmological time t in it with the Hubble cosmological
scale time tH = 1

H . As the result, instead of (51) one gets
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Λ(t)=Λ(H(t))�Λbare+α2 (H(t))2+α4 (H(t))4+· · · ,

(59)

that is exactly the parameterization considered in [96,97] and
in many papers of these and other authors.

Generally, cosmological models with decaying (or run-
ning) Λ = Λ(t) were considered by many authors (see e.g.
[100] and references therein, [101–106], and also [79]) but
the use of the decaying Λ(t) by them was not motivated by
the properties of the false vacuum as a quantum unstable
state. The advantage of the method used in this paper on
other methods is that we do not assume the form of running
Λ(t), but we derive properties of Λ(t) and its form, e.g. like
Λe f (t) for t > T2, from the basic assumptions of quantum
theory using the assumption that the transition from a false
vacuum to a true vacuum is the quantum decay process.
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