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Abstract Using an integral definition given in Hernández-
Pastora et al. (Class Quantum Gravity 33:225009, 2016) to
calculate the relativistic multipole moments (RMM), and the
ensuing generalized relativistic Gauss theorem, we prove that
the evaluation of that volume integral in Erez–Rosen coor-
dinates, leads to a specific link between the RMM and the
source of the exterior space–time, provided we have a global
static axisymmetric metric in that coordinate system for any
Weyl exterior field. This result allows to establish a relation-
ship between the RMM and certain volume integral expres-
sions involving the material content of the source from its
energy–momentum tensor as well as the interior metric. In
particular the relativistic quadrupole moment for the Erez–
Rosen space–time is obtained.

1 Introduction

Starting from an interior metric of a known relativistic
source, the gravitational field of that source is unique, and
is described by a solution of the vacuum Einstein equations,
which matches satisfactorily on the boundary that delimits
the compact gravitational object. By studying such outer met-
ric it is possible to obtain information about the source, and
this is something to which many research papers have been
devoted. In particular, one technique that has proved very
useful is to use the RMM to describe the field or its gravita-
tional effects on test particles in the presence of such fields.
Thus, for example, we were able to distinguish sources by
studying gyroscopic precession [1–3], geodesics [4], as well
as the study of circular orbits and ISCOs [5,6], or gravita-
tional radiation [7] or collapse processes [8], or even to obtain
vacuum solutions with a prescribed set of RMM [9].

On the contrary, if one has at the beginning a known vac-
uum solution and tries to determine the source, one finds that
there are an infinite number of possible interior metrics and
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distributions of different matter matching with that exterior.
What has been attempted in many lines of research is to try
to relate the RMM, which were so useful in describing the
external gravitational field, to the source [10]. In this line of
work a recent result was obtained in [11,12] where interior
metrics are computed and properly matched for any of the
external Weyl metrics (vacuum solutions with static and axial
symmetries) [13–16] as well as stationary axial (in particular
Kerr). The relevance of the result is enhanced by the fact that
the inner line element is constructed in terms of the external
metric functions evaluated on the boundary, so that we relate
the interior of the source (as well as its momentum energy
tensor by means of the Einstein equations) to the gravitational
field.

The question arising here is: whom actually do the RMM
belong to? Do they belong to the exterior or interior metric?.
The answer to that question is clear: RMM are quantities
belonging to the global solution at the whole space–time, in
such a way that every interior solution appropriately matched
with a vacuum solution automatically assume those RMM.
Arguments and specific calculations to prove this assert will
be done in the next sections. The fact is that the RMM have
been definined in the literature [17–20], by means of the
exterior metric (Geroch, Hansen, Fodor–Hoenselaers–Perjes
method, Thorne...) as well as the result obtained in [21]. A
relationship between those quantities and the material con-
tent of the source would provide the RMM with interesting
physical meaning.

In a recent paper a relativistic generalized Gauss theo-
rem (RGGT) [21] was presented which allows to calculate
the RMM defined by Geroch [17] and Thorne [18], through a
specific integral definition trying to generalize the newtonian
scenario for that quantities in terms of the source. Such a cal-
culation is possible if we know the expression in harmonic
coordinates of the metric at infinity, and then the volume inte-
gral defining the RMM can be calculated, using the RGGT,
as an integral over the surface at infinity.
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The aim of this paper is to use that volume integral, which
can be explicitly calculated once we know the interior met-
ric matching the vacuum Weyl family of solutions, to link
the RMM to the source of the exterior field (to the energy–
momentum components as well as the interior metric). Doing
so we will be able to connect the RMM that characterize the
space–time with physical properties of the source by means
of specific integral expressions inside the boundary of the
compact object. Although very different in its presentation,
this program is somehow similar to the one presented in [22].

To achieve our goal we shall extensively use a general
method to construct global static axially symmetric solutions
to Einstein equations deployed in [11]. A very brief rewiew
of this method is presented in the next section, all the details
may be found in that reference.

Section 3 is devoted to explicitely calculate the integral
definition of RMM both in its volume or surface integral ver-
sion, providing so a prove of the relativistic Gauss theorem.
The result obtained previously is use in Sect. 4 to establish a
relationship between RMM and the source, and some exam-
ples are outlined in Sect. 5.

2 The global static and axisymmetric metric in
Erez–Rosen coordinates

We shall write the global static and axisymmetric line element
in Erez–Rosen coordinates [23] as:

ds2 = −e2σdt2 + e2νdr2 + e2ηr2dθ2 + e−2μr2 sin2 θdϕ2,

(1)

where the metric functions depend on r and θ , and are defined
as follows

e2σ =
{
e2â Z2, r ≤ rΣ
e2ψ, r ≥ rΣ

, e2ν =
{

e2ĝ−2â

A , r ≤ rΣ
e−2ψ+2γ̂ , r ≥ rΣ

e2η =
{

e2ĝ−2â, r ≤ rΣ
e−2ψ̂+2γ̂ , r ≥ rΣ

, e−2μ =
{

e−2â, r ≤ rΣ
e−2ψ̂ , r ≥ rΣ

where the boundary surface of the source is defined by
a constant value rΣ of the radial coordinate, r = rΣ .
A ≡ 1 − 2Mr2

r3
Σ

, and Z = 3
2 A(rΣ) − 1

2 A, M being the mass.

γ̂ ≡ γ −γs , ψ̂ ≡ ψ−ψs , whereψ ,γ are any metric functions
of the Weyl family of vacuum solutions, γs , ψs being the cor-
responding metric functions of the Schwarzschild solution.
â, ĝ are functions in the variables (r, θ) suitable constructed
in [11] in order to guarantee a good physical behaviour of
the energy–momentum tensor and the matching (Darmois)
conditions.

That function â = a − as is constructed in such a way that
a(rΣ) = ψ(rΣ), as(rΣ) = ψs(rΣ), also ĝ = g − gs is such
that g(rΣ) = γ (rΣ), gs(rΣ) = γs(rΣ).

The general solution for the exterior metric function is
(Weyl family) [13], [16]

ψ =
∞∑
n=0

(−1)n+1qnQn(x)Pn(y), (2)

where Pn(cos θ) are Legendre Polynomials, Qn(x) (with x ≡
(r − M)/M) are Legendre functions of second kind and qn
a set of arbitrary constants. The relationship between the
canonical Weyl coordinates {R, ω = cos Θ} and the Erez-
Rosen {r, y = cos θ} system of coordinates is as follows

R =
√

(r − M)2 − M2(1 − y2),

ω = y
(r − M)

R
. (3)

In addition, to assure a good behaviour of the physical
variables at the center of the inner distribution we shall
demand (the field equations have been used): â′

0 = â,θ0 =
â,θθ0 = â′

,θ0 = â′
,θθ0 = 0, ĝ′

0 = ĝ,θ0 = ĝ,θθ0 = ĝ′
,θ0 =

ĝ′
,θθ0 = 0, ĝ′′

0 = ĝ′′
,θ0 = 0, where prime denotes derivative

with respect to r , and the subscript θ denotes derivative with
respect to θ , and the subscript 0 indicates that the quantity
is evaluated at the center of the distribution. With all these
considerations we get for the metric functions the following
expressions [11]:

â(r, θ) = ψ̂Σ s2(3 − 2s) + rΣψ̂ ′
Σ s2(s − 1) + F,

ĝ(r, θ) = Γ̂Σ s3(4 − 3s) + rΣΓ̂ ′
Σ s3(s − 1) + G. (4)

with s ≡ r/rΣ ∈ [0, 1] and F ≡ (r − rΣ)2F(r, θ),
G ≡ (r −rΣ)2G(r, θ) arbitrary functions with the following
constraints: F(0, θ) = F ′(0, θ) = 0, G(0, θ) = G ′(0, θ) =
G ′′(0, θ) = 0.

These metric functions, satisfy the junction conditions and
produce physical variables which are regular within the fluid
distribution. Furthermore the vanishing of ĝ on the axis of
symmetry, as required by the regularity conditions, necessary
to ensure elementary flatness in the vicinity of the axis of
symmetry, and in particular at the center, is assured by the
fact that Γ̂Σ and Γ̂ ′

Σ vanish on the axis of symmetry.
Even more, at this level of generality we can assure that the

junction conditions imply the vanishing of the radial pressure
(Prr ≡ grr T 1

1 )Σ = 0 at the boundary, and it can be shown
that T 2

1 vanishes on the boundary surface as well [11].
When â = ĝ = 0 we recover the spherical case of a

perfect fluid with isotropic pressures:

ds2
I = −Z(r)2dt2 + 1

A(r)
dr2 + r2(dθ2 + sin2 θdϕ2),

ds2
E = −

(
1 − 2M

r

)
dt2 + dr2

1 − 2M
r

+ r2(dθ2 + sin2 θdϕ2).(5)
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Thus, the global line element (1) describes in the vacuum
any solution of the Weyl family (ψ, γ ) and a good behaved
interior solution with an isotropic perfect fluid limit when
matching with Schwarzschild space–time.

In [11] the case F = G = 0 was studied for some exam-
ples, in particular the resulting sources for the exterior field
of the MQ1 [9] and Zipoy–Vorhees [24,25] solutions.

Now, the point is that, for any exterior gravitational field
an infinite number of sources exist. Accordingly the obvious
question arises: how can we relate the possible sources of a
given exterior solution belonging to the Weyl family with the
multipole structure of the latter? In what follows we shall
see how to answer to the above question by using the RGGT
and the definition of RMM given in [21].

3 The integral definition of RMM

A definition of multipole moments was introduced in [21]
for axially symmetric space–times by means of the following
integral

In = 1

4π

∫
V

[
Hn�̂ξ − ξ�̂(Hn)

]√
ĝd3x, (6)

where the volume of integration must be extended to the
whole space, and the following notation is used:

Hn ≡ (2n − 1)!!
n! xi1i2..in ei1i2..in , ξ ≡ √−g00, (7)

where ei1i2..in ≡ (ei1ei2 ...ein )T F with ek being the unit vector
along the positive direction of the symmetry axis, and T F
denoting its trace free part. The Laplacian operator is denoted

by �̂ ≡ 1√
ĝ
∂k

(√
ĝĝk j∂ j

)
, and ĝ is the determinant of the

three-dimensional metric.
Now, the crucial point here is that the integrand in (6) is a

divergence (see [21] for details)[
Hn�̂ξ − ξ�̂(Hn)

]√
ĝ = ∂k

[√
ĝ
(
Hnĝ

k j∂ j ξ − ξ ĝk j∂ j Hn

)]
,

(8)

and accordingly, that integral can be evaluated either as a
volume integral (6), or as a surface integral:

In = 1

4π

∫
∂V

[
Hnĝ

k j∂ jξ − ξ ĝk j∂ j Hn

]
dσk, (9)

∂V being the boundary and dσk its corresponding surface
element.

Two comments are in order at this point:

– In the weak field limit limit �̂ ∼ � f (where � f

denotes the Laplacian in flat space–time) and Hn =

Rn Pn(ω), and hence the second term in (6) vanishes since
� f

[
Rn Pn(ω)

] = 0. Furthermore, in the same weak field
limit e� ∼ 1+�, � being the Newtonian potential which
verifies the Poisson equation � f � = ρ, and therefore
Eq. (6) turns out to be the classical newtonian moments

In = MN
n = 1

4π

∫
V
Rn Pnρ dV . (10)

– As it was shown in [21] these integrals calculated in
harmonic coordinates through the surface integral (9)
recover the RMM defined by Geroch (up to a known
specific factor).

3.1 Calculation of the surface integral

We shall now proceed to evaluate the integral expression (6)
by means of the surface integral (9). First we need to calculate
Hn , and we obtain:

Hn = (r − M)2k P2k(y)

+
k−1∑
i=0

(r − M)2i
[
−M2(1 − y2)

]k−i
Q(k)

2i (y), (11)

Q(k)
2i (y) =

i∑
j=0

L2k,2 j

(
k − j

k − j − i

)
y2 j , (12)

where n = 2k (only even order index has been taken since
the Weyl solutions used to be considered posses equatorial
symmetry), and L2k,2 j denotes the coefficient of the Legen-
dre polynomial P2k(x) corresponding to the monomial x2 j ,
i.e. P2k(x) = ∑k

j=0 L2k,2 j x2 j .

Similar expression for the odd index can be obtained. In
fact, we have that H2n becomes the product R2n P2n(ω) writ-
ten in Erez–Rosen coordinates, which according to (3) is

H2n = (
(r − M)2 − M2(1 − y2)

)n
P2n

(
(r−M)y

R

)
.

It is easy to see that the surface integral (9) leads to the
following flux evaluated at the infinity surface F∞

n (ψ ′) since
the integration is done over all the space,

Fn(ψ
′) = 1

2

∫ 1

−1
r(r − 2M)

(
ψ ′Hn(r) − H ′

n(r)
)
dy , (13)

which may be reduced to

Fn(ψ
′) = 1

2

∫ 1

−1
r(r − 2M)ψ ′Hn(r)dy , (14)

since the following integration in the variable y vanishes for
any value of the radial coordinate:

∫ 1

−1
H ′
n(r)dy = 0. (15)
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This integral (14) can be explicitely calculated by tak-
ing into account that the exterior metric function ψ (with
equatorial symmetry) looks like (see equation (2)) a series
in the Erez–Rosen family of solutions [14,15] and then
ψ̂ ′ = − 1

M

∑∞
k>0 q2k∂x Q2k(x)P2k(y), and the following

relations hold (where x = r
m − 1 is used):

∫ 1

−1
H2n P2k(y)dy =

{
2N2n,2k P2k(x) , k ≤ n

0 , k > n,

with N2n,2k = (2n)!M2n

((2n+2k+1)!!(2n−2k)!! .
Hence, equation (14) evaluated at infinity F∞

n (ψ ′)
becomes

F∞
n (ψ ′) = −asn

− 1

M

[
r(r − 2M)

n∑
k>1

q2k N2n,2k∂x Q2k(x)P2k(x)

]

r∞

.

(16)

The limit at the radial infinity of the above equation for such
term in the index k leads to a factor − 2k+1

4k+1 , and so we finally
obtain

F∞
n (ψ ′) = −asn +

n∑
k>1

q2k N2k(2n)
2k + 1

4k + 1
. (17)

Hence we conclude that the definition of RMM (6) is coor-
dinate dependent since the use of harmonic coordinates for
the calculation of that integral in [21] leads to the RMM
of Geroch–Hansen, instead of certain combination of Weyl
moments (an or the corresponding qn of the Erez–Rosen rep-
resentation) that we obtain when the calculation of equation
(6) is performed in Erez–Rosen coordinates.

Nevertheless, this result allows us to relate the RMM with
volume integrals over the source involving the matter distri-
bution and the interior metric as well, by means of the Gauss
theorem and the knowledge of the coeficients an and qn in
terms of the RMM [9]. We address this aim to the Sect. 4,
and now calculate for completeness the volume integral (6).

3.2 Calculation of the volume integral

In order to show that the Gauss theorem is perfectly satisfied,
we proceed now to evaluate the volume integral (6) with the
global metric (1).

The integral (6) for the volume extended from the bound-
ary to the infinity, I En , is

I En =
∫ ∞

rΣ

r2

2
dr
∫ 1

−1
dy

{
ψ,θ Hn,θ

r2 − Hn,θ

r2

cos θ

sin θ

− Hn,θθ

r2 −
(
r − 2M

r

)[(
−ψ ′ + 2(r − M)

r(r − 2M)

)
H ′
n + H ′′

n

]

+ Hn

[(
ψ ′′+ 2(r−M)ψ ′

r(r−2M)

)
r−2M

r
+ ψ,θθ

r2 + ψ,θ

r2

cos θ

sin θ

]}

(18)

whereas for the interior volume, I In , we have

I In = 1

2

∫ rΣ

0
r2dr

∫ 1

−1
dy

{
Hn

[
3M

r3
Σ

− A′â′

4

+ Z

⎛
⎝2â′(1 − 3Mr2

r3
Σ

)

r
√
A

+ â′′√A
â,θθ + â,θ

cos θ
sin θ

r2
√
A

⎞
⎠
⎤
⎦

− Z

⎡
⎣
⎛
⎝−â′√A +

2(1 − 3Mr2

r3
Σ

)

r
√
A

⎞
⎠ H ′

n + √
AH ′′

n

+Hn,θθ + Hn,θ
cos θ
sin θ

r2
√
A

− â,θ

r2

Hn,θ√
A

]}
, (19)

where A and Z are the previously defined functions only
depending on the radial coordinate which are involved in the
interior line element (1).

Since ψ is solution of the vacuum field equations, we may
write

�ψ ≡
[
ψ ′′ + 2(r − M)ψ ′

r(r − 2M)

]
r − 2M

r
+ ψ,θθ

r2 + ψ,θ

r2

cos θ

sin θ
= 0,

(20)

also Hn,θθ + Hn,θ
cos θ
sin θ

= (1 − y2)∂yy Hn − 2y∂y Hn ==
∂y
[
(1 − y2)∂y Hn

]
, and

∫ 1

−1
H ′
ndy =

∫ 1

−1
H ′′
n dy = 0. (21)

Using the above expressions, the integrals I In and I En may be
simplified further as follows

I En = 1

2

∫ ∞
rΣ

r2dr
∫ 1

−1
dy

[
ψ̂,θ

Hn,θ

r2 +
(
r − 2M

r

)
ψ̂ ′H ′

n

]
,

(22)

and

I In = 1

2

∫ rΣ

0
r2dr

∫ 1

−1
dyHn

[
3M

r3
Σ

− A′â′
4

]

+
∫ rΣ

0

r2

2
dr

Z√
A

∫ 1

−1
dy

{
Hn

[
â′′A + â′

(
2

r
− 6Mr

r3
Σ

)]

+ â′AH ′
n
}

+1

2

∫ rΣ

0
dr

Z√
A

∫ 1

−1
dy
{
Hn∂y

[
(1 − y2)∂y â

]

+(1 − y2)∂y â∂y Hn

}
. (23)
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Next, notice that the last term of Eq. (23) vanishes after
integration in the variable y, since
∫ 1

−1
dy
[
Hn∂y

[
(1 − y2)∂yâ

]
+ (1 − y2)∂yâ∂y Hn

]

= Hn(1 − y2)∂yâ |1−1 = 0. (24)

The second term of Eq. (23) can be integrated with respect
to the radial coordinate. The integration for those terms with
a factor Hn produces∫ rΣ

0
dr
(
â′C1 + â′′C2

) = (
â′C2

)|rΣ0 −
∫ rΣ

0
â′ α dr

= ψ̂ ′
ΣC2(rΣ) −

∫ rΣ

0
â′ α dr, (25)

where C1 ≡ Z√
A
r2Hn

(
2
r − 6Mr

r3
Σ

)
, α ≡ −C1 + C ′

2 and

C2 ≡ Z√
A
r2Hn

(
1 − 2Mr2

r3
Σ

)

In the above the matching conditions â(rΣ) = ψ̂(rΣ),
â′(rΣ) = ψ̂ ′(rΣ), as well as the assumed behaviour at the
center â0 = â′

0 = 0, have been taken into account. Also, the

evaluation of α produces α = HnM
r3

r3
Σ

+ H ′
n

Z√
A
r2A.

Using all these expresions, the integral for the interior
volume finally reduces to

I In = 1

2

∫ rΣ

0
r2dr

∫ 1

−1
dyHn

[
3M

r3
Σ

]
+1

2

∫ 1

−1
dy ψ̂ ′

ΣC2(rΣ).

(26)

By comparing Eq. (26) with the flux (14) evaluated at the
boundary surface FΣ

n (ψ ′) we conclude that they are equal
since C2(rΣ) = rΣ(rΣ − 2M)Hn(rΣ) and the first term in
Eq. (26) is

1

2

∫ rΣ

0
r2dr

∫ 1

−1
dyHn

[
3M

r3
Σ

]
= Mn+1

n + 1
= −asn, (27)

where asn are the Weyl coefficients of Schwarzschild, and
ψ ′

Σ = ψ ′s
Σ + ψ̂ ′

Σ = M
rΣ(rΣ−2M)

+ ψ̂ ′
Σ and hence the Eq. (14)

evaluated at the boundary surface is equivalent to

FΣ
n (ψ ′) = 1

2

∫ 1

−1
rΣ(rΣ − 2M)ψ ′

Σ Hn(rΣ)dy

= −asn + 1

2

∫ 1

−1
rΣ(rΣ − 2M)ψ̂ ′

Σ Hn(rΣ)dy, (28)

that is to say, the integral extended to the interior volume
I In recovers the flux through the boundary FΣ

n (ψ ′). Thus we
have verified (as expected) that the volume integral extended
to the interior volume delimited by the boundary equals the
flux integral through that surface.

Next, let us calculate the volume integral at the exterior
of the source I En . To do so, the second term of Eq. (22) can
be integrated in the radial variable leading to

1

2

∫ 1

−1
[BHn]r∞dy − 1

2

∫ 1

−1
r2
Σ AΣψ̂ ′

Σ Hn(Σ)dy

−1

2

∫ ∞

rΣ
dr B ′

∫ 1

−1
Hndy, (29)

with B ≡ r(r − 2M)ψ̂ ′, and [BHn]r∞ denoting the value
of that function over the surface at infinity, whereas the first
term of Eq. (22) can be integrated in the angular variable
producing

−1

2

∫ ∞

rΣ
dr
∫ 1

−1
Hn∂y[(1 − y2)ψ̂y]dy, (30)

Hence, the sum of Eqs. (29) and (30) leads to the following
expression for the exterior volume integration

I En = 1

2

∫ 1

−1
[BHn]r∞dy − 1

2

∫ 1

−1
r2
Σ AΣψ̂ ′

Σ Hn(Σ)dy

≡ F∞
n (ψ ′) − FΣ

n (ψ ′), (31)

since ψ̂ being a solution of the exterior field equations, veri-
fies �ψ̂ = 0, and the contribution of the Schwarzschild term
ψ ′s in the flux is asn whatever the surface of integration is
considered.

Therefore, the definition of RMM (6), evaluated as a vol-
ume integral, corresponding to the sum of the quantities I In
and I En leads to the surface integral F∞

n (ψ ′) at the spatial
infinity, which is the result obtained if one performs the def-
inition (6) as a surface integral.

The following remarks are in order at this point:

– This result is true for any interior metric function â (with
the only constraints derived from the matching conditions
and the well-behaviour at the center). Hence the matching
conditions arise as the necessary and suficient condition
to hold the equivalence between both kinds of integrals
(Gauss theorem).

– For any source whose interior metric matches appropri-
ately with a specific Weyl solution at the exterior, the
RMM are the same in all the cases, and they are the ones
corresponding to that Weyl solution. Whatever the mat-
ter distribution of the source be, the RMM are the same
ones, since they are determined by the exterior metric to
which it is matched.

– It seems to be that the RMM are exclusively related to
the gravitational exterior field, but in fact that is a result
due to the intrinsic characteristic of the own definition (6)
and its equivalence between volume or surface integral
(8), (9).
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– Therefore, the definition cannot be used to constrain the
interior solution (the source), since this volume integral
(6) used to calculate the RMM aparently exclude from
the integration the source of the gravitational field. How-
ever the flux throuhg the boundary surface contains infor-
mation both from the source and the gravitational field
whose RMM are known. This fact will allows us to link
the RMM and the source.
As it is known in Newtonian gravity (NG) we can cal-
culate the NMM of a source from its matter distribution
by means of a volume integral (10) and the gravitational
exterior field is characterized by those NMM which are
fully determined by the physics of the source. Whereas
that identification in NG is forthright is not the case for
GR, but nevertheless it is possible to connect the RMM
with some volume integrals involving the matter distri-
bution and the interior metric, as we shall see in what
follows:

4 The relationship between RMM and the source

In an attempt to relate the matter distribution of the source
with the RMM, we keep in mind that the Einstein equations
connect the metric with the energy–momentum tensor, and
we have linked the interior metric functions with the exterior
ones as clearly exhibited in (4). Thereferore, we can recal-
culate the integral definition used [21] at the same time that
we introduce the matter distribution of the source into those
integrals by means of the so-called Tolman density

ρT ≡ √−g00

(
−T 0

0 + T i
i

)
, (32)

since we know [11,21] that �̂√−g00 = 4πρT .
With this consideration, Eq. (6) becomes

In =
∫
V
HnρT

√
ĝd3x − 1

4π

∫
V

ξ∂k

(√
ĝĝk j∂ j Hn

)
d3x

≡ Tn + Sn, (33)

where Tn = ∫
V HnρT

√
ĝd3x denotes the part of the integral

involving the Tolman density (content material of the dis-

tribution), and Sn = − 1
4π

∫
V ξ∂k

(√
ĝĝk j∂ j Hn

)
d3x holds

with the other part of the integral.
This expression (33) used to define the RMM generalizes

the definition of the Tolman mass [26] (Monopole M0),or
Komar [27] moments, since H0 = 1 and the second term Sn
vanishes for that case. The volume integrals in (33) must be
calculated, as we said above, extended to the whole space,
but in the first term of this expression Tn we can limit our-
self to the interior of the source since the energy momentum
tensor in vacuum vanishes (assuming vanishing electromag-
natic field). Equivalently this point is in agreement with the

fact that
∫
V Hn�̂ξ

√
ĝd3x = 0 at the outside of the source

from Eqs. (18) and (20).
As we prove above (31)

I En ≡ T E
n + SEn = SEn = F∞

n (ψ ′) − FΣ
n (ψ ′) (34)

where superscript E denotes exterior volume. Since the eval-
uation of the integral In over the whole space leads to the flux
at infinity F∞

n (ψ ′), then

F∞
n (ψ ′) = I In + F∞

n (ψ ′) − FΣ
n (ψ ′), (35)

where the superscipt I denotes interior volume. Conse-
quently we obtain the following relation

T I
n = Tn = −SIn + FΣ

n (ψ ′) (36)

which is just the conclusion obtained from Eqs. (26)–(28).
The flux over the boundary surface FΣ

n (ψ ′) can be
obtained from (16) as follows

FΣ
n (ψ ′) = −asn

−τ(rΣ − 2M)

[
n∑

k>1

q2k N2n,2k∂x Q2k(x)P2k(x)

]

x=τ−1

.

(37)

τ ≡ rΣ
M being the compactness factor of the source. There-

fore, the flux provides over the surface rΣ information about
the RMM since we know the coeficients q2k in terms of the
Weyl coeficients an [9], and these ones in terms of the RMM
[28]:

q0 = 1, q2 = 15

2

M2

M3 , q4 = 45

4

M2

M3 + 315

8

M4

M5
, . . .

(38)

Hence the Eq. (36) allows us to write each RMM in terms
of two kind of volume integrals one of them Tn involving the
matter distribution by means of the Tolman density and the
other one SIn bringing in the interior metric to the evaluation.
The first RMM can be obtained as follows:

M0 = T0 + SI0

M2 = −1

τ(τ − 2)β2(τ )

[
−M3

3
+ T2 + SI2

]

M4 =
2M2

(
1 + 12β2(τ )

β4(τ )

)
7τ(τ − 2)β2(τ )

[
−M3

3
+ T2 + SI2

]

− 4

τ(τ − 2)β4(τ )

[
−M5

5
+ T4 + SI4

]
(39)
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where the following notation has been used:

βn(τ ) ≡ [Pn(x)∂x Qn(x)]x=τ−1 , (40)

Pn(x) and Qn(x) being the Legendre polynomials and the
Legendre polynomials of second kind respectively.

In the classical gravitational analogy the multipole
momentum is obtained only as an integral over the source
because we do not have in newtonian gravityy an interior
metric. As already seen in [11] the integral T0 gives the mass
for any source properly attached to a Weyl exterior, while SI0
is identically zero since H0 = 1.

These expressions can be understood in two alternative
ways: a qualitative one in which the formulas (39) should be
read in the sense of explaining in what way the source partici-
pates in the definition of each RMM, or which characteristics
of the source (its density, anisotropic pressure, and the inte-
rior metric itself) contribute to the construction of the RMM.
We assume that such moments are already known from any
of the historically defined calculation methods by means of
the exterior metric.

Alternatively, the explicit knowledge of the inner metric
allows to calculate the RMM in terms of the physical char-
acteristics of the source. Evidently the energy–momentum
tensor is related through the Einstein equations to the inner
metric so that this distinction between the two types of inte-
grals Tn and SIn is formal, although significant as we will
see in the next section. This quantitative point of view of the
formulae (39) provide us with an explicit calculation of the
RMM using the source itself rather than the exterior metric.

5 Some examples

5.1 The global model for any Weyl solution

The Eq. (39) is still general for any source appropriately
matched to any Weyl exterior solution, since the flux which
generates the combinations of RMM was calculated with
the vacuum solution. Now we compute the volume integral
expresions Tn and SIn with a global model metric including
all the admissible sources for any axially symmetric vacuum
gravitational field in the Weyl gauge [11]. It is easy to see
from (23) that the integrals SIn result to be (VI denotes the
volume limited by the boundary surface of the source)

SIn ≡ − 1

4π

∫
VI

ξ∂k

(√
ĝĝk j ∂ j Hn

)
d3x

= 1

2

∫ rΣ

0
r2dr

∫ 1

−1
dy

Z√
A

[
â′AH ′

n + (1 − y2)

r2 ∂y â∂y Hn

]

(41)

With respect to the volume integral Tn involving the Tol-
man density ρT we have that

Tn ≡
∫
V
HnρT

√
ĝd3x

= 2π

∫ rΣ

0
r2dr

∫ 1

−1
dy

Z√
A
Hn

[
(μ + 3P) − E

8π

]
(42)

where we have used the following notation for the energy
momentum tensor (see [11] for details1):

− T 0
0 = κ

(
8πμ + p̂zz − E

)
,

T 1
1 = κ

(
8π P − p̂xx

)
,

T 2
2 = κ

(
8π P + p̂xx

)
,

T 3
3 = κ

(
8π P − p̂zz

)
,

T 2
1 = − κ

r2 p̂xy, κ ≡ e2â−2ĝ

8π
(43)

with

E = −2�â + (1 − A)

[
2
â′
r

9
√
AΣ − 4

√
A

3
√
AΣ − √

A
+ 2â′′

]
,

�â = â′′ + 2
â′
r

+ â,θθ

r2 + â,θ

r2
cos θ

sin θ
,

p̂xx = − â2
,θ

r2 − ĝ′
r

+ â′2 + ĝ,θ

r2
cos θ

sin θ

+(1 − A)

[
2
â′
r

√
A

3
√
AΣ − √

A
− â′2 + ĝ′

r

3
√
AΣ − 2

√
A

3
√
AΣ − √

A

]
,

p̂zz = − â2
,θ

r2 − ĝ′
r

− â′2 − ĝ,θθ

r2 − ĝ′′

+(1 − A)

[
−2

â′
r

√
A

3
√
AΣ − √

A
+ â′2 + 2

ĝ′
r

+ ĝ′′
]

,

p̂xy = 2â,θ â
′ − ĝ′ cos(θ)

sin(θ)
− ĝ,θ

r
+ (1 − A)(2â,θ − ĝ,θ )

r
√
A(3

√
AΣ − √

A)
(44)

where μ and P are the homogeneous and isotropic density
and pressure respectively:

P = μ

( √
A − √

AΣ

3
√
AΣ − √

A

)
(45)

If we rewrite the above expression (42) in terms of the
physcial parameters of the source we have that

Tn = Mn+1

n + 1
− 1

4

∫ rΣ

0
r2dr

∫ 1

−1
dy

μ

μ + 3P
HnE (46)

1 Please take into account a missprint in that paper for the expression
of E and p̂zz , as well as in the formula (24) in that paper derived from
the previous mistaken formulae: the second derivative of the function ĝ
with respect to the variable s must contain a forgotten factor A. Same
missprints are reproduced in [12]. The calculations and conclusions
derived in both papers are still appropriated and right, since it is a matter
of a missprint in the edition of the latex version.
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where

E = −2

(
1 − 8

3
πr2μ

)
â′′ − 4̂a′

r

(
1 − 2

3
πr2(5μ − 3P)

)

− 2

r2 ∂y

[
(1 − y2)∂yâ

]
(47)

In [10] (see for details therein) the physical characteristic
of the source arising from the energy–momentum tensor are
expressed in terms of the following pressures and anistropies

Tm ≡ T 1
1 +T 2

2
2 ,Π31,Π23,Πxy = −Tm

8π Pr2 p̂xy with the nota-

tion Πi j ≡ T i
i − T j

j and the interior metric functions are

related as follows ĝ = â − 1
2 ln

(
Tm
P

)
Hence, the contributions of the integrals Tn to the RMM

are due to the inhomogneity of the density along with the
pressure Tm .

5.2 Sources of Schwarzschild space–time

When the particular spherical case is regarded, both the
isotropic or anisotropic spherical sources of Schwarzschild
vacuum solution lead to the following metric function

â = 1

2
ln

(
Tm
P

)
(48)

since ĝ = 0, Πxy = 0, and the unique non vanishing
anistropic pressure is Π31 = Tm

4π P p̂xx since p̂xx = − p̂zz .
(A) Now, on the one hand the isotropic perfect fluid sub-

case requires p̂xx = 0 leading to T 1
1 = T 2

2 = T 3
3 The only

possible solution satisfying at the same time the junction con-
ditions, is â = 0 and therefore we get the vanishing of the
anisotropy Π31 = 0 as well as the isotropic perfect fluid limit
Tm = P .

In this particular case (41) vanish for any value of the
index, i.e. SIn = 0 and (46) Tn = Mn+1

n+1 and hence the unique
multipole moment is the mass M0 = M from the Eq. (39).

(B) Indeed, the same result must be obtained, on the other
hand for anistropic sources, since the exterior solution is also
Schwarzschild space–time. In fact the spherical case consid-
ered â = â(r) and the equation (22) lead to SIn = 0 (41) as
well. With respect to the integrals Tn (46) the independence
of the physical parameters in the angular variable leads to the
following expression

Tn = Mn+1

n + 1
− Mn

2(n + 1)

∫ rΣ

0
r2dr

μ

μ + 3P
E (49)

and hence the following constraint arises from (39) since all
RMM higher than M0 must vanish:

0 =
∫ rΣ

0
r2dr

μ

μ + 3P

[(
1 − 8

3
πr2μ

)
â′′

+ 2â′

r

(
1 − 2

3
πr2(5μ − 3P)

)]
(50)

where the expression for E (47) has been considered, and the
derivatives of â are obtained from (48):

â′ = 1

2

(
T ′
m

Tm
− P ′

P

)
, â′′ = 1

2

(
T ′′
m

Tm
− T ′2

m

T 2
m

− P ′′

P
+ P ′2

P2

)

(51)

Thus the above Eq. (50) implies a condition over the pres-
sure Tm or equivalently the anitropy of the source.

Nevertheless that condition is fullfilled and the Eq. (50) is
just an identity, since the integral results to be
[
μ(μ + 3P)

(μ + P)2 â′r2AΣ

]rΣ
0

= AΣr2
Σ â′

Σ

= AΣ

r2
Σ

2

(
T ′
m

Tm
− P ′

P

)
rΣ

(52)

that is null because the pressure Tm behaves at the boundary
equal than P and P(rΣ) = 0 [10]. Equivalently we can
argue that â′

Σ vanishes since the boundary condition for that
interior metric function establishes that â′

Σ = ψ̂ ′
Σ and it is

null because the exterior metric function is the corresponding
to Schwarzschild.

5.3 Sources of non-spherical vacuum space–time

In this case the integrals SIn no longer vanish (in general)
because of the angular dependence of the metric functions, as
well as the integrals Tn from (46), (47) incorporate those con-
tribution missing in the spherical case. The simplest interior
metric functions are [11] those of Eq. (4) with F = G = 0.

As a matter of ilustration let us calculate the contributions
to the quadrupole moment of both kind of volume integrals
over the source for the Erez–Rosen space–time [23] which
the exterior metric function ψ = ψ s − q2Q2(x)P2(y) with
arbitrary Weyl coeficient (of the Erez–Rosen representation)
q2, and the prolate spheroidal coordinate x ≡ r

m − 1.
From Eq. (39) we obtain the following quadrupole

moment M2:

M2 = 2q2

5τ(τ − 2)β2(τ )

×
[∫ rΣ

0

r2M2μ

3(μ + 3P)
P2(x) [c1(r) + c2(r)μ + c3(r)P] dr

+
∫ rΣ

0
r2 Z√

A

[
2M2P2(x)c4(r) + Ac5(r)r(r − M)

]
dr

]

(53)
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with

c1(r) = −2s a(τ ) + 6s b(τ )

c2(r) = −4πr2
[

2(7 − 9s)a(τ ) +
(

9s − 14

3

)
b(τ )

]

c3(r) = 4πr2 [6(1 − s)a(τ ) + (3s − 2)b(τ )]

c4(r) = (3 − 2s)a(τ ) + (s − 1)b(τ )

c5(r) = 6(1 − s)a(τ ) + (3s − 2)b(τ ) (54)

where s ≡ r/rΣ and the notation a(τ ) ≡ Q2(τ−1)

r2
Σ

,

b(τ ) ≡ ∂x Q2(x)(τ−1)

rΣ M has been used for the Legendre polyno-
mial of second kind Q2(x) and its derivative, both of them
evaluated in the boundary xΣ = τ − 1.

6 Conclusions

We have shown that we are able to relate the sources of Weyl
solutions with their RMM. The procedures for the explicit
calculation of the RMM of any space–time are circumscribed
to the metric that describe the gravitational field. The defi-
nitions of Geroch–Hansen and Thorne involve vacuum solu-
tions as well as the method of Fodor–Hoenselaers–Perjes
(FHP), or [29] and others developing Thorne’s definition by
using harmonic coordinates manage the exterior gravitational
field of the compact object.

In this work a definition of RMM [21] extended to whole
space–time is developed explicitly for a global metric. Due
to the own characteristics of that definition it was shown in
[21] that the RMM can be calculated by means of a flux
integral at the infinity just by using the exterior metric out
there. But that flux integral is equivalent to a volume integral
through a generalized Gauss theorem. Nevertheless neither
the interior metric nor the source itself were used in that work
since harmonic coordinates were used to implement the flux
whereas the interior metric in that system of coordinates is
unknown.

Now an space–time described by a global metric is used
to implement the definition from [21] in such a way that
relevant expressions for the RMM are obtained in terms of the
material content of the source and the interior metric. Hence,
those integral expressions constrained to the volume of the
source allows us to calculate The RMM from the physical
characteristics of the source.

This result is providing a relevant generalization of the
procedure commonly developed in newtonian gravity to
define the multipole moments by means of the density of
the compact object. And, at the same time a generalization
of the definition of Tolman mass [26] and Komar moments
[27] is derived.

In this work it is proved that the RMM can actually be
considered as physical characteristics both of the gravita-

tional field as well as the source conveniently matched to
that exterior metric. Besides, it is the proper matching con-
dition the guarantee to derive the volume integral expres-
sions or the flux integrals version that lead to the relation-
ship linking those expressions involving the source with the
RMM known in the literature associated to the gravitational
field.

Consequently, from now onwards it is not necessary to
know the RMM of the gravitational field matched to a deter-
mined source but it is sufficient the energy–momentum ten-
sor and the interior metric to calculate those RMM. Up to
now the RMM gave relevant physical information about the
source (flattening, shape, symmetry, ...) and they could be
connected to the orbital movement of test particles (see for
instance a recent paper [30] on relativistic celestial mechanics
discussing the Post-Newtonian dynamics of an isolated grav-
itating system consisting of N extended bodies moving on a
curved space–time and the relevance of multipole moments
for accurate prediction of orbital dynamics of extended bod-
ies in inspiraling binary systems or construction of templates
of gravitational waves at the merger stage when the strong
gravitational interaction between the higher-order multipoles
of the bodies play a dominant role). Nevertheless, if this
was the case before, and it still works so satisfactorily, from
now on it may be otherwise, since the result presented here
allows us to link directly the RMM with the physics of the
source.
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