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Abstract In this work, we have extended the analysis on
the generalized Chaplygin gas (GCG) model as the unifica-
tion of dark energy and dark matter. Specifically, we have
shown that the model of our consideration known as the new
generalized Chaplygin gas (NGCG) model, admits a scalar
field description, which means that there exist a minimally
coupled scalar field for a given scalar field potential where
the equation of state is that of the NGCG. With the use of
the later property we can construct the slow-roll parameters
and derive the corresponding values for the spectral indices
for the tensor to scalar perturbation and for the density per-
turbations. We have also studied the growth rate of matter
perturbations in the NGCG scenario. Finally, we have stud-
ied the viability of the generalized second law of thermody-
namics by assuming that the dynamical apparent horizon in a
NGCG universe is endowed with Hawking temperature and
Bekenstein entropy.

1 Introduction

The currently observed accelerated expansion phase of the
Universe is widely supported by different observational data
[1–5]. In the Einstein theory of gravity, dark energy (DE), a
hypothetical exotic fluid, is presumed to be responsible for
this cosmic acceleration and we refer the interested reader
to Refs. [6–8] for a detailed description of DE. A host of
observational data has been analyzed to deduce that only a
small fraction, around 5% of the total energy density in the
Universe, is in the form of baryonic matter, while dark mat-
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ter (DM), which is required to explain structure formation,
accounts for around 26% of the total energy density. The
dominant component, DE, accounts for the remaining 69%,
which brings the total amount of energy density in the Uni-
verse close to the critical energy density [9]. The simplest
model for DE is the standard �CDM. The inclusion of cos-
mological constant � with cold dark matter (CDM) brings
the �CDM model into excellent agreement with the observed
data. A cosmological constant is described by a single param-
eter, �, whose energy density remains constant with time
and its equation of state (EoS) parameter is ω� = −1.
Despite the great success of �CDM model, the cosmolog-
ical constant suffers from the fine-tuning problem [10] and
the cosmic coincidence problem [11]. For a recent discus-
sion on the �CDM model, we refer the reader to Ref. [12].
In order to overcome these issues, various DE models has
been explored in the literature, which include quintessence,
K-essence, phantom, tachyon, and many more (for a review,
one may see Ref. [6] and the references therein). However,
we are yet to have a full-proof DE model.

As is well-known, the Chaplygin gas (CG) model as a
unification of the unknown dark sectors (DM and DE) in the
Universe is a good candidate amongst different DE models
[13,14]. In the CG model, the dark sectors can be unified by
using an exotic equation of state (EoS) parameter. The strik-
ing property of this unified model is that the CG behaves as a
dust-like matter (pressureless DM) at early times and behaves
like a cosmological constant at late times. But, the CG
models are under strong observational pressure from CMB
anisotropies [15,16]. This has led to the study of several inter-
acting CG models in the literature [17,18]. It is worthwhile
to mention here that Kamenshchik et al. [13] also introduced
a single-fluid model of a generalized Chaplygin gas (GCG)
with a modified equation of state p = − A

ρα where A > 0 and
α is a real number, and it reduces to CG when α = 1. This
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GCG model has been studied in some detail in Refs. [19,20]
and has been confronted with different phenomenological
tests involving type Ia supernovae (SNIa), cosmic microwave
background (CMB), and other observational datasets [21–
26]. Furthermore, it should be noted that the GCG model can
be portrayed as an interacting �CDM model [26] in which
a cosmological constant type DE interacts with cold DM.
Later, Zhang et al. [27] proposed an extended version of the
GCG which they termed it as the new generalized Chaply-
gin gas (NGCG) model, in order to describe the unification
of DE and DM. They further demonstrated that the NGCG
actually is a kind of interacting XCDM (X-matter with cold
DM) model. Some recent studies on this new GCG and its
applications in Cosmology can be found in [27–33].

On the other hand, CG and GCG models play an important
role for the description of inflation [34–37]. During the infla-
tionary period, the Universe is presumed to be dominated by
a scalar field known as inflaton. In the slow-roll regime of
the scalar field dynamics inflation occurs. It has been found
that various GCG models can be described by the scalar field
dynamics with a slow-roll regime. Motivated by these facts,
in the present work, we determine the scalar field equivalence
for this model while we determine the slow-roll parameters
and the spectral indices provided by the NGCG model. We
also study the behavior of this model at the perturbation level
as well. More specifically, we study the growth rate of mat-
ter perturbations in terms of evolution of the linear matter
density contrast and explain how the growth rate data can
be used to obtain predictions on the theoretical model under
consideration. We also compare our results with the predic-
tions of the standard �CDM and GCG models. Furthermore,
we also study the viability of the generalized second law of
thermodynamics in the NGCG model by assuming that the
dynamical apparent horizon is endowed with Hawking tem-
perature and Bekenstein entropy.

The rest of this paper is organized as follows. In the next
section, the NGCG model as the unification of DE and DM
is introduced briefly. In Sect. 3, we investigate the NGCG
as a candidate for the description of inflation. We study the
influence of this model on the structure formation in Sect. 4.
In Sect. 5, we study the generalized second law of thermody-
namics in the NGCG model at the dynamical apparent hori-
zon with a view to garner support for the thermodynamic
viability of the NGCG model. Finally, we present our con-
clusions in Sect. 6.

Throughout the paper, we use natural units such that c =
G = h̄ = 1.

2 New generalized Chaplygin gas (NGCG) model

In what follows, we briefly introduce the NGCG model.
We assume that the Universe is homogeneous and isotropic,

and endowed with the spatially flat Friedmann–Lemaître–
Robertson–Walker (FLRW) metric. The EoS of NGCG fluid
is given by [27]

pNGCG = − Ã(a)

ρα
NGCG

, (1)

where α is the constant parameter, ρNGCG is the energy den-
sity of the NGCG fluid, and the function Ã(a) depends upon
the scale factor, a, of the Universe. It might be expected that
the NGCG fluid smoothly interpolates between a dust (pres-
sureless matter) dominated phase (ρNGCG ∼ a−3 when a
is small) and a DE dominated phase (ρNGCG ∼ a−3(1+ωde)

when a is large), where ωde is a constant EOS parameter.
Also, the energy density of the NGCG fluid can be elegantly
expressed as [27]

ρNGCG = [Aa−3(1+ωde)(1+α) + Ba−3(1+α)] 1
1+α , (2)

where A and B are positive constants. It deserves to mention
here that Eq. (2) can be deduced by substituting the EoS
Eq. (1) into the energy conservation equation of the NGCG
fluid. This requires the function Ã(a) to be of the form

Ã(a) = −ωde Aa
−3(1+ωde)(1+α). (3)

Finally, from Eq. (2) it follows that

ρNGCG = ρNGCG0a
−3[1 − As + Asa

−3ωde(1+α)] 1
1+α , (4)

where the parameters A and B are redefined as As = A
A+B

and ρNGCG0 = (A + B)
1

1+α denotes the present value of
ρNGCG . For the present model, as a scenario of the unification
of DE and DM, the energy densities of the DM and the DE
components can be obtained, respectively, as [27]

ρdm = ρdm0a
−3 × [1 − As + Asa

−3ωde(1+α)] 1
1+α

−1 (5)

and

ρde = ρde0a
−3[1+ωde(1+α)]

×[1 − As + Asa
−3ωde(1+α)] 1

1+α
−1, (6)

where ρdm0 and ρde0 are the current values of ρdm and ρde,
respectively. It can be readily observed that the NGCG model
reduces to the standard �CDM model when we put α = 0
and ωde = −1. We also note that it becomes ωCDM model
when α = 0. It is also remarkable to observe that the GCG
model is included as a sub-case, and can be obtained for
ωde = −1. From Eqs. (5) and (6), one can now easily obtain
the scaling behavior of the energy densities as

ρdm

ρde
= ρdm0

ρde0
a3ωde(1+α). (7)

For α �= 0, there must exist an energy flow between the dark
sectors (DE and DM) and thus, α describes the interaction
between the dark sectors in this model [27].
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Here, we assume that the Universe is filled with NGCG
fluid (ρNGCG = ρde + ρdm), baryonic matter component
(ρb), and radiation component (ρr ) so that the total energy
density of the Universe can be obtained as ρtotal = ρNGCG+
ρb + ρr . In the framework of a homogeneous, isotropic, and
spatially flat FLRW cosmology, the Friedmann equation can
be expressed as

3H2 = ρtotal . (8)

The dimensionless Friedmann equation E(a) can be written
as

E(a) = H(a)

H0
= [(1 − �b0 − �r0)a

−3

×[1 − As(1 − a−3ωdeη)] 1
η + �b0a

−3 + �r0a
−4] 1

2 ,

(9)

where η = (1 +α) and H0 is the value of the Hubble param-
eter H(a) at the present epoch. In the above equation, �b0

and �r0 denote the current values of dimensionless energy
densities of baryonic matter and radiation, respectively.

3 NGCG as inflationary model

In this section, we investigate the NGCG (1) as candidate for
the description of the early acceleration phase of the Universe
known as inflation. Fluids with equation of state parameters
which are generalizations of the CG have been widely applied
in the literature as inflationary models see for instance [34–
37] and references therein.

In order to perform such analysis we study if the NGCG
model can be described by a quintessence scalar field such
that the slow-roll description for the inflation to exist. Then,
we define the slow-roll parameters and we calculate the val-
ues for the spectral indices and we compare with the obser-
vations as they are provided by Planck collaboration.

3.1 Scalar field description

Assume now a spatially flat FLRW spacetime where the mat-
ter source is described by a homogeneous scalar field mini-
mally coupled to gravity [38], the inflaton field, such that the
Einstein’s field equations to be derived

3H2 = 1

2
φ̇2 + V (φ), (10)

2Ḣ + 3H2 = −1

2
φ̇2 + V (φ), (11)

where ρφ = 1
2 φ̇2 + V (φ), pφ = 1

2 φ̇2 − V (φ) and the con-
tinuous equation ρ̇φ + 3H

(
ρφ + pφ

) = 0 reads

φ̈ + 3H φ̇ + V,φ = 0. (12)

Function V (φ) is the scalar field potential and defines
the evolution of the scalar field and the description of the
inflationary period, for some examples we refer the reader in
[39–41].

We follow the analysis presented in [36] where we are
able to write the algebraic solution for the field equations
(10)-(12). Indeed, in the new change of variables dt =
exp

(
F(χ)

2

)
dχ with χ = 6 ln a, the background space reads

ds2 = −eF(χ)dχ2 + eχ/3(dx2 + dy2 + dz2). (13)

where the scalar field φ (χ) and the scalar field potential
V (φ (χ)) are given by the formulas

φ(χ) = ±
√

6

6

∫ √
F ′(χ)dχ , (14)

V (χ) = 1

12
e−F(χ)

(
1 − F ′(χ)

)
, (15)

in which a prime “′” denotes total derivative with respect to χ ,
i.e. F ′ (χ) = d

dχ
F (χ). The corresponding Hubble function

is defined as H (χ) = 1
6

√
e−F(x).

In the new variables the energy density and pressure
component are expressed ρφ(χ) = 1

12e
−F(χ) , pφ(χ) =

1
12e

−F(χ)
(
2F ′(χ) − 1

)
. Furthermore, the EoS parameter is

defined we f f (χ) = (
2F ′(χ) − 1

)
.

Hence, from the EoS parameter (1) we define the ordinary
differential equation

1

12
e−F(χ)

(
2F ′(χ) − 1

)

= ωde Ae
χ− 2

2 (1+ωde)(1+α)

(
1

12
e−F(χ)

)α

(16)

with analytic solution

F (χ) = 1 + ωde

2
χ

− 1

1 + α
ln

(
Ā + exp

(
(1 + α)ωde

2
χ

))
,

α �= −1. (17)

where Ā = 12−(1+α)A. Consequently, for the scalar field we
calculate

φ (χ) = 1

2
√

3 (1 + α) ωde

(
(1 + α)ωde

√
1 + ωdeχ

−2
√

1 + ω ln
(
2 Ā (1 + ωde) + φ1 (χ)

)

+2 ln (φ2 (χ))) , (18)

V (χ) = 1

24
e− 1+ωde

2 x
(
Ā + e

1+ωde
2 x

)−1+ 1
1+α

×
(
Ā (1 − ωde) + e

1+ωde
2 x

)
, (19)
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Fig. 1 Qualitative evolution for the scalar field φ (χ) (left figure) and the scalar field potential V (χ) (middle figure). Plots are for Ā = 1 and
α = 1. Solid lines are for ωde = −0.95, dotted lines are for ωde = −0.7 and dashed lines are for ωde = −0.5. Right figure is the parametric plot
φ (χ) − V (φ (χ))

with

φ1 (χ) = (2 + ωde) e
1+ωde

2 x

+2

√

(1 + ωde)
(
Ā + e

1+ωde
2 x

) (
Ā (1 + ωde) + e

1+ωde
2 x

)
,

(20)

φ2 (χ) = (2 + ωde) Ā

+2

(

e
1+ωde

2 x +
√(

Ā + e
1+ωde

2 x
) (

Ā (1 + ωde) + e
1+ωde

2 x
))

.

(21)

In Fig. 1 we present the qualitative evolution for the scalar
field which is equivalent for the NGCG of our consideration.
We remark that there exists a real scalar field and a positive
valued scalar field potential which provides the same evolu-
tion for the background space as the NGCG model. Further-
more, in Fig. 2 we present the qualitative evolution for the
equation of state parameter we f f (a).

3.2 Slow-roll parameters and spectral indices

In the inflationary era, the scalar field potential dominates
such that 3H2 � V (φ), while φ̇ � − V,φ

3H . The a specific
scalar field potential, the following parameters are defined
[42]

εV =
(
V,φ

2V

)2

, ηV = V,φφ

2V
, (22)

which are known as potential slow-rolls parameters. The
condition for inflation is εV � 1, while the additional
condition is introduced ηV � 1, such that the inflation-
ary phase to last long enough. In a similar way, for a spe-
cific Hubble function the Hubble slow-roll parameters are
defined as follows [42] εH = − d ln H

d ln a and ηH = − d ln H,φ

d ln a .

Fig. 2 Qualitative evolution for the equation of state evolution
we f f (a) for the NGCG of our consideration. Plot is for Ā = 1 and
α = 1. Solid line is for ωde = −0.95, dotted line is for ωde = −0.7
and dashed line is for ωde = −0.5

The two different set of parameters are related as follows
εV � εH and ηV � εH + ηH . Consequently, as in the case
of the potential slow-roll parameters, the inflationary era is
recovered when εH � 1, while ηH � 1 is the second condi-
tion. Because, we do not have a closed-form expression for
the scalar field potential we select to work with the Hubble
slow-roll parameters.

The slow-roll parameters are related with the spectral
indices for the density perturbations ns , and the tensor to
scalar ration r as follow

r = 10εH , (23)

ns = 1 − 4εH + 2ηH . (24)
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From the analysis of the cosmological observations of the
Planck 2018 collaboration [43], the spectral index for the
density perturbations is constraint as ns = 0.9649 ± 0.0042,
while the tensor to scalar ratio, r is constraint as r < 0.10.

Moreover, we can define the number of e-folds Ne (χ), by
the expression Ne = ∫ t f

ti
H (t) dt = ln

a f
ai

= 1
6

(
χ f − χi

)
,

where χ f is the moment where the inflation ends, that is,
εH

(
χ f

) = 1.
Thus, the slow-roll parameters r and ns in the first-order

approximation are expressed in term of the number of e-folds
as follow

r (Ne) = 15

(
1 − ωde

e3(1+α)Neωde − (1 + ωde)

)
(25)

ns (Ne) = −2 + 3 (2 + α) ωde

e3(1+α)Neωde − 1

− 3 (1 + α)ωde (1 + ωde)

(1 + 3ωde) e3(1+α)Neωde − (1 + ωde)
. (26)

We observe that r (Ne) and ns (Ne) are sigmoid func-
tions, where (1 + α)ωde < 0 and for large values of,
such as Ne � 55 [43], it follows r � 15 (1 + ωde) and
ns � −2−3ωde Hence, ωde < −0.9933, where thenns � 1.
Hence, the NGCG fits the observations when ωde is near to
the cosmological constant term. It is important to mention
that we have assumed that α is not close to −1. Because of
the nature of the sigmoid function the behaviour is differ-
ent when 1 + α � 0. However, such case is excluded from
definition of the model.

Thus, for large values of Ne, it follows that r (ns) =
5 (1 − ns), where for ns → 1, we find r → 0, which is
in agreement with the observations.

4 Growth of matter perturbations in the NGCG model

In this section, we study the linear growth of DM fluctua-
tions for the NGCG model. Assuming that the Universe is
homogeneous and isotropic and that it can be described by
either General Relativity or some modified gravity theory,
we can study its consequences at the perturbations level by
employing the effective Newtonian constant [44–56]. Using
the subhorizon approximation (k >> aH ), it can be shown
that the linear matter perturbations grow according to the
following second-order differential equation [44–53]

δ′′(a) +
(

3

a
+ H ′(a)

H(a)

)

−3

2

�m(a)Gef f (a, k)/GN

a2 δ(a) = 0, (27)

where primes denote differentiation with respect to the scale
factor and Gef f is the effective Newton’s constant which is
equal to GN in General Relativity, while, in general modified
gravity models, Gef f can be dependent on the scale factor,

a, and the wave number, k, of the modes of the perturbations
in Fourier space. It is important to note that on subhorizon
scales (k >> aH ), we may ignore the dependence on the
wave number k for both Gef f and δ [57]. In Eq. (27), δ = δρm

ρm
represents the growth function of the linear matter density
contrast in which ρm denotes the background matter density
and δρm denotes its first-order perturbation. It is worthwhile
to mention here that, for the present case, Gef f = GN and
�m(a) = �b(a) + �dm(a). The corresponding expressions
for �b(a) and �dm(a) are given by

�b(a) = E−2(a) × �b0a
−3 (28)

and

�dm(a) = E−2(a) × �dm0a
−3[1 − As + Asa

−3ωdeη] 1
η
−1

(29)

respectively. Since we will discuss on low redshifts, we
ignore the radiation component, i.e. �r0 = 0. In that case,
Eq. (9) becomes

E(a) = H(a)

H0
= [(1 − �b0)a

−3 × [1 − As(1 − a−3ωdeη)] 1
η

+�b0a
−3] 1

2 . (30)

Next, in order to study the influence of the NGCG model on
the structure formation, we now discuss the growth rate f
and the root mean square (RMS) normalization of the matter
power spectrum σ8 of the NGCG model. The growth rate
can be measured by the peculiar velocities of galaxies falling
towards overdense regions and is defined as [58–60]

f (a) = dlog δ

dlog a
. (31)

Also, the RMS fluctuations of the linear density field within
a sphere of radius R = 8h−1 Mpc is defined as

σ8(a) = σ8,0
δ(a)

δ(1)
, (32)

where σ8,0 is the present value of σ8(a). However, a more
robust and bias-free quantity that is measured by redshift
surveys is the combination of f (a) and σ8(a). Thus, we have

f σ8(a) = a
δ′(a)

δ(1)
σ8,0. (33)

This observable combination is measured at different red-
shifts by various cosmological surveys as a probe of the
growth of matter density perturbations. Also, the theoret-
ically predicted value of this combination can be evalu-
ated from the solution, δ(a), of the Eq. (27) for a given
set of cosmological parameters. Furthermore, one can now
compare this theoretical prediction with the observed f σ8

dataset. It is evident from Eqs. (27), (28) and (29) that δ(a)

depends on the functional form of H(a) and will yield a
different result when a different H(a) is chosen. Hence,
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Fig. 3 The evolutionary trajectories of δ (left panel) and f (right panel)
are shown as a function of redshift z(≡ 1

a − 1) for the NGCG model by
considering the values of �b0 = 0.046, �dm0 = 0.2508, As = 0.7373,
and η = 0.9443. The blue, green, and purple curves are for ωde = −1.2,

ωde = −1.041, and ωde = −0.95, respectively. In each plot, the black
and red curves represent the corresponding evolutions of δ(z) and f (z)
in �CDM (ωde = −1, η = 1) and GCG (ωde = −1) models, respec-
tively

one can easily solve Eq. (27) to determine the evolution
of δ(a) for a given parametrization of H(a) with certain
initial conditions. For the growing mode, we numerically
solve the Eq. (27) so that δ(ai ) = ai and δ′(ai ) = 1,
where ai is the initial scale factor which we have chosen
to be 10−3. Moreover, we also use in our analysis the best
fit values of the free parameters (�b0,�dm0, ωde, As, η) =
(0.046, 0.2508,−1.041, 0.7371, 0.9443) obtained by Sala-
hedin et al. [32] using H(z) + BAO + CMB + BBN + SNIa
(Pantheon) data. In this work, we have chosen three values
of σ8,0 given by σ8,0 = 0.75 [61], σ8,0 = 0.772 [62], and
σ8,0 = 0.811 [63]. Finally, in Fig. 3, we have shown the
evolutions of δ(z) and f (z), as a function of the redshift z
(≡ 1

a − 1), for the NGCG model. The plot of δ as a func-
tion of the redshift parameter z is shown in the left panel of
Fig. 3, while the corresponding plot of f (z) is shown in the
right panel of Fig. 3. For comparison, the evolutions of δ(z)
and f (z) for a flat �CDM (ωde = −1, η = 1) and GCG
(ωde = −1) models are also shown. By comparing the evo-
lutionary trajectories in Fig. 3, it has been found that at early
times, the δ and f of these three models are the same, but the
deviation among these models grows at late times. Further-
more, in Fig. 4, we have compared the observed f (z)σ8(z)
with the theoretical value of the growth rate function for this
model. It is observed from Fig. 4 that the present model repro-
duces the observed values of f (z)σ8(z) quite effectively.

5 Generalized second law of thermodynamics in the
NGCG model

In this section, we wish to study the generalized second law
in the NGCG model by considering the dynamical apparent

horizon as the thermodynamic boundary. It is worthwhile to
mention here that the generalized second law was adapted in
the context of Cosmology by Brustein [65]. This second law
is based on the conjecture that causal boundaries and not only
black hole event horizons have geometric entropies propor-
tional to their area. The dynamical apparent horizon always
exists irrespective of the cosmological model we choose. This
property allows it to be a natural choice for the study of
gravitational thermodynamics. The results obtained within
this framework can then be extended to the whole Universe,
thanks to the cosmological principle. It must be noted that
the dynamical apparent horizon is a thermodynamic entity
which must be endowed with an entropy and a temperature.
In analogy with a black hole event horizon in the study of
black hole thermodynamics [66,67], the temperature associ-
ated with the dynamical apparent horizon is identified as the
Hawking temperature whose expression is given by

TAX = 1

2πRAX

(
1 − ṘAX

2

)
, (34)

where RAX is the proper radius of the apparent horizon in
the NGCG model. In the rest of this section, the suffix ‘X ’
will denote corresponding parameters in a NGCG-dominated
universe. One should note that Eq. (34) represents the non-
truncated version of the Hawking temperature. It has been
customary to use the truncated expression [68]

T (tr)
AX

= 1

2πRAX

(35)

in the literature for the study of gravitational thermodynam-
ics, however, Binétruy and Helou [69,70] have put forward
several strong arguments against the use of the truncated
Hawking temperature. Furthermore, the consideration of the
non-truncated form of the Hawking temperature has pre-
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Fig. 4 The evolutionary trajectory of f σ8, as a function of redshift z,
is shown for the present model (green curve) by considering the values
of �b0 = 0.046, �dm0 = 0.2508, ωde = −1.041, As = 0.7373, and
η = 0.9443. The plots are forσ8,0 = 0.75 [61] (left panel),σ8,0 = 0.772
[62] (right panel), and σ8,0 = 0.811 [63] (lower panel), respectively.
In each plot, the black and red curves represent the corresponding evo-

lutions of f σ8 in a �CDM and GCG models, respectively. Also, the
blue dots (with the error bars) correspond to the 47 Growth of mat-
ter data points (redshift space distortions measurements) in the redshift
range 0.001 ≤ z ≤ 1.944, obtained from different surveys and the
corresponding f σ8 values are given in [64] and the relevant references
therein

sented us with some promising results in a recent paper [71]
by one of the authors.

The entropy on the horizon is given by the Bekenstein
entropy which has the expression [72]

SAX = AAX

4
= πR2

AX
, (36)

where AAX = 4πR2
AX

is the proper area bounded by the
dynamical apparent horizon.

Next, we require the time-derivative of the entropy of the
cosmic fluid inside the apparent horizon, which is obtained
from the Clausius relation

T f AX dS f AX = dU + pNGCGdVAX , (37)

where, S f AX and T f AX are the entropy and the temperature
of the cosmic fluid within the horizon, respectively, while
U = 4

3πR3
AX

ρNGCG is the internal energy of the fluid evalu-
ated at the apparent horizon. We shall assume that the temper-
ature of the cosmic fluid, T f AX , is equal to TAX in Eq. (34).

This assumption is supported by the results obtained in the
pioneering work by Mimoso and Pavón [73].

Now, using Eqs. (34), (36), and (37), we obtain the time-
derivative of the total entropy

ṠAX = 18πRAX

(1 + wNGCG)2

(1 − 3wNGCG)
, (38)

which directly follows from Eq. (19) of Ref. [71]. The gen-
eralized second law is nothing but the requirement that ṠAX

be non-negative. In our model, this requirement is satisfied
if wNGCG ≤ 1

3 . It is quite easy to see that the effective EoS
of the NGCG model is given by

wNGCG = pNGCG

ρNGCG

= wde

1 + ( B
A

)
a3wde(1+α)

. (39)

Since the constants A and B are both positive, and wde is
always negative, it follows that wNGCG ≤ 1

3 is always true.
Thus, the generalized second law is unconditionally valid in
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the NGCG model and consequently, this model is consistent
with thermodynamics.

6 Conclusions

Cosmological fluids with equation of state similar to that of
the Chaplygin Gas have been widely used for the study of the
inflation. Moreover, they have been applied for the descrip-
tion of the inflaton field. In this study, we show that the model
of our consideration, the NGCG model, admits a scalar field
description, which means that there exist a minimally cou-
pled scalar field for a given scalar field potential where the
equation of state parameter is that of the NGCG. Hence,
we were able to determine the slow-roll parameters for the
NGCG and determine the spectral indices and compare their
values with the observational ones. In the first-order approxi-
mation, we derived the closed-form expressions for the scalar
to tensor ratio and for the spectral index of the density pertur-
bations. These two indices were found to be functions of the
number of e-folds, Ne, and of the two parameters α and ωde

of the NGCG model. In addition, the functional form is that
of a sigmoid where we found that for (1 + α)ωde < 0 and
for large values of the number of e-folds, the spectral indices
are related by the linear expression r(ns) = 5(1 − ns). The
later expression provides values for the spectral indices in
agreement with the observations.

Furthermore, we have studied the growth of matter pertur-
bations in the NGCG scenario. In particular, we have shown
the evolutions of the matter density contrast δ(z) and the
growth rate f (z) for this model and compared it with that
of the standard �CDM and the GCG models. By comparing
these models (NGCG, �CDM, and GCG), we have shown
that all of these three models are the same at early times,
but the evolutionary trajectory of the NGCG model deviates
from the other two at late times. We have also computed the
combination parameter f σ8 (33) as a function of the red-
shift for this model. The numerical results are summarized
in Fig. 4, where the comparison with the redshift space dis-
tortions measurements is shown as well.

Finally, we have shown that the NGCG model is consistent
with gravitational thermodynamics, a result which puts the
NGCG model on a firm theoretical ground.
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