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Abstract We present a simple, analytic and straightforward
method to elucidate the effects produced by polytropic flu-
ids on any other gravitational source, no matter its nature,
for static and spherically symmetric spacetimes. As a direct
application, we study the interaction between polytropes
and perfect fluids coexisting inside a self-gravitating stellar
object.

1 Introduction

The study of self-gravitating systems is of great impor-
tance in the context of general relativity. In particular, elu-
cidating what happens inside compact stellar distributions
is extremely important, especially if we want to gain a good
understanding of gravitational collapse. Presumably, the inte-
rior of a stellar structure is a complex physical system, formed
by fluids of different natures, which surely interact with each
other in a non-trivial way. There are, in fact, a large number of
open problems associated with self-gravitating objects, such
as the definition of mass (intrinsic to general relativity) [1],
self-forces [2], equation of state [3], just to mention some of
them.

Although it is true that we can always group fluids of
different nature into a single energy–momentum tensor T̃μν ,
namely,

T̃μν = T 1
μν + · · · + T n

μν, (1)

as indeed it is required by Einstein’s field equations, it is no
less true that an oversimplification of these systems could
jeopardize an adequate description of them. A clear exam-
ple of this occurs when we consider complex stellar distri-
butions (being electrically charged, with dissipative effects,
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anisotropic, etc.) and impose a fairly simple equation of state
to describe the system as a whole. This could mean an over-
simplification whose main motivation is far from being phys-
ical: a reduction of the degrees of freedom of the system
that makes it more manageable. It is true that in many cases
this strategy produces great results, such as exact and physi-
cally reasonable solutions, but perhaps we are paying a high
price without being aware of it, such as a rather idealized
description of a system whose physical nature is intrinsically
complex.

Regarding the above, it would be very useful to see how
relevant is the role that each fluid, represented by their respec-
tive energy–momentum tensor T i

μν in (1), plays on a self-
gravitating system, as well as how these gravitational sources
interact with each other. This would allow, for instance,
detecting which source dominates over the others, and con-
sequently rule out any equation of state incompatible with
the dominant source. Conceptually, achieving this in gen-
eral relativity should be extremely difficult, given the non-
linear nature of the theory. However, since the Gravitational
Decoupling approach (GD) [4,5] is precisely designed for
coupling/decoupling gravitational sources in general relativ-
ity, we will see that, indeed, it is possible to elucidate the role
played by each gravitational source, without resorting to any
numerical protocol or perturbation scheme, as explained in
the next paragraph.

In particular, if in Eq. (1) we consider two arbitrary
sources {Tμν, θμν}, then the contracted Bianchi identities
yields ∇μ Tμν + ∇μ θμν = 0. This has two possible solu-
tions, namely,

∇μ Tμ
ν = ∇μθμ

ν = 0,

∇μ Tμ
ν = −∇μθμ

ν = ?

The first solution indicates that each source is covariantly
conserved, and therefore the interaction between them is
purely gravitational. The second option, more interesting
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and much more realistic,1 indicates an exchange of energy
between these sources that, in principle, would be impossible
to quantify or at least describe in some detail. The reason for
this is that the Bianchi identities do not introduce additional
information beyond Einstein’s equations. They are identi-
ties, and therefore are trivially satisfied. However, the GD
is precisely the scheme that circumvents the intrinsic trivial-
ity of Bianchi identities, and it is what allows to elucidate,
in detail, the interaction between both gravitational sources
[see further Eq. (31)].

In particular, and motivated by the interest that they have
generated in recent years, in this article we will choose a
polytrope as one of the gravitational sources to determine its
effects on any other generic fluid, regardless of its nature.

The paper is organised as follows: in Sect. 2, we first
review the fundamentals of the GD approach to a spheri-
cally symmetric system containing two generic sources; in
Sect. 3, we choose a polytropic fluid to study its effects on a
generic gravitational source, and we introduce a systematic
and direct procedure to elucidate these effects; in Sect. 4,
we implement the strategy developed in Sect. 3 for the case
of a perfect fluid; finally, we summarize our conclusions in
Sect. 5.

2 Gravitational decoupling

In this section, we briefly review the GD for spherically sym-
metric gravitational systems described in detail in Ref. [5].
For the axially symmetric case, see Ref. [6]. The gravitational
decoupling approach and its simplest version [4], based in the
Minimal Geometric Deformation (MGD) [7–30], are attrac-
tive for many reasons (for an incomplete list of references,
see [31–81]. Among them we can mention (i) the coupling
of gravitational sources, which allows for extending known
solutions of the Einstein field equations into more com-
plex domains; (ii) the decoupling of gravitational sources,
which is used to systematically reduce (decouple) a complex
energy–momentum tensor Tμν into simpler components; (iii)
to find solutions in gravitational theories beyond Einstein’s;
(iv) to generate rotating hairy black hole solutions, among
many others applications.

Let us consider the Einstein field equations2

Gμν ≡ Rμν − 1

2
R gμν = κ T̃μν, (2)

1 If both fluids coexist in a certain region of spacetime, as in fact occurs
within a self-gravitating object.
2 We use units with c = 1 and κ = 8 π GN, where GN is Newton’s
constant.

with a total energy–momentum tensor given by,

T̃μν = Tμν + θμν, (3)

where Tμν is usually associated with some already known
solution, whereas θμν may contain new fields or even be
related with a new gravitational sector not described by gen-
eral relativity. As a consequence of Bianchi identity, the total
source must be covariantly conserved,

∇μ T̃μν = 0. (4)

For spherically symmetric and static systems, we can write
the metric gμν as

ds2 = eν(r) dt2 − eλ(r) dr2 − r2 d�2, (5)

where ν = ν(r) and λ = λ(r) are functions of the areal
radius r only and d�2 = dθ2 + sin2 θ dφ2. The Einstein
equations (2) then read

κ
(
T 0

0 + θ 0
0

)
= 1

r2 − e−λ

(
1

r2 − λ′

r

)
(6)

κ
(
T 1

1 + θ 1
1

)
= 1

r2 − e−λ

(
1

r2 + ν′

r

)
(7)

κ
(
T 2

2 + θ 2
2

)
= −e−λ

4

(
2ν′′ + ν′2 − λ′ν′ + 2

ν′ − λ′

r

)
,

(8)

where f ′ ≡ ∂r f and T̃ 3
3 = T̃ 2

2 due to the spherical symme-
try. By simple inspection, we can identify in Eqs. (6)–(8) an
effective density

ρ̃ = T 0
0 + θ 0

0 = ρ + E, (9)

an effective radial pressure

p̃r = −T 1
1 − θ 1

1 = pr + Pr , (10)

and an effective tangential pressure

p̃t = −T 2
2 − θ 2

2 = pt + Pt , (11)

where clearly we have

T ν
μ = diag[ρ, −pr , −pt , −pt ], (12)

θ ν
μ = diag[E, −Pr , −Pt , −Pt ]. (13)

In general, the anisotropy

� ≡ p̃t − p̃r (14)

does not vanish and the system of Eqs. (6)–(8) may be treated
as an anisotropic fluid.
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We next consider a solution to the Eq. (2) for the seed
source Tμν alone, that is,

T̃μν = Tμν + ���
0

θμν, (15)

which we write as

ds2 = eξ(r) dt2 − eμ(r) dr2 − r2 d�2, (16)

where

e−μ(r) ≡ 1 − κ

r

∫ r

0
x2 T 0

0 (x) dx = 1 − 2m(r)

r
(17)

is the standard general relativity expression containing the
Misner–Sharp mass function m = m(r). The consequences
of adding the source θμν can be seen in the geometric defor-
mation of the metric (16), namely3

ξ → ν = ξ + g (18)

e−μ → e−λ = e−μ + f, (19)

where f and g are respectively the geometric deformations
for the radial and temporal metric components. We empha-
size that the expressions in Eqs. (18) and (19) are not a coor-
dinate transformation. They just represent the change in the
spacetime geometry (16) generated by a physical source with
energy–momentum tensor θμν .

By means of Eqs. (18) and (19), the Einstein equations (6)–
(8) are separated in two sets: (A) one is given by the standard
Einstein field equations with the energy–momentum tensor
Tμν , that is

κ ρ = 1

r2 − e−μ

(
1

r2 − μ′

r

)
, (20)

κ pr = − 1

r2 + e−μ

(
1

r2 + ξ ′

r

)
, (21)

κ pt = e−μ

4

(
2ξ ′′ + ξ ′2 − μ′ξ ′ + 2

ξ ′ − μ′

r

)
, (22)

which is assumed to be solved by the metric (16); (B) the
second set contains the source θμν and reads

κ E = − f

r2 − f ′

r
, (23)

κ Pr − Z1 = f

(
1

r2 + ν′

r

)
(24)

κ Pt − Z2 = f

4

(
2 ν′′ + ν′2 + 2

ν′

r

)

− f ′

4

(
ν′ + 2

r

)
, (25)

3 Usually we write α g and α f , with α a parameter introduced to keep
track of these deformations. Here we dispense with it for simplicity.

where

Z1 = e−μ g′

r
(26)

4 Z2 = e−μ

(
2g′′ + g′2 + 2 g′

r
+ 2ξ ′ g′ − μ′g′

)
. (27)

Of course the tensor θμν vanishes when the deformations
vanish ( f = g = 0). We see that for the particular case
g = 0, Eqs. (23)–(25) reduce to the simpler “quasi-Einstein”
system of the MGD of Ref. [4], in which f is only deter-
mined by θμν and the undeformed metric (16). Also, notice
that the set (23)–(25) contains {ξ, μ}, and therefore is not
independent of (20)–(22). This of course makes sense since
both systems represent a simplified version of a more com-
plex whole, described by Eqs. (6)–(8).

Now let us see the conservation equation (4), which reads
[(

T 1
1

)′ − ξ ′

2

(
T 0

0 − T 1
1

)
− 2

r

(
T 2

2 − T 1
1

)]

−g′

2

(
T 0

0 − T 1
1

)

+
(
θ 1

1

)′ − ν′

2

(
θ 0

0 − θ 1
1

)
− 2

r

(
θ 2

2 − θ 1
1

)
= 0, (28)

The bracket represents the divergence of Tμν computed with
the covariant derivative ∇(ξ,μ) for the metric (16), and is a
linear combination of the Einstein field equations (20)–(22).
Since the Einstein tensor G(ξ,μ)

μν for the metric (16) satisfies
its respective Bianchi identity, the momentum tensor Tμν is
conserved in this geometry,

∇(ξ,μ)
σ T σ

ν = 0. (29)

Notice that

∇σ T σ
ν = ∇(ξ,μ)

σ T σ
ν − g′

2

(
T 0

0 − T 1
1

)
δ1
ν , (30)

where the divergence in the left-hand side is calculated with
the deformed metric in Eq. (5). Finally, Eq. (28) becomes

∇σ T σ
ν = −∇σ θσ

ν = −g′

2

(
T 0

0 − T 1
1

)
δσ

ν, (31)

which is also a linear combination of the “quasi-Einstein”
field equations (23)–(25) for the source θμν . We therefore
conclude that the two sources Tμν and θμν can be success-
fully decoupled by means of the GD. This result is particu-
larly remarkable since it is exact, without requiring any per-
turbative expansion in f or g [7].

Finally, in order to be as self-contained as possible, and
to clarify the reader any potential confusion about what we
developed between Eqs. (2)–(31), we next describe the intrin-
sic relationship between gravitational decoupling and energy
exchange for coupled/decoupled relativistic fluids.
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1. We first start by considering a gravitational source Tμν .
According to general relativity, the equation of motions
for this source are Einstein’s equations, displayed in
Eqs. (20)–(22), whose metric contains the geometric
functions {ξ, μ}.

2. Then we couple Tμν with a second source θμν by

Tμν → Tμν + θμν.

This coupling changes the original spacetime geometry
{ξ, μ} → {ν, λ}, as specified by Eqs. (18) and (19).

3. The new spacetime geometry {ν, λ}, associated with the
total source T̃μν = Tμν + θμν , satisfies Einstein’s equa-
tions (6)–(8) if and only if the source θμν and its geometric
functions {g, f } satisfy the equation of motions (23)–
(25).

4. The complete process describes previously cannot be
arbitrary and, in fact, is subject to the fulfillment of
Bianchi identities, which implies that T̃μν = Tμν + θμν

is covariantly conserved, i.e., ∇μ T̃μν = 0. This yields
the expression in Eq. (31), showing an energy exchange
between the relativistic fluids {Tμν, θμν}.

We want to conclude by emphasizing two aspects that we
must always keep in mind:

• The GD approach is an exact scheme.
• Regardless of the origin of θμν (as we have already men-

tioned, it can even represent a new gravitational sector),
all our analysis is confined to the context of general rel-
ativity.

• The sets (20)–(22) and (23)–(25) are not independent.
• The sources {Tμν, θμν} in Einstein’s equations (6)–(8)

can be successfully decoupled in the sets (20)–(22)
and (23)–(25) if and only if the interaction between them
is controlled by Eq. (31).

2.1 Matching conditions at the surface

The interior (0 ≤ r ≤ R) of the self-gravitating system of
radius (r = R) is described by the metric (5), which we can
conveniently write as

ds2 = eν−(r) dt2 −
[

1 − 2 m̃(r)

r

]−1

dr2 − r2 d�2, (32)

where the interior mass function is given by

m̃(r) = m(r) − r

2
f (r), (33)

with the Misner–Sharp mass m given in Eq. (17) and f
the geometric deformation in Eq. (19). On the other hand,

the exterior (r > R) space-time will be described by the
Schwarzschild metric

ds2 =
(

1 − 2M
r

)
dt2 − dr2

(
1 − 2M

r

) − r2 d�2. (34)

To have a smooth continuity, the metrics in Eqs. (32)
and (34) must satisfy the Israel–Darmois matching condi-
tions at the star surface � defined by r = R. In particular,
the continuity of the metric across r = R implies

eν−(R) = 1 − 2M
R

, (35)

and

e−λ−(R) = 1 − 2M
R

. (36)

Likewise, the second fundamental form yields

[
T̃μν r

ν
]
�

= 0, (37)

where rμ is the unit radial vector normal to a surface of con-
stant r . Hence, using Einstein equations in Eq. (37), we have

[pr + Pr ]� = 0. (38)

This matching condition takes the final form

pR + PR = 0, (39)

where pR ≡ p(R) and PR ≡ P(R) . The condition (39) can
be written as

p̃R ≡ pR + fR
κ

(
1

R2 + ν′
R

R

)
+ g′

R

κ R
e−μ = 0, (40)

where ν′
R ≡ ∂rν

−|r=R . Eqs. (35), (36) and (40) are the nec-
essary and sufficient conditions for matching the interior GD
metric (32) with the outer Schwarzschild metric (34).

3 Polytropic equation of state

So far, all our analysis has been generic, without specifying
the sources {Tμν, θμν} that compose our system. Of all the
possible gravitational sources, we will choose one of par-
ticular importance, which has been extensively investigated.
We refer to a polytropic fluid, which in our case will be rep-
resented by the tensor θμν . Hence, following our previous
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analysis, we will see how to elucidate the effects of a poly-
trope on another generic source Tμν describe by Einstein’s
equations (20)–(22).

If the tensor θμν represents an isotropic polytrope, it sat-
isfies the equation of state

Pr = Pt = K (E)� . (41)

However, in our case we will require that only the radial
pressure satisfies the equation of state (41), allowing the tan-
gential component to evolve independently. Hence,

Pr = K (E)� �= Pt , (42)

with � = 1 + 1/n, where n is the polytropic index and
K > 0 denotes a parameter which contains the temperature
implicitly and is governed by the thermal characteristics of
a given polytrope. (For all details regarding basic concepts
of polytropes, see for instance Ref. [82], also see references
Refs. [83–88]).).

Let us start by using Eqs. (23) and (24) in the expres-
sion (42), which yields a first order non-linear differential
equation for the deformation f ,

f ′

r
+ f

r2 = −
(

κ�−1

K

)1/� [
e−μ g′

r
+ f

(
1

r2 + ν′

r

)]1/�

(43)

Therefore, given a seed solution {ξ, μ} to Einstein equa-
tions (20)–(22), we end with a non-linear differential expres-
sion in Eq. (43) to determinate the deformations {g, f }.
Hence, we need to prescribe additional information. In any
case, we must be careful in keeping the physical acceptabil-
ity of the seed solution {ξ, μ}, which is not a trivial issue. In
this respect, and in order to ensure the coupling condition in
Eq. (40), we impose the so-called mimic constraint for the
pressure, namely,

Pr ∼ pr . (44)

The simplest expression for Pr (r) satisfying the con-
straint (44) is given by

Pr (r) = α(K , �)pr (r), (45)

where α(K , �) is a characteristic function for each poly-
trope. The simplest form for α(K , �) consistent with the
polytropic equation of state (42) and with the condition

f (r)
∣∣
K=0 = 0 (46)

is given by

α(K , �) = K�. (47)

Hence, the expression (45) becomes

Pr (r) = K� pr (r), (48)

Expressions in Eqs. (43) and (48) now are written as

f ′

r
+ f

r2 = − (κ K )
�−1
�

[
e−μ

(
1

r2 + ξ ′

r

)
− 1

r2

]1/�

,

(49)

g′ =
(

1

e−μ + f

)[(
K� e−μ − f

) (
ξ ′ + 1

r

)
− K�

r

]
.

(50)

We see that for a given seed solution {ξ, μ} to Einstein equa-
tions (20)–(22), we can determinate its deformation {g, f }
produced for any polytrope {K , �} by Eqs. (49) and (50).

A condition other than (44), also useful to ensure a phys-
ically acceptable solution, is to impose the so-called mimic
constraint for the pressure, i.e,

E ∼ ρ. (51)

Hence, following the same reasoning as Eqs. (45)–(47), we
have

E(r) = K� ρ(r), (52)

which yields,

f ′

r
+ f

r2 = −α

[
1

r2 − e−μ

(
1

r2 − μ′

r

)]
, (53)

g′ =
(

r

e−μ + f

)[
κ K

(
α

κ

[
1

r2 − e−μ

(
1

r2 − μ′

r

)])�

− f

(
1

r2 + ξ ′

r

)]
. (54)

In short, our approach allows to determinate the effects of
polytropes on any generic fluid, represented by Tμν and sat-
isfying Einstein equations (20)–(22), no matter its nature.

Note that if we impose the constraint (45), we are faced
with solving the nonlinear differential equation (49) to deter-
mine f (r). Instead, if we impose the condition (52), we will
need to solve the linear differential equation (53) to find f (r).
Everything seems to indicate that it is more convenient to
impose the constraint (52). However, using the condition (45)
has a quite useful advantage: the coupling problem on the
surface, which could be non-trivial in some cases, is greatly
reduced.

Finally, we see that a critical characteristic of the inter-
action between both fluids, such as the exchange of energy–
momentum � E between them, is easily elucidated by [see
Eq. (31)]

� E = g′

2
(ρ + pr ) , (55)

123



211 Page 6 of 11 Eur. Phys. J. C (2022) 82 :211

which we can write in terms of pure geometric functions as
[see Eqs. (20)–(22)]

� E = g′

2 κ

e−μ

r

(
ξ ′ + μ′) . (56)

From the expression (55) we can see that g′ > 0 yields
� E > 0. This indicates ∇σ θσ

ν > 0, according to the conser-
vation equation (31), which means that the polytrope is giv-
ing energy to the environment. The opposite happens when
g′ < 0.

3.1 Strategy

We can now detail our scheme to elucidate the effects of the
polytrope {E, Pr , Pt } on any other generic fluid {ρ, pr , pt },
no matter its nature (isotropic, charged, scalar field, etc.):

1. Take any solution (16) of the Einstein field equations
Gμν = κ Tμν in Eqs. (20)–(22).

2. Consider a polytropic fluid, characterized by the constant
K and index n in the equation of state (42).

3. Impose the condition (48) [or Eq. (52)] to ensure a poly-
tropic fluid with acceptable physical behavior.

4. Use the metric components {ξ, μ} displayed in Eq. (16)
to find { f, g′} by Eqs. (49) and (50) [or by Eqs. (53)
and (54) ] (it is NOT necessary to find g).

5. Now use { f, g′} in the field equations (23)–(25) to explic-
itly determinate the polytrope {E, Pr , Pt }.

6. Finally, use the metric (16) and { f, g′} to find {ρ̃, p̃r , p̃t }
through Einstein equations (6)–(8). Hence, at this stage,
we can elucidate the effects of polytropes {E, Pr , Pt }
on any other source {ρ, pr , pt } by simple inspection of
the total effective fluid {ρ̃, p̃r , p̃t } [and its space-time,
described by the metric (5)].

We want to emphasize that the previous scheme allows us
to study the coexistence of a polytropic fluid with any other,
and elucidate the effects of the former on the latter, by a sys-
tematic and direct way. Next we will consider a perfect fluid
as a seed solution to elucidate the consequences of polytrope
on this gravitational sources.

4 Coexistence of polytropes and perfect fluids

In particular, we can simply choose a known solution with
physical relevance, like the well-known Tolman IV solution
{ξ, μ, ρ, p} for perfect fluids [89], namely,

eξ(r) = B2
(

1 + r2

A2

)
, (57)

e−μ(r) =
(

1 − r2

C2

) (
1 + r2

A2

)

1 + 2 r2

A2

, (58)

ρ(r) = 3A4 + A2
(
3C2 + 7r2

) + 2r2
(
C2 + 3r2

)

κ C2
(
A2 + 2r2

)2 , (59)

p(r) = C2 − A2 − 3r2

κ C2
(
A2 + 2r2

) . (60)

The constants A, B and C in Eqs. (57)–(60) are determined
by the matching conditions in Eqs. (35), (36) and (40) [with
fR = gR = 0] between the above interior solution and the
exterior metric in Eq. (34). This yields

A2

R2 = R − 3 M

M
, B2 = 1 − 3 M

R
,

C2

R2 = R

M
, (61)

with the compactness M/R < 4/9, and M = m(R) the
total mass in Eq. (17). The expressions in Eq. (61) ensure the
geometric continuity at r = R and will change when we add
the polytrope source θμν [indeed, the constant A in Eq. (61)
will change as A → A(K , n)].

Using the metric functions in Eqs. (57) and (58) in the
differential expression (49) we obtain the geometric defor-
mation in terms of the polytropic index n, which reads

f (r) = −1

3
(κ K )

1
n+1 r2

(
C2 − A2

A2 C2

) n
n+1

Fn(r) + c1

r
, (62)

where Fn(r) is an Appell hypergeometric function and the
integration constant c1 = 0 to have a regular solution in the
origin r = 0. Let us remind that, contrary to the radial metric
component λ, the temporal one ν appears only as functions
of its derivatives in Einstein equations (6)–(8). In this sense,
to determine the source of the metric (5), it is not necessary
to obtain the explicit form of the temporal deformation g by
Eq. (50).

The continuity of the first fundamental form given by
Eqs. (35) and (36) leads to

B2
(

1 + R2

A2

)
egR = 1 − 2M

R
, (63)

and

e−μ + fR = 1 − 2M
R

, (64)

where fR = f (R) is the deformation evaluated at the star
surface. The continuity of the second fundamental form in
Eq. (40) yields

C2 = A2 + 3R2 (65)
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Fig. 1 Radial pressure [ p̃r (n, K ) × 104] for two inner layers

and then the deformation in Eq. (62) takes the final form

f (r) = −
(

κ K

3

) 1
n+1

r2
[

R2

A2(A2 + 3R2)

] n
n+1

Fn(r), (66)

On the other hand, by using the condition in (64), we obtain
for the Schwarzschild mass

2M
R

= 2 M

R
− fR, (67)

where M = m(R) in the expression in Eq. (17) has been used.
Finally, by using the expression in Eq. (67) in the matching
condition (63), we obtain

B2
(

1 + R2

A2

)
egR = A2 + R2

A2 + 3R2 + fR . (68)

Eqs. (65), (67) and (68) are the necessary and sufficient
conditions for the matching of the interior metric (5) to
a spherically symmetric outer “vacuum” described by the
Schwarzschild metric in Eq. (34). From Eq. (68) we see that
the constants in Eq. (61) are now functions of the polytropic
variables, that is,

A → A(K , �), B → B(K , �) , C → C(K , �). (69)

Also notice that for a given polytrope {K , n}, the expres-
sion in Eq. (68) contains two unknown functions {A, B}.
We might be tempted to eliminate B by a time rescaling
t → t̃ = Bt in the metric (5), but this would lead to a solu-
tion where the perfect fluid in Eqs. (57)–(61) is not regained

when g = f = 0. Since we want to keep the Tolman IV
solution in this limit, we introduce

A(K , �) = A0 + ζ(K , �), (70)

where A0 is the perfect fluid value in Eq. (61), and ζ(K , �) a
function with dimensions of a length encoding the polytropic
effects, which satisfies

ζ(K , �)
∣∣
K=0 = 0. (71)

Hence, given an expression for ζ(K , �), we can determinate
B(K , �) by the condition (68), so that the problem at the stel-
lar surface is closed. We want to conclude by emphasizing
that the expression in Eq. (70) does not mean any approxi-
mation, much less a perturbative analysis.

Next we will proceed with a simple reasonable expression
for ζ , given by

ζ(K , �) = − R

M2 K
n, (72)

where ζ < 0 is in agreement with (61), which indicates that
A decreases as M increases [see Eqs. (33) and (66)]. Hence,
for a given polytrope {K , n}, according to Eqs. (10), (45)
and (60) we find the pressure as

p̃r (r) = pr + Pr = 3
(
1 + K�

)
(R2 − r2)

κ
(
A2 + 3 R2

) (
A2 + 2r2

) , (73)

where we have used the condition in Eq. (65). On the other
hand, the energy density is given by the expression in Eq. (9),
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Fig. 2 Radial pressure [ p̃r (r) × 104] for three different cases, where we can see the effects of the polytrope on the perfect fluid (K = 0). We take
n = 3

Fig. 3 Radial pressure [ p̃r (r) × 104] for K = 0.01

Fig. 4 Radial pressure [ p̃r (r, K ) × 104] (left panel) and [ p̃r (r, n) × 104] (right panel)
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Fig. 5 Anisotropy [�(r) × 102] and exchange of energy [�E(r) × 102] for n = 0.5 and K = 0.01

where ρ(r) is displayed in Eq. (59) while the polytropic den-
sity takes the simple form

E =
(

K

3 κn

)[
R2

A2(A2 + 3R2)

] n
n+1 (

3 Fn + r F ′
n

)
. (74)

The tangential pressure, given by Eq. (11), also has an ana-
lytical expression in terms of Fn (which converge rapidly),
but it is too large to display. As we see, our solution does
not require any perturbative analysis. Figure 1 shows the
pressure in Eq. (73) as a continuous function of the poly-
tropic parameters {n, K }. We see that the effects are greater
for the innermost layers, and are always proportional to K
and 1/n. The same total effective pressure (73) is displayed
in Figs. 2 and 3, now showing the effects of polytropes on
stellar spheres explicitly. On the other hand, Fig. 4 shows
the pressure p̃r (r, K ) and p̃r (r, n). Finally, the interaction
between the polytope and the perfect fluid, which produces
anisotropic consequences, is shown in Fig. 5. We see that the
interaction between both fluids increases significantly near
the stellar surface, and in fact, there is a positive gradient of
energy in the radial direction. This could be interpreted as
the necessary work done by the polytrope to keep the perfect
fluid within the stellar volume. We conclude by mentioning
that the strong energy condition is satisfied in all regions
inside the stellar distribution.

5 Conclusions

The study of relativistic fluids and their coexistence within
self-gravitating systems is, in general, a complicated task to
carry out. The reason for this lies in the complexity of Ein-

stein’s field equations, which introduces nonlinear effects
that are difficult to handle, even for simplest cases such as
static and spherically symmetric systems. Despite this intrin-
sic and ineluctable difficulty, in this work we have developed
a simple, analytical and direct strategy to study the effects
of polytropes on any other relativistic fluid, regardless of the
nature of the latter.

As a direct application, we study the case of a perfect
fluid coexisting with a polytrope characterized by the param-
eters {K , n}. To carry out the above, we use the well-known
Tolman IV solution, which underlies in the limit K → 0,
where all polytropic effects vanish. The total effective solu-
tion, formed by both fluids, is then analyzed, finding energy
gradients � E that increase in the radial direction. These gra-
dients are maximum on the stellar surface r = R, as indicated
in Fig. 5, and are positive (negative) for the polytrope (per-
fect fluid). This indicates that the polytrope needs to give up
energy to achieve a coexistence with the perfect fluid com-
patible with the exterior Schwarzschild solution.

Finally, we want to point out that our solution satisfies the
strong energy condition. However, it is necessary to carry
out a more detailed study on its stability, and other questions
that remain open, and that are beyond the goal of this work.
For example, how much do our results depend on the chosen
isotropic solution? How stable is the coexistence under radial
perturbations? Likewise, the extension of this study to coex-
istence with other sources that are not necessarily isotropic
remain open.

We want to conclude by emphasizing the direct impact
of our approach on theories beyond Einstein, which can be
described by a modified Einstein–Hilbert action as

123



211 Page 10 of 11 Eur. Phys. J. C (2022) 82 :211

SG = SEH + SX =
∫ [

(R − 2�)

2κ
+ LM + LX

] √−g d4 x,

where R is the Ricci scalar, LM contains any matter fields
appearing in the theory and LX the Lagrangian density of a
new gravitational sector not described by general relativity,
whose energy–momentum tensor is given by

θμν = 2√−g

δ (
√−gLX)

δ gμν
= 2

δLX

δ gμν
− gμνLX.

Therefore, following our scheme, we can always study the
possible exchange of energy �E between Einstein’s gravity
and any other gravitational sector not described by general
relativity.
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