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Abstract Tsallis entropy is a generalization of the
Boltzmann–Gibbs entropy in statistical theory which uses a
parameter δ to measure the deviation from the standard sce-
nario quantitatively. Using concepts of Tsallis entropy and
future event horizon, we construct a new Tsallis holographic
dark energy model. The parameters c and δ will be used to
characterize various aspects of the model. Analytical expres-
sions for various cosmological parameters such as the differ-
ential equation describing the evolution of the effective dark
energy density parameter, the equation of state parameter
and the deceleration parameter are obtained. The equation
of state parameter for the current model exhibits the pure
quintessence behaviour for c > 1, quintom behaviour for
c < 1 whereas the �CDM model is recovered for c = 1. To
analyze the thermal history of the universe, we obtained the
expression for the deceleration parameter and found that for
z ≈ 0.6, the phase transits from deceleration to acceleration.

1 Introduction

Based on the observations carried out by Reiss and Perlmut-
ter [1,2] the current universe is in an accelerated expansion
phase. The reason behind it can be considered as the exis-
tence of cosmological constant�. But the dynamic behaviour
of � and computing the value of it in a quantum field the-
oretic way opens the paths of extended scenarios. One of
which is to keep general relativity based on gravitation the-
ory while considering new, exotic matter, which explains the
dark energy (DE) concept [3–5]. The other is to extend the
theory of gravity whose special case is general relativity with
extended degree of freedom to get the explanation about the
accelerated universe [6–9].
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Using the holographic Principle (HP), one intriguing pos-
sibility for explaining the genesis and nature of dark energy
can be obtained at a cosmological framework [10–12]. G.’t
Hooft [10] presented the well-known concept of holographic
principle based on investigations of black hole thermody-
namics [13,14]. This asserts that a hologram corresponding
to a theory on the volume’s border can be used to repre-
sent the whole information contained in a spatial volume. HP
was used to solve the DE problem by proposing the concept
of holographic dark energy (HDE) model [15]. According
to HDE model, on the universe’s edge, the reduced Plank’s

mass Mp ≡ 1√
8πG

, where G denotes the universal gravita-

tional constant of Newton and universe’s future event horizon
L [15] are the physical quantities on which the dark energy
density ρd depends . The DE model equipped with HP (HDE)
supports the current cosmological observations [15–21] and
extensively studied [22–26]. Also, observational data are in
agreement with the concept of HDE [27–31].

Due to the long-range nature of gravity and the unpre-
dictable structure of spacetime, many extended entropy for-
malisms have been employed to investigate gravitational and
cosmic phenomena. In order to study gravitational and cos-
mic systems through the concepts of generalized statisti-
cal mechanics, the Tsallis’s entropy [32,33] plays a cen-
tral role. Kaniadakis, on the other hand, presented gener-
alized Boltzmann–Gibbs entropy through single parameter,
known as Kaniadakis entropy [34,35] and studied by Niki
and Sharma [36,37] using the concepts of future event hori-
zon and apparent horizon respectively. This is the conse-
quence of a unified and self-consistent relativistic statisti-
cal theory that retains the core properties of normal sta-
tistical theory. The usual Maxwell–Boltzmann statistics is
continuously deformed by a single parameter leading to the
extended statistical theory, whose limiting case is the stan-
dard statistical theory. In this manuscript we will apply the
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Tsallis entropy concept to formulate new Tsallis holographic
dark energy (NTHDE) by considering the future event hori-
zon as an IR cut-off and investigate its cosmic implications.
The study of NTHDE carried out by [38–40] is based on
the consideration of Hubble horizon as an IR cut-off which
could not recover the standard HDE model for which Tsal-
lis entropy should become the standard entropy but it is not.
Large parameter values could represent the universe’s evo-
lution. Such a consideration results in more deviation from
the standard entropy. This difference is due to the Hubble
horizon acting as an IR cut-off. As a result, in this paper, we
develop a consistent formulation of NTHDE to get a well-
defined extension of conventional HDE, which is the limit-
ing case when the Tsallis entropy becomes the conventional
Bekenstein Hawking entropy.

In Sect. 2, by formulating the NTHDE expression, the
differential equation for specific DE density parameter �d ,
expressions for deceleration parameter and equation of state
(EoS) parameter are obtained analytically. Section 3 is
devoted to studying cosmological behaviour. In Sect. 4, a
discussion on the obtained results is carried out with a con-
cluding summary.

2 New Tsallis holographic dark energy

NTHDE formulation will be established here. The DE den-
sity ρd , the entropy S of black hole with radius L and the
largest theory’s distance L connected by the relation ρd L4 ≤
S is the key idea for HDE formulation [15,16]. For usual
Bekenstein–Hawking entropy SBH ∝ (4G)−1A = πG−1L2

with Newton’s gravitational constant G. The standard HDE
ρd = 3c2M2

pL
−2 with model parameter c is the saturation

of the above inequality. As a result, a modified HDE model
is obtained by modifying the entropy.

If kB = 1 and a distribution has W states with Gibbs and
Shannon entropies, then the expression for each state is same
and given by

S = −
W∑

i=1

Pi ln(Pi ). (1)

The Von-Neumann entropy or the quantum mechanical
equivalent of (1) is

S = −Tr[ρ ln(ρ)]. (2)

For classical systems, (2) supports Boltzmann’s proposal in
phase space with state density ρ. The Bekenstein–Hawking

entropy

(
≡ SBH = A

4

)
is obtained by applying (2) to a

pure gravitational system where A is system’s area [41]. By
assumption that the degrees of freedom are dispersed on the

horizon where no particular priority for each other is spec-

ified [42,43], all Pi ’s are equal and Pi = 1

W
. Both (1) and

(2) implies the Boltzmann’s entropy (S = ln(W )) and hence
we get the expression for horizon entropy [44]

SBH = A

4
= ln(W ) → W = e

(
A

4

)

. (3)

The Tsallis entropy is defined by [45]

STn = 1

1 − n

W∑

i=1

(Pn
i − Pi ) = W 1−n − 1

1 − n
, (4)

where Pi = 1

W
, n is an unknown parameter (non-extensive)

and as n → 1, STn → S. The parameter n may also have
its roots in quantum features of gravity. Using (3), (4) and
1 − n = δ, we get

STn = 1

1 − n

[
e(1−n)SBH − 1

]
,

STδ = 2 e

(
δ SBH

2

)

δ
sinh

(
δ SBH

2

)
. (5)

As δ → 0 the standard Bekenstein–Hawking entropy
is recovered. As expected the usual Bekenstein–Hawking
entropy is obtained as a limiting case of Tsallis entropy and
hence δ � 1 i.e. δ ∈ (−1, 1). The Eq. (5) in its expanded
and truncated form is given by

STδ = SBH + δ S2
BH

2
+ δ2 S3

BH

6
+ O(δ3). (6)

Clearly, the first term of (6) is the standard entropy. Using
(6) and ρd L4 ≤ S, we get

ρd = 3c2M2
p

L2 + 3c2
1δM

4
p

2
+ 3c2

2δ
2M6

pL
2

6
, (7)

where c, c1, c2 are constants. For δ = 0, the Eq. (7) leads to

standard HDE, i.e ρd = 3c2M2
p

L2 . By letting
3c2

1δ

2
= δ1 and

3c2
2δ

2

6
= δ2

2, Eq. (7) can be rewritten by absorbing c1 and c2

in δ as

ρd = 3c2M2
p

L2 + δM4
p + δ2M6

pL
2. (8)
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By considering the geometry of Friedmann–Robertson–
Walker (FRW) model to be homogeneous, isotropic and flat
with metric described by

ds2 = δi jdx
idx ja2(t) − dt2, (9)

with a scaling factor a(t) that varies with cosmic time. To
investigate an HDE model the largest distance L of the theory
is needed. According to Li and Hsu [15,46], L 
= H−1 is the
need for an HDE model to be consistent and standard. The
Hubble horizon is expressed as H−1 = ȧ(t)−1 a(t). Future
event horizon as offered by Li [15] is expressed as

rh = a(t)
∫ ∞

t

dy

a(y)
= a(t)

∫ ∞

a(t)

da

H [a(y)]2 . (10)

In [38,39], L = H−1 is considered as IR-cutoff and the
parameter δ is O (103

)
. Such a high value of δ leads to high

deviation from basic Bekenstein–Hawking entropy. We want
to construct NTHDE consistently in this paper, thus we utilize
the future event horizon rh as L in (8) and get the NTHDE
density as

ρd = 3c2M2
p

r2
h

+ δM4
p + δ2M6

pr
2
h . (11)

Friedmann’s equations for a universe made up of perfect
fluids such as DE and dark matter are expressed by

3M2
pH

2 = ρm + ρd , (12)

−2M2
p Ḣ = Pm + Pd + ρm + ρd , (13)

where Pd represents NTHDE pressure, ρm represents dark
matter energy density, and Pm represents dark matter pres-
sure. The dark matter conservation equation is as follows:

ρ̇m + 3H(ρm + Pm) = 0. (14)

The fractional DE and dark matter density parameters are
defined as

�d = ρd

3M2
pH

2 , (15)

�m = ρm

3M2
pH

2 (16)

respectively. Using the Eq. (11) in (15), we get a fourth degree
equation in rh . By considering rh to be positive and taking

the limit δ → 0 the standard HDE
∫∞
x

dx
Ha = c

Ha
√

�d
is obtained. Hence such a value of rh is considered and
expressed by

rh =
⎛

⎝
3H2�d − δM2

p −
√

(3H2�d − δM2
p)

2 − 12c2δ2M4
p

2δ2M4
p

⎞

⎠

1

2
.

(17)

Using Eqs. (10) and (17), we get∫ ∞

x

dx

Ha

= 1

a

⎛

⎝
3H2�d − δM2

p −
√

(3H2�d − δM2
p)

2 − 12c2δ2M4
p

2δ2M4
p

⎞

⎠

1

2
,

(18)

where a = ex .
Now we consider the physically intriguing dust matter

scenario for which the matter EoS parameter is zero. If we
consider the present matter energy density to be ρm0 for cur-
rent scale factor a0 = 1, Eq. (14) gives

ρm = ρm0

a3 . (19)

Using Eq. (19) into (16) we get

�m = �m0 H
2
0

H2a3 , (20)

where H0 is the present value of the Hubble parameter.
Using Eq. (20) and the Friedmann equation �d +�m = 1

we get

1

Ha
=

√
a(1 − �d)

H0
√

�m0

. (21)

Substituting Eq. (21) into (18) we get

∫ ∞

x

√
a(1 − �d )

H0
√

�m0

dx

= 1

a

⎛

⎝
3H2�d − δM2

p −
√

(3H2�d − δM2
p)

2 − 12c2δ2M4
p

2δ2M4
p

⎞

⎠

1

2
.

(22)

Differentiating Eq. (22) with respect to ‘x’ we get

�′
d = �d(1 − �d)

⎡

⎢⎢⎢⎣3 −
2
(
I − 2δ2M6

pJ
)

I + δM4
p

×

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩
1 − √

3

⎛

⎝ M2
p�d(

I + δM4
p

)
J

⎞

⎠

1

2

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

⎤

⎥⎥⎥⎦ , (23)

where

I = 3 e−3x H2
0 M

2
p�m0�d

1 − �d
− δM4

p,
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J =
I −

√
I2 − 12c2δ2M8

p

2 δ2M6
p

.

For flat spatial geometry and dust matter, the differential
equation (23) describes the evolution of NTHDE. As a limit

on considering δ → 0 we get J = 3c2

I , which implies (23)

to recover the differential equation of standard HDE [47],

i.e. �′
d = �d(1 − �d)

(
1 + 2

c

√
�d

)
and can be solved

analytically.
Now we will consider the EoS parameter for NTHDE

defined by wd = Pd
ρd

. As the matter sector is conserved.

The Eq. (14) and the Friedmann equations (12), (13) implies
the DE sector to be conserved, i.e.

ρ̇d + 3Hρd(1 + wd) = 0. (24)

Differentiating (11) w.r.t. ‘t’ results

ρ̇d = −
2 M2

p

(
3c2 − δ2M4

pr
4
h

)
ṙh

r3
h

. (25)

From Eq. (10) we get

ṙh = Hrh − 1. (26)

Using Eqs. (25) and (26) we get the expression for rh in terms
of ρd given by

rh =

⎡

⎢⎢⎣
ρd − δM4

p −
√(

ρd − δM4
p

)2 − 12c2δ2M8
p

2δ2M6
p

⎤

⎥⎥⎦

1

2

.

(27)

Using Eqs. (15), (21) and (25) to (27), we get

wd = −1 − 2

⎛

⎜⎝
M6

p �d

3
(
I + δM4

p

)3

⎞

⎟⎠

1

2
⎛

⎜⎜⎝
δ2M4

pJ 2 − 3c2

J
3

2

⎞

⎟⎟⎠

×

⎡

⎢⎢⎢⎢⎣
−1 +

⎛

⎝

(
I + δM4

p

)
J

3M2
p�d

⎞

⎠

1

2

⎤

⎥⎥⎥⎥⎦
. (28)

Clearly the standard HDE is recovered by letting δ → 0 i.e.

as δ → 0, wd → −1

3
− 2

√
�d

3c
. In general, we can highlight

that wd can behave either like quintessence or quintom which
shows the richness of the current model.

The parameter describing deceleration behaviour can be
expressed as

q = − Ḣ

H2 − 1

= 3 wd�d + 1

2
. (29)

3 Cosmological evolution of NTHDE

In Sect. 2, we derived the differential equation describ-
ing the evolutionary behaviour of NTHDE density param-
eter, corresponding expressions for EoS and deceleration
parameters. Now we will discuss the detailed cosmologi-
cal behaviour for results obtained in the previous section.
The numerical solution for the differential equation (23)
reflects various evolutionary features of �d for redshift z

by the transformation x = ln

(
1

1 + z

)
with initial condi-

tion �d(x = 0) = �d [0] ≈ 0.7. And hence by virtue of
Friedmann equation �m0 ≈ 0.3.

The Figs. 1 and 2 shows the DE density parameter plots
against the redshift z. In Fig. 1, we have considered δ = 0.2
fixed with varying c values. Figure 2 is plotted by considering
c = 0.7 fixed and varying δ. As we can see from both the
graphs, the current model may give the universe’s needed
thermal history, i.e. in the past matter dominated, current
domination of 70% by DE and in future fully dominated by
DE only.

Figures 3 and 4 represent EoS parameters for the NTHDE
model. Which shows that the current value of wd resides in
the vicinity of −1, which is consistent with the observational
data. Now we’ll look at how the model parameters δ and c

Fig. 1 NTHDE density parameter �d with δ = 0.2 and c = 0.8 to 1.2
is plotted w.r.t. redshift z by considering �d [z = 0] ≈ 0.7, M2

p = 1
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Fig. 2 NTHDE density parameter �d with c = 0.7 and δ = 0.1 to 0.5
is plotted w.r.t. redshift z by considering �d [z = 0] ≈ 0.7, M2

p = 1

Fig. 3 The evolution of EoS parameter wd of NTHDE with δ = 0.2
and c = 0.8 to 1.2 is plotted w.r.t. redshift z by considering �d [z =
0] ≈ 0.7, M2

p = 1

Fig. 4 The evolution of EoS parameter wd of NTHDE with c = 0.7
and δ = 0.1 to 0.5 is plotted w.r.t. redshift z by considering �d [z =
0] ≈ 0.7, M2

p = 1

affect the DE’s EoS parameter wd . In Fig. 3 we have plotted
wd for δ = 0.2 and different c values. As can be seen, for
c < 1 values, wd always enters the phantom regime in the

Fig. 5 The deceleration parameter q with δ = 0.2 and c = 0.8 to 1.2
is plotted w.r.t. redshift z by considering �d [z = 0] ≈ 0.7, M2

p = 1

Fig. 6 The deceleration parameter q with c = 0.7 and δ = 0.1 to 0.5
is plotted w.r.t. redshift z by considering �d [z = 0] ≈ 0.7, M2

p = 1

far future. While c > 1 completely lies in the quintessence
region. c = 1 corresponds to the �CDM model. In addition,
we show wd for constant c = 0.7 and different δ values in
Fig. 4. We have an intriguing pattern here with rising δ, wd

remains almost the same at times around the current ones.
To get the far future value of wd , i.e. for z → −1 Eq. (28)
indicates the combined dependence on δ and c. In conclusion
NTHDE leads to some fascinating cosmic phenomenology
where wd shows behaviours like quintessence, or like quin-
tom.

Figures 5 and 6 describe the deceleration parameter q
behaviour against z. Figure 5 is plotted by fixing δ to be
0.2 and varying c values. While Fig. 6 is based on varying δ

and fixed c = 0.7. It confirms the universe to enter an accel-
erated phase for z ≈ 0.6. Which is in full agreement with the
observational data supported by [1,2]. The inner plot of Fig. 6
shows a close-up of the outer plot in which the difference can
be seen. They are not exactly identical but difference is very
small. Similar is the case with the Figs. 2 and 4.
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Fig. 7 The NTHDE density parameter �d and dark matter density
parameter �m is depicted. The graph is plotted against the redshift z by
considering δ = 0.2, c = 0.9, �d [z = 0] ≈ 0.7, M2

p = 1. Where the
present time corresponds to z = 0

4 Conclusive remarks

In the present work we formulated the HDE model in
which Tsallis entropy, a one-parameter generalization of
Boltzmann–Gibbs entropy, is used. Such a concept is derived
from a consistent relativistic statistical theory. A parameter δ

is used to distinguish deviations from conventional entropy
expressions. The consistent NTHDE model is obtained by
applying IR cutoff in terms of future event horizon and the
Tsallis entropy, to the standard HDE model. The parameter
δ is responsible for such an extension with usual HDE as a
limiting case δ → 0. We derived the differential equation
to describe the evolutionary behaviour of dark energy den-
sity parameter �d which investigates possible cosmic appli-
cability of NTHDE. On considering today’s universe to be
dominated 70% by DE, Fig. 7, clearly indicates the full dom-
ination of the universe by DE in the far future. In addition,
the analytical formulations of the deceleration parameter and
the EoS parameter are obtained. As per the observation from
NTHDE’s EoS parameter, the parameters c and δ describe the
diversified behaviour of the model i.e. pure quintessence for
c > 1, quintom for c < 1 (in near or far future) and �CDM
for c = 1. The trend shown by the deceleration parameter
q for the model, possesses interesting cosmological descrip-
tions such as the universe’s thermal history from dark matter
to DE. The transition from decelerated to accelerated phase
happens at z ≈ 0.6. Finally, because of consistent formula-
tion and versatile behaviour, the NTHDE leads to standard
HDE as a limiting case, which is the biggest advantage of the
model.

Indeed, the use of such entropies is in the early stages
[48]. The existence of long-range interactions in systems is a
basic reason to use such entropies in describing the systems
[45]. General relativity (GR) is not the final form of the grav-

itational theory. GR satisfies Bekenstein entropy, and thus,
one may expect that other entropies should be satisfied by
the final form of the gravitational theory. Such attempts can
at least help us get some estimations about the final form
of gravitational field equations. It seems that there is a con-
nection between the quantum aspects of gravity and non-
extensivity [49–56]. There are various works claiming that
various problems are solved (at least, solved better) by con-
sidering such entropies which may be a clue to understand
the thermodynamics of spacetime, gravity, and related phe-
nomena [48,57–63]. HDE is a great hypothesis to reconcile
quantum field theory and gravity, a hope to solve the DE
problem. Therefore, such papers may at least help us find
a proper mathematical model for the density profile of DE,
a result which is so vital to overcome the problems such as
the nature and behavior of DE, DM, spacetime, and the final
form of gravitational theory. Indeed, one may consider such
entropies as well as the Loop Quantum Gravity entropy as
the sub-classes of a general entropy [64].

As the origin and behavior of DE are not completely
known, and moreover, due to the weakness of GR in describ-
ing DE, and also since HDE based Bekenstein entropy is not
capable to describe DE, we think that it is too soon to confine
ourselves to small values of δ. More observations and studies
are still needed to get and apply this limitation.

In order for the NTHDE to be a successful alternative to
describe the DE, the model parameters must be constrained.
Such constraints can be obtained using the observational
data from the Hubble parameter, CMB, BAO, and SNIa.
The phase-space can be analyzed to understand the global
dynamics of the DE.

Acknowledgements The author U. K. Sharma thanks the IUCAA,
Pune, India for awarding the visiting associateship. The authors are
also very much thankful to the learned referee for his/her constructive
suggestions which helped to improve the quality of paper in present
form.

Data Availability Statement This manuscript has no associated data
or the data will not be deposited. [Authors’ comment: The present work
is a theoretical study and adopted numerical analysis, and therefore
there is no data to be deposited.]

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adaptation,
distribution and reproduction in any medium or format, as long as you
give appropriate credit to the original author(s) and the source, pro-
vide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indi-
cated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permit-
ted use, you will need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.
Funded by SCOAP3.

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


Eur. Phys. J. C (2022) 82 :233 Page 7 of 8 233

References

1. A.G. Riess et al. (Supernova Search Team), Observational evidence
from supernovae for an accelerating universe and a cosmologi-
cal constant. Astron. J. 116, 1009–1038 (1998). https://doi.org/10.
1086/300499. arXiv:astro-ph/9805201

2. S. Perlmutter et al. (Supernova Cosmology Project), Measure-
ments of � and � from 42 high redshift supernovae. Astro-
phys. J. 517, 565–586 (1999). https://doi.org/10.1086/307221.
arXiv:astro-ph/9812133

3. E.J. Copeland, M. Sami, S. Tsujikawa, Dynamics of dark energy.
Int. J. Mod. Phys. D 15, 1753–1936 (2006). https://doi.org/10.
1142/S021827180600942X arXiv:hep-th/0603057

4. Y.F. Cai, E.N. Saridakis, M.R. Setare, J.Q. Xia, Quintom cos-
mology: theoretical implications and observations. Phys. Rep.
493, 1–60 (2010). https://doi.org/10.1016/j.physrep.2010.04.001
arXiv:0909.2776 [hep-th]

5. K. Bamba, S. Capozziello, S. Nojiri, S.D. Odintsov, Dark
energy cosmology: the equivalent description via different the-
oretical models and cosmography tests. Astrophys. Space Sci.
342, 155–228 (2012). https://doi.org/10.1007/s10509-012-1181-8
arXiv:1205.3421 [gr-qc]

6. S. Nojiri, S.D. Odintsov, Unified cosmic history in modified grav-
ity: from F(R) theory to Lorentz non-invariant models. Phys.
Rep. 505, 59–144 (2011). https://doi.org/10.1016/j.physrep.2011.
04.001 arXiv:1011.0544 [gr-qc]

7. S. Capozziello, M. De Laurentis, Extended theories of grav-
ity. Phys. Rep. 509, 167–321 (2011). https://doi.org/10.1016/j.
physrep.2011.09.003 arXiv:1108.6266 [gr-qc]

8. Y.F. Cai, S. Capozziello, M. De Laurentis, E.N. Saridakis, f(T)
teleparallel gravity and cosmology. Rep. Prog. Phys. 79(10),
106901 (2016). https://doi.org/10.1088/0034-4885/79/10/106901
arXiv:1511.07586 [gr-qc]

9. E.N. Saridakis et al. (CANTATA), Modified gravity and cosmol-
ogy: an update by the CANTATA network. arXiv:2105.12582 [gr-
qc]

10. G. ’t Hooft, Dimensional reduction in quantum gravity. Conf. Proc.
C 930308, 284–296 (1993). arXiv:gr-qc/9310026

11. L. Susskind, The World as a hologram. J. Math. Phys.
36, 6377–6396 (1995). https://doi.org/10.1063/1.531249
arXiv:hep-th/9409089

12. R. Bousso, The holographic principle. Rev. Mod. Phys.
74, 825–874 (2002). https://doi.org/10.1103/RevModPhys.74.825
arXiv:hep-th/0203101

13. J.D. Bekenstein, Black holes and entropy. Phys. Rev. D 7, 2333–
2346 (1973). https://doi.org/10.1103/PhysRevD.7.2333

14. S.W. Hawking, Particle creation by black holes. Commun. Math.
Phys. 43, 199–220 (1975). https://doi.org/10.1007/BF02345020
[Erratum: Commun. Math. Phys. 46, 206 (1976)]

15. M. Li, A model of holographic dark energy. Phys. Lett.
B 603, 1 (2004). https://doi.org/10.1016/j.physletb.2004.10.014
arXiv:hep-th/0403127

16. S. Wang, Y. Wang, M. Li, Holographic dark energy. Phys. Rep.
696, 1–57 (2017). https://doi.org/10.1016/j.physrep.2017.06.003
arXiv:1612.00345 [astro-ph.CO]

17. R. Horvat, Holography and variable cosmological constant. Phys.
Rev. D 70, 087301 (2004). https://doi.org/10.1103/PhysRevD.70.
087301 arXiv:astro-ph/0404204

18. D. Pavon, W. Zimdahl, Holographic dark energy and cosmic coinci-
dence. Phys. Lett. B 628, 206–210 (2005). https://doi.org/10.1016/
j.physletb.2005.08.134 arXiv:gr-qc/0505020

19. S. Nojiri, S.D. Odintsov, Unifying phantom inflation with late-
time acceleration: scalar phantom-non-phantom transition model
and generalized holographic dark energy. Gen. Relativ. Gravit. 38,

1285–1304 (2006). https://doi.org/10.1007/s10714-006-0301-6
arXiv:hep-th/0506212

20. B. Wang, C.Y. Lin, E. Abdalla, Constraints on the inter-
acting holographic dark energy model. Phys. Lett. B 637,
357–361 (2006). https://doi.org/10.1016/j.physletb.2006.04.009
arXiv:hep-th/0509107

21. M.R. Setare, E.N. Saridakis, Non-minimally coupled canonical,
phantom and quintom models of holographic dark energy. Phys.
Lett. B 671, 331–338 (2009). https://doi.org/10.1016/j.physletb.
2008.12.026 arXiv:0810.0645 [hep-th]

22. R.G. Cai, A dark energy model characterized by the age of the
universe. Phys. Lett. B 657, 228–231 (2007). https://doi.org/10.
1016/j.physletb.2007.09.061 arXiv:0707.4049 [hep-th]

23. A. Jawad, N. Azhar, S. Rani, Entropy corrected holographic dark
energy models in modified gravity. Int. J. Mod. Phys. D 26(04),
1750040 (2016). https://doi.org/10.1142/S0218271817500407

24. A. Pasqua, S. Chattopadhyay, R. Myrzakulov, Power-law entropy-
corrected holographic dark energy in Hořava–Lifshitz cos-
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