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Abstract We study various mathematical aspects of the
charged rotating black hole with two equal-magnitude angu-
lar momenta in five dimensions. We introduce a coordi-
nate system that is regular on the horizon and in which
Einstein–Maxwell equations reduce to an autonomous sys-
tem of ODEs. Employing Bondi and Kruskal-like coordi-
nates, we analyze the geometric regularity of the black hole
metric at infinity and the horizon, respectively, and the well-
posedness of the corresponding boundary value problem. We
also study the algebraic types of the electromagnetic and
curvature tensors. While outside the horizon the electromag-
netic and Ricci tensors are of type D, the Weyl tensor is alge-
braically general. The Weyl tensor simplifies to type II on the
horizon and type D on the bifurcation sphere. These results
imply inconsistency of the metric with the Kerr–Schild form
with a geodesic Kerr–Schild vector. This feature is shared by
the four-dimensional Kerr–Newman metric and the vacuum
Myers–Perry or charged Schwarzschild–Tangherlini geome-
tries in arbitrary dimension, but hence not by the black hole
we have considered here.

1 Introduction

Black holes represent the most basic objects of general rela-
tivity in four and higher dimensions. It is relatively straight-
forward to find static, spherically symmetric black hole solu-
tions to vacuum Einstein or Einstein–Maxwell equations.
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However, it is much more difficult to generalize such black
hole solutions to the rotating case and usually, an additional
simplifying assumption about the metric has to be employed
on top of stationarity and axial symmetry.

In particular, in constructing the Kerr metric in [16], the
metric was assumed to be of Petrov type D. For the con-
struction of a vacuum higher-dimensional rotating black hole
metric [23], the essential assumption was that it can be cast
in the Kerr–Schild form, similarly as in the four-dimensional
case:

gμν = ημν − 2Hkμkν, (1)

where ημν is the Minkowski metric, H a scalar function and
k is a null vector with respect to ημν

1.
The above two assumptions – Petrov type D and the Kerr–

Schild form – in fact also hold for the four-dimensional
charged rotating black hole described by the Kerr–Newman
metric [25,26] and for charged Schwarzschild–Tangherlini
black holes [38] in arbitrary dimension. Furthermore, in
these cases, the null eigenvectors of the electromagnetic
field F coincide with the principal null directions of the
Weyl tensor [27]. Note also that for Kerr, Kerr–Newman,
Myers–Perry, and Schwarzschild–Tangherlini metrics, the
Kerr–Schild vector k is geodesic.

In contrast with the four-dimensional case, where the
Kerr–Newman solution was constructed in less than a year
after the publication of the Kerr metric, the exact solution rep-
resenting a higher-dimensional charged rotating black hole
is now, three and a half decades after the publication of
the Myers–Perry solution [23], still unknown.2 Being a 5-
dimensional object, such a black hole is not of direct rel-

1 It follows that k is also null with respect to the full metric gμν .
2 Note that various approximate solutions, for example for small charge
[3,24], slow rotation [1,2] or large dimensions [4], are known.
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evance to the emerging field of gravitational wave astro-
physics, which has accompanied the development of LIGO,
LISA and other gravitational wave observatories. However,
it may be of interest to more detailed future phenomenologi-
cal investigations of new physics scenarios like brane world
models, where 5-dimensional gravity interacts with matter
confined to a 4-dimensional brane [11]. Independent of their
phenomenological significance, charged rotating black holes
are a good theoretical testing ground for methods of interpo-
lating between known charged static and uncharged rotat-
ing solutions, which besides higher dimensions may become
useful also in modified theories of gravity in 4 dimensions.

In this paper, we focus on the charged rotating black hole in
five dimensions with two equal-magnitude angular momenta,
starting with the metric ansatz previously employed in the
numerical studies of this black hole, initiated in [18,19] and
continued in [9,24]. These works have demonstrated the exis-
tence (or mathematically speaking, provided very strong evi-
dence thereof) of a solution to the Einstein–Maxwell equa-
tions with this ansatz, by numerically solving an ordinary
boundary value problem in the region between the hori-
zon and infinity. Their focus was on studying the numeri-
cal relationships between various black hole parameters that
can only be determined from the knowledge of the global
solution, rather than from only local approximations. For
instance, while the horizon radius, surface gravity, rotation
speed, and surface electric potential at the horizon are all
quantities local to the horizon, and while the total mass,
angular momentum, charge, and gyromagnetic ratio are local
to infinity, definite relations between these two groups of
parameters must be globally determined. However, these pre-
vious works have not discussed or have left implicit certain
structural or algebraic properties of these black holes. It is to
these matters that we turn our attention in this work.

Namely, we focus on two main aspects: the geometric reg-
ularity of the black hole solution at infinity and at the horizon,
and on the algebraic type of the metric in the region between
these two extremes. Indeed, we confirm that the black hole
metric has a regular extension across the horizon and that it
possesses a regular null infinity without incoming or outgo-
ing radiation. On the other hand, we also show that in the
bulk the metric is algebraically general3 and incompatible

3 Here we refer to the generalization of the standard Petrov classifi-
cation of the Weyl tensor in four dimensions to other tensors and to
higher dimensions [8,22] (see [29] for a review). Algebraically general
means that the Weyl tensor does not admit a multiple Weyl aligned null
direction (multiple WAND). In contrast, type II and D spacetime admit
one and (at least) two multiple WANDs respectively.

with Kerr–Schild form (1) with geodesic k, so it could not
have appeared in the lists of exact solutions obtained under
these simplifying assumptions. On the other hand, employ-
ing Kruskal-like coordinates, we show that the metric does
become algebraically special at the horizon, in agreement
with the geometric horizon conjecture of [7] (cf. also [20]).

It is worth noting that while most of our results hold for
equal-magnitude angular momenta, the results on the alge-
braically general Weyl tensor and non-compatibility of the
metric with the Kerr–Schild form (1) with geodesic k can be
obviously extended to the case of generic angular momenta
(see [18] for the corresponding metric ansatz).

The paper is structured as follows: In Sect. 2, we recall
the metric ansatz from [19] and show why it is not optimal
for studying the regularity of the metric at the horizon by
matching it to the known exact uncharged (Myers–Perry)
and non-rotating (charged Schwarzschild–Tangherlini) solu-
tions. In Sect. 3, we introduce a different radial coordinate and
a modified metric ansatz, which is better adapted to studying
the regularity of the horizon. We then obtain the correspond-
ing autonomous system of Einstein–Maxwell equations in
the form of a constrained ordinary boundary value problem
with singular end-points. Then a careful comparison of the
solution at the singular end-points with the geometric regu-
larity conditions at infinity and at the horizon shows that the
boundary value problem is indeed well-posed. This analy-
sis also suggests how to ensure numerical accuracy in future
investigations of these solutions.

In Sect. 4, we then study the simplifying assumptions hold-
ing for Kerr, Kerr–Newman, Schwarzschild–Tangherlini, and
Myers–Perry metrics and we show that none of these hold
for the five-dimensional charged rotating black hole with
two equal-magnitude angular momenta. We show that this
black hole is algebraically general. It also turns out that
while the Ricci tensor is of type D and aligned with a type D
Maxwell tensor F, the geometric properties of the common
null aligned vector imply that the five-dimensional charged
rotating black hole is not compatible with the Kerr–Schild
ansatz (1) with geodesic k. In five dimensions the necessary
condition for such compatibility boils down to Q̂ Ĵ = 0 (see
Equation (60)) which explains why this ansatz holds only for
rotating vacuum or charged non-rotating five-dimensional
black holes.

We should note that the previous work [9] also attempted
to put the charged rotating black hole metric into Kerr–Schild
form (1), but they only succeeded by replacing the reference
Minkowski metricηab by a different metric with unclear alge-
braic or geometric properties. Moreover, the authors claim
that by using some differential identities, they have simplified
the corresponding Einstein–Maxwell equations to a system
on only two unknown functions, while also giving an asymp-
totic solution to the resulting equations. Unfortunately, we
have identified a mistake in a key identity that allowed their
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simplification and have also found that their asymptotic solu-
tion is not accurate. A more detailed discussion can be found
in Appendix A.

2 Metric ansatz

Specializing the metric and vector potential ansatz for
equal-magnitude angular momenta black holes in Einstein–
Maxwell theory from [19] to five dimensions, gives

ds2 = gμν dxμ dxν = − f dt2 + m

f

(
dr2 + r2 dθ2

)

+ n

f
r2
[

sin2 θ
(

dφ − ω

r
dt
)2 + cos2 θ

(
dψ − ω

r
dt
)2
]

+m − n

f
r2 sin2 θ cos2 θ (dφ − dψ)2 , (2)

and

A = Aμ dxμ = a0 dt + aφ

(
sin2 θ dφ + cos2 θ dψ

)
, (3)

where the six functions f , m, n, ω, a0 and aφ only depend
on the radial coordinate r . Ordering the coordinates as
t, r, θ, φ, ψ , the metric in matrix form is

gμν = 1

f

⎛
⎜⎜⎜⎜⎝

− f 2 + nω2 0 0 −nωr sin2 θ −nωr cos2 θ

0 m 0 0 0
0 0 mr2 0 0

−nωr sin2 θ 0 0
(
m cos2 θ + n sin2 θ

)
r2 sin2 θ (n − m)r2 sin2 θ cos2 θ

−nωr cos2 θ 0 0 (n − m)r2 sin2 θ cos2 θ
(
m sin2 θ + n cos2 θ

)
r2 cos2 θ

⎞
⎟⎟⎟⎟⎠

, (4)

The outer horizon, located at r = rH, is determined by the
condition f (rH) = 0, with the value of rH closest to r = ∞.
Two sets of boundary conditions are imposed, one at infinity
and one at the horizon. At infinity (r → ∞) we require
asymptotic flatness, namely

ds2 ∼ − dt2 + dr2 + r2 dθ2 + r2 sin2 θ dφ2

+ r2 cos2 θ dφ2, (5)

A ∼ 0, (6)

where we have followed [19] by not specifying further details
about what higher dimensional asymptotic flatness means
(we give a more detailed definition of asymptotic flatness
later in Sect. 3.1). In [19], the corresponding boundary con-
dition is stated as the following asymptotic limits:

f, m, n ∼ 1, (7)

ω, a0, aφ ∼ 0 . (8)

At the horizon (r = rH), we require regularity, which
means the existence of local coordinates in which the metric
smoothly extends through the horizon. In [19], the corre-
sponding boundary condition is stated as follows:

f (rH), m(rH), n(rH) = 0, (9)

|ω(rH)|, |a0|, |aφ | < ∞, (10)

a′
φ(rH) = 0 . (11)

Following [19, Sec. 3], provided the function f , ω and a0

have asymptotic expansions at spatial infinity (r → ∞) of
the form

f = 1 − M̂

r2 + · · · , ω = Ĵ

r3 + · · · , a0 = Q̂

r2 + · · · ,

(12)

the physical mass, angular momentum and electric charges
are respectively given by

M = (d − 2)A(Sd−2)

16Gd
M̂ = 3π2

8G5
M̂,

J = A(Sd−2)

8Gd
Ĵ = π2

4G5
Ĵ ,

Q = (d − 3)A(Sd−2)

4Gd
Q̂ = π2

G5
Q̂, (13)

where d = 5 is the spacetime dimension, Gd is the d-
dimensional Newton’s constant, and A(Sd−2) = A(S3) =
2π2 is the area of the unit 3-sphere. The physical charges M
and J are obtained by integrating the usual Komar forms at
spatial infinity.

2.1 Special exact solutions

As we shall see in Sect. 3, the radial coordinate implied by
the ansatz (2) has non-differentiable behavior (a square root
singularity) at the horizon r = rH. This phenomenon is most
efficiently exhibited by matching the ansatz to the known
exact solutions without rotation (5-dimensional charged
Schwarzschild–Tangherlini metric) or without charge (5-
dimensional Myers–Perry metric), which we do next. Since
we are interested in making the comparison in the region
exterior to the black hole, we restrict ourselves to the subex-
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tremal ranges of the charge, mass, and angular momentum
parameters of the exact solutions.

Before moving on, let us introduce a new radial coordi-
nate r = r(r), which will play the role of the more famil-
iar radial coordinate in these exact solutions that regularly
extends through the horizon. It so happens that in all cases
considered in this paper, this new radial coordinate will obey
the relationship

(dr)2

r2 = r2(dr)2

(r2 − r2+)(r2 − r2−)
⇐⇒

r = rH

√√√√√√

√
r2 − r2− +

√
r2 − r2+√

r2 − r2− −
√
r2 − r2+

, (14)

where r± are some constants and the differential relation has
been solved to match r(rH) = r+. The square root singularity
is clearly visible at the horizon in the expansion r = rH +
O(√r − r+

)
, while at infinity r = O(r) and has a regular

expansion in integer powers of r−1.
The 5-dimensional charged Schwarzschild–Tangherlini

(ST) solution (sometimes also called the 5-dimensional
Reissner–Nordström solution) is given by

ds2 = − f dt2+dr2

f
+r2(dθ2+ sin2 θ dφ2+ cos2 θ dψ2),

A =
(

Q̂

r2
− Ĉ

)
dt, f = 1 − M̂

r2
+ 4

3

Q̂2

r4

= (r2 − r2+)(r2 − r2−)

r4
,

M̂ = r2+ + r2−, with Q̂ =
√

3

2
r+r−, (15)

where the mass and charge are parametrized by the constants
(M̂, Q̂) or (r+, r−), r+ > r−. Matching the ST solution with
the ansatz (2) gives the radial coordinate relation (14) and

f = (r2 − r2+)(r2 − r2−)

r4
,

m = r2

r2 f,

n = r2

r2 f,

ω = 0,

a0 =
√

3

2

r+r−
r2

− Ĉ,

aφ = 0 . (16)

The 5-dimensional Myers–Perry (MP) solution with
equal-magnitude angular momenta is given by

ds2 = − dt2 + 	r2 dr2

	2 − M̂r2

+	r2(dθ2 + sin2 θ dφ2 + cos2 θ dψ2)

+ M̂

	

(
dt + a sin2 θ dφ + a cos2 θ dψ

)2
,

A = 0, 	 = r2 + a2, 	2 − M̂r2 = (r2−r2+)(r2−r2−),

with M̂ = (r+ + r−)2, a = Ĵ/M̂ = √
r+r−,

(17)

where the mass and the angular momentum are parametrized
by the constants (M̂, Ĵ ) or (r+, r−), r+ > r−. Matching the
MP solution with the ansatz (2) gives

f = (r2 − r2+)(r2 − r2−)

(r2 + r−r+)2 + r+r−(r− + r+)2 = 	2 − M̂r2

	2 + a2 M̂
,

m = (r2 + r−r+)

r2 f = 	 f,

n = (r2 − r2+)(r2 − r2−)

r2(r2 + r+r−)
= 	2 − M̂r2

	
,

ω = r
√
r+r−(r+ + r−)2

(r2 + r−r+)2 + r+r−(r− + r+)2 = aM̂

	2 + a2 M̂
,

a0 = 0,

aφ = 0 . (18)

3 Regularity at infinity and at the horizon

Since the radial coordinate r used in the ansatz (2) has been
found to be non-smooth at the horizons of known exact solu-
tions, we must reparametrize the ansatz using our new regular
coordinate r. In addition, we have found that removing most
of the explicit dependence on r in the metric makes the cor-
responding Einstein equations (given below) autonomous,
which is technically convenient.

Our new regular ansatz for the metric and vector potential
is

ds2 = gμν dxμ dxν = − f dt2 + m
f

(
(r dr)2

N
+ dθ2

)

+N
m

[
sin2 θ (dφ − 
 dt)2 + cos2 θ (dψ − 
 dt)2

]

+m2 − f N
m f

sin2 θ cos2 θ (dφ − dψ)2 (19)

and

A = Aμ dxμ = a0 dt + aφ

(
sin2 θ dφ + cos2 θ dψ

)
. (20)
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The functions f , m, N, a0 and aφ all depend only on the new
radial coordinate r. In matrix form, ordering the coordinates
as (t, r, θ, φ, ψ), the metric reads

gμν =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

− f + N
m
 2 0 0 −N

m
 sin2 θ −N
m
 cos2 θ

0 r2m
f N 0 0 0

0 0 m
f 0 0

−N
m
 sin2 θ 0 0

(
m2 cos2 θ+ f N sin2 θ

)
f m sin2 θ

( f N−m2)
f m sin2 θ cos2 θ

−N
m
 cos2 θ 0 0 ( f N−m2)

f m sin2 θ cos2 θ

(
m2 sin2 θ+ f N cos2 θ

)
f m cos2 θ

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (21)

Obviously, compared to (2), only the metric part has been
reparametrized. We are using a new radial coordinate r and
the old parametrization is recovered via the translation for-
mulas

m = mr2, (22a)


 = ω

r
, (22b)

N = mnr4

f
, (22c)

(r dr)2

N
= (dr)2

r2 . (22d)

Note that the radial coordinate r appears explicitly in the
new ansatz (19) only through the combination r dr = 1

2 dR,
where R = r2. Hence, it is possible and useful to write
the resulting Einstein equations as an autonomous system
of ODEs with respect to the squared radial coordinate R. In
particular, we will see that the way N appears in the ansatz
gives it a very simple equation of motion. As long as the
location of the horizon satisfies r = rH 	= 0, if r is a reg-
ular coordinate at the horizon, then so is R. Again, we are
interested in the interval from infinity r ∼ ∞ to the horizon
f (r = rH) = 0, the root closest to infinity.

Plugging (19) directly into the Einstein equations gives
somewhat complicated expressions. It is unenlightening to
present them directly. Instead, inspired by the simplifications
that have already been noted in [9,19,24], we will give them
in equivalent but more structured form. In what follows, we
use the notation (−)′ = d

dR (−) and all functions are treated
as functions of R. First, we have the set of conservation laws

N′′ = 2 
⇒ N = (R − r2+)(R − r2−), (23a)
(
N
f
(a′

0 + 
a′
φ)

)′
= 0 
⇒ N

f
(a′

0 + 
a′
φ) = −Q̂,

(23b)

(
N2

f m

 ′ + 4Q̂aφ

)′
= 0 
⇒ N2

f m

 ′ + 4Q̂aφ = −2 Ĵ ,

(23c)

where r+, r−, Q̂, Ĵ have been introduced as integration con-
stants. Then we have the boundary value problem (BVP)

f 2m
(
m
f 2 f ′

)′
− mm′

(
m′

m
− 2

N′

N

)
f −

(
4
m2

N
− f

)
f

= 8

3

f m
N

(
2m2(a′

φ)2 − f a2
φ

)

− 4Q̂2

3

f 2m2

N2 , (24a)

f m
(
N
m
m′
)′

+
(

f 2N
m2 −2 f

)
m = 4

3
f
(

2m2(a′
φ)2− f a2

φ

)

+ 4Q̂2

3

f 2m
N

+4
f 2m2

N2 ( Ĵ + 2Q̂aφ)2, (24b)

m
(
ma′

φ

)′ − f aφ = 2Q̂
f m2

N2 ( Ĵ + 2Q̂aφ), (24c)

and finally we have the constraint

m2(a′
φ)2 = f a2

φ − m + f N
4m

+ Q̂2 f m
N

+ f m2

N2 ( Ĵ + 2Q̂aφ)2

+Nm′

8

(
f ′

f
− 2

m′

m
+ 4

N′

N

)

−Nm f ′

8 f

(
2

f ′

f
− m′

m
+ 2

N′

N

)
. (25)

This last constraint is compatible with the BVP system
because, letting C be the difference between the left- and
right-hand sides of (25),

(C/ f 2)′ = 0 mod (24), (26)

which means that, if the boundary conditions for the BVP
system are chosen such that C/ f 2 → 0 either at infinity or
at the horizon, then the constraint C = 0 is guaranteed for
any BVP solution.

Direct substitution shows that when our system of equa-
tions is satisfied, then so are the unsimplified Einstein equa-
tions. Conversely, starting from the unsimplified Einstein
equations and eliminating all variables except N gives the
first conservation law from (23). Using it to eliminate N′′, as
well as every variable and its derivatives that do not appear
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in the second conservation law, gives that same conserva-
tion law. Repeating this idea once more, gives the third con-
servation law. Upon eliminating N, 
 , a0 and their deriva-
tives from the unsimplified equations, solving for f ′′,m′′, a′′

φ

gives the BVP system (24). Finally eliminating these and all
other second derivatives leaves the constraint equation (25).
The derivation of the unsimplified equations and the above
elimination steps are most easily carried out using computer
algebra; we have relied in part on the xTensor and xCoba
packages from [21].

In the following sections, we will check how the geomet-
ric conditions of asymptotic flatness and regularity at the
horizon translate to boundary conditions for the BVP sys-
tem (24). Under these conditions, both endpoints become
regular (or Fuchsian) singular points, where a solution can
be constructed by the Frobenius method (as a power series in
R). At each endpoint, we perform a Fuchsian analysis (see
[17] for a brief exposition of the standard methods from [40],
together with references to the larger literature), which counts
the free parameters in the space of solutions compatible with
the boundary condition. This analysis will help us confirm
that the Einstein equations restricted to our ansatz are indeed
well-posed. Well-posedness is of course a prerequisite prop-
erty for trying to construct either numerical or asymptotic
approximations to high accuracy. Unfortunately, the original
papers [19,24] did not report such a well-posedness analysis,
nor specify in what way their numerical methods were com-
patible with the expected asymptotic structure of the solution
at the horizon and infinity, which in principle may have led
to spurious numerical artifacts near those points.

3.1 Asymptotic flatness

There are different notions of asymptotic flatness both in
four and higher dimensions. We will refer specifically to
the existence of a regular null infinity, where both asymp-
totic Poincaré symmetries and their charges are well defined.
Specifically in five dimensions, this notion was analyzed in
[37] and translated to precise component asymptotics for the
metric in Bondi coordinates, which is what we will refer to
below. Later, the same analysis was generalized to arbitrary
higher dimension in [35]. Earlier work treated asymptotic
flatness at null infinity in even dimensions [15] and at spatial
infinity [36] using conformal methods. A unified treatment
of the higher dimensional asymptotics of scalar, electromag-
netic and gravitational fields at null infinity was given in
[34], which is the main reference that we will follow. Along
similar lines, [14] treated higher dimensional asymptotics for
electromagnetic fields at both null and spatial infinities. Inde-
pendently, various asymptotic behaviors for electromagnetic
fields in higher dimensions were also analyzed in [31].

Effectively summarizing the results of the above refer-
ences (most clearly presented in [34, Sec. II B] for elec-

tromagnetic and in [34, Sec. II D–E] for gravitational
fields), the conditions of having an asymptotically flat reg-
ular (past/future) null infinity, with the absence of (incom-
ing/outgoing) radiation (both gravitational and electromag-
netic), but with non-vanishing contributions to total mass and
electric charge, is equivalent to the existence of an asymptotic
coordinate system (u, r, θ, φ, ψ) and corresponding electro-
magnetic gauge where

gμν =

⎛
⎜⎜⎜⎜⎝

−1 ±1 0 0 0
±1 0 0 0 0
0 0 r2 0 0
0 0 0 r2 sin2 θ 0
0 0 0 0 r2 cos2 θ

⎞
⎟⎟⎟⎟⎠

+

⎛
⎜⎜⎜⎜⎝

O(r−2
) O(r−2

) O(r−1
) O(r−1

) O(r−1
)

O(r−2
)

0 0 0 0
O(r−1

)
0 O(r0

) O(r0
) O(r0

)
O(r−1

)
0 O(r0

) O(r0
) O(r0

)
O(r−1

)
0 O(r0

) O(r0
) O(r0

)

⎞
⎟⎟⎟⎟⎠

(27a)

and

Aμ = (O(r−2
)

0 O(r−1
) O(r−1

) O(r−1
))

. (27b)

Some explanation is in order. The ± choice of sign in the
metric distinguishes the past and future null infinities. The
exact zero entries in gμν and Aμ are part of the gauge fix-
ing conditions. The Bondi gauge [37] usually also requires
that the angular submatrix gI J , where I, J run through
θ, φ,ψ , has determinant exactly equal to r6 sin2 θ cos2 θ

(where sin2 θ cos2 θ is the determinant of the unit round 3-
sphere metric in the same coordinates). However, it is also
sufficient that this subdeterminant has this limit only for
r → ∞, with subleading terms given by an asymptotic
expansion in integer powers of r , because then the r coordi-
nate can be redefined to obtain exact equality, without affect-
ing the structure of the asymptotics. Below, when adapting
our ansatz to the Bondi gauge, we will not perform this extra
redefinition, in favor of our more convenient r coordinate.
However, such a redefinition would of course be possible.
Note also that the Bondi r coordinate is logically distinct
from the coordinate denoted by the same symbol in the met-
ric (2). Since the Bondi radial coordinate is only used in this
section, there should be no confusion between the two.

In dimension d = 5, in the absence of gravitational radia-
tion, the leading radial Coulombic asymptotic for both grav-
itational and electromagnetic perturbations is O(r−d+3

) =
O(r−2

)
in an orthonormal basis [34],4 which explains dif-

ferent decay rates in different coordinate tensor components

4 Reference [34] uses harmonic instead of Bondi gauge. But from their
discussion, it is clear that one can transform from one gauge to the other
without changing the leading asymptotics.
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above. Coulombic terms are those that can contribute to
finite and non-vanishing mass, angular momentum and elec-
tric charges. In the presence of gravitational and electro-
magnetic radiation, the perturbations would decay only as
O(r−d/2+1

) = O(r−3/2
)

in an orthonormal basis [34]. It
should also be mentioned that the leading asymptotic terms
will be further constrained by the Einstein equations them-
selves, which may lead to faster decay for some components,
as we shall see in our case.

We can define the desired Bondi (which could also be
called Eddington–Finkelstein) coordinates as

du± = dt ±
√
m
N

dR
2 f

,

r = r,

θ = θ,

dφ± = dφ ± 


√
m
N

dR
2 f

,

dψ± = dψ ± 


√
m
N

dR
2 f

. (28)

In the coordinates (u±, r, θ, φ±, ψ±), the matrix form of the
metric is

gμν =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

− f + N
m
 2 ±

√
r2m
N 0 −N

m
 sin2 θ −N
m
 cos2 θ

±
√

r2m
N 0 0 0 0

0 0 m
f 0 0

−N
m
 sin2 θ 0 0

(
m2 cos2 θ+ f N sin2 θ

)
f m sin2 θ

( f N−m2)
f m sin2 θ cos2 θ

−N
m
 cos2 θ 0 0 ( f N−m2)

f m sin2 θ cos2 θ

(
m2 sin2 θ+ f N cos2 θ

)
f m cos2 θ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (29a)

while the vector potential takes on the form

Aμ − (dα)μ = (
a0 0 0 aφ sin2 θ aφ cos2 θ

)
, (29b)

with the gauge transformation parameter defined by α′(r) =
−√r2m/N(a0 + 
aφ)/ f .

Hence, comparing (29) with (27), both the metric and
the vector potential are in desired Bondi form, provided
we require the following leading asymptotics (recalling that
R = r2)

f = 1 + O
(
R−1

)
,

m = R + O
(
R0
)

,

aφ = O
(
R−1/2

)
,

N = R2 + O
(
R1
)

,


 = O
(
R−3/2

)
,

a0 = O
(
R−1

)
. (30)

Note that comparing with (27) has allowed us to determine
not only the leading but also the subleading terms of f , m
and N. We have not yet specified the structure of the full
asymptotic expansion in (30), since in principle we can allow
subleading terms with arbitrary fractional powers ofR. How-
ever, we are also free to restrict the subleading terms as we
see fit, with the only justification necessary the a posteriori
well-posedness of the BVP part of the Einstein Eqs. (24)
and (23).

So we may assume that the asymptotic expansion is in inte-
ger powers of R, which is consistent because we are solving
equations that are autonomous with respect toR, and perform
a Fuchsian analysis of the BVP system at the singular point
R = ∞. For linear equations, this is the same as applying the
method of Frobenius. For a non-linear equation, the first step
is take the leading terms from (30) and check that they are
consistent with the BVP system (24). Namely, the leading
order terms are collected and it is checked that they cancel
among themselves. We have specifically written (24) in a
way that all leading terms appear on the left-hand side. The
cancellation, which is verified by direct calculation, could
have imposed some conditions on the undetermined leading
coefficient in aφ , but it turns out that it does not.

The second step is to linearize (24) and apply the method
of Frobenius to the linear equation whose coefficients have
asymptotics determined by the leading terms (30). If R = ∞
turns out to be a regular singular point of this linear equa-
tion, we can extract the corresponding indicial equation and
determine the remaining free coefficients in the expansion.
For systems of ODEs, determining whether a singular point
is regular is not entirely trivial. The procedure must take into
account that the leading terms in different components of
the system of unknowns or of the system of equations may
be of different orders, let alone that the components of the
equations and of the unknowns are allowed to mix.

There is a convenient criterion to check when a system of
k equations of order p has a regular singular point (again,
see [17] for a brief exposition). Let E[v] = 0 be such a sys-
tem of linear equations, whose coefficients have asymptotic
expansions in powers of R. Let S and T be k × k matrices
such that all of S, T , S−1, T −1 have components that are
Laurent polynomials in R (for that, it is necessary and suf-
ficient that det S and det T are non-vanishing monomials).
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The system has a regular singular point at R = ∞ if
T −1 E[Sv] = E0(R ∂R)[v] + lower order terms, where the
components of E0(x) are constant coefficient polynomials in
x , det E0(x) 	= 0, and for the purposes of collecting lower
order terms Rn(R ∂R)m has order n (which will typically be
negative). We call matrices S and T leading multipliers. The
integer solutions of the indicial equation det E0(n) = 0 are
the critical exponents (or indices) of Rn whose coefficients
in the expansion of the solution may be a free parameter. The
eigenvectors of E0(n) corresponding to the critical exponents
determine how these free parameters enter the expansion. At
a true real regular singular point, the polynomial degree of
det E0(n) should be pk, determined by the size and order of
the system. If the degree is lower, then only a subset of the
solutions exhibit a Frobenius expansion in powers of R (with
possible logarithmic contributions) and there will exist other
solutions that grow or decay faster than simple powers of R.

The third and last step counts the number of free param-
eters in the asymptotic expansion of a solution. If v =
S
[∑

k>n vkRn + vnRn + O(R)n−1
]
, then knowing that the

vk>n coefficients solve the ODE system to appropriate order
we can solve for the next coefficient, provided that E0(n) is
invertible, via

E0(n)vn = en(vk>n), (31)

where en(−) collects all the remaining terms of the origi-
nal non-linear ODE system at order n. The invertibility of
En(n) fails precisely when n is a critical exponent. Then two
things happen: because E0(n) does not have full row rank, the
consistency of the equation imposes constraints on en(vk>n)

and hence on any free parameters appearing among the vk>n

coefficients; also, because E0(n) does not have full column
rank, new free parameters appear in the solution for the vn

coefficients. In general the number of free parameters gained
and lost at a time need not be the same, so at each critical
exponent the total number of free parameters in the expan-
sion may increase, decrease, or stay the same; it stabilizes
after the last critical exponent.

In general, leading multiplier matrices may be quite
complicated, but we have specifically written the BVP
system (24) to make them simple. Namely, the resulting
E0(R ∂R)[v] operator is
⎡
⎣

(R ∂R)2 + 1 2(R ∂R − 1) 0
1 (R ∂R + 2)(R ∂R − 1) 0
0 0 (R ∂R + 1)(R ∂R − 1)

⎤
⎦

×
⎡
⎣

δ f
δm
R

δaφ

⎤
⎦ , (32)

where S multiplies δm byR−1 and T −1 multiplies the middle
equation by R, while acting as the identity on other compo-
nents. The critical exponents are k = 1 (2), 0 (1),−1 (3),
with multiplicities indicated in parentheses. Because of the

constraints on the leading terms from (30), the coefficients
corresponding to the k = 1, 0 exponents must vanish. At
k = −1, one free parameter is allowed in front of the lead-
ing term of aφ and two more free parameters appear in the
subleading terms of f and m, with algebraic multiplicity 2.
As is usual in applying the Frobenius method, the algebraic
multiplicity 2 implies that the two independent coefficients
appear in front of R−1 and R−1 logR in the expansions of
f and m/R. However, the logarithmic terms are incompati-
ble with the asymptotics (30) corresponding to a regular null
infinity. Thus, only one free coefficient at orderR−1 remains.
The remaining two free parameters remain free at all further
orders of the expansion.

Once the asymptotic expansions for f,m, aφ have been
determined, we can also asymptotically integrate the first
order conservation laws (23) for 
 and a0. For each of them,
there is a free parameter that appears as an additive constant.

In summary, the following leading terms uniquely fix the
most general asymptotic expansion of a solution in powers
of R that is compatible with the asymptotic form (30):

f = 1 + f (−1)

R
+ O

(
R−2

)
,

m = R + m(0) + O
(
R−1

)
,

aφ = a(−1)
φ

R
+ O

(
R−2

)
,

N = R2 − (r2+ + r2−)R + r2+r2−,


 = 
(0) + Ĵ

R2 + O
(
R−3

)
,

a0 = a(0)
0 + Q̂

R
+ O

(
R−2

)
, (33)

which has exactly two free parameters (a(−1)
φ and a linear

combination of f (−1) and m(0)), since the yet undetermined
coefficients are constrained by

f (−1) − 2m(0) − (r2+ + r2−) = 0,


 (0) = 0,

a(0)
0 = 0, (34)

after enforcing compatibility with the prescribed asymptotic
limits of f,m,
 and a0. Comparing with (12) justifies the
notation Ĵ and Q̂ for the coefficients in the expansion of ω

and a0 and also allows us to identify

f (−1) = −M̂, (35)

with M̂ , Ĵ and Q̂ being proportional to the physical mass,
angular momentum and electric charges, respectively, as
specified in (13). Finally, there are no further constraints
coming from enforcing the limitC/ f 2 → 0, which is needed
to ensure that the constraint C = 0 (23) is enforced by the
compatibility equation (26). Recall that r2+, r2− are integration
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constants that appear in (23). Note that, after we have care-
fully taken into account the Einstein–Maxwell equations, the
final leading asymptotics aφ = O(R−1

)
and 
 = O(R−2

)
decay faster than strictly required by asymptotic flatness
in (30).

Having shown that at infinity the series expansion for the
solution is uniquely fixed as a function of r±, Ĵ , Q̂, a(−1)

φ

and say M̂ , we report here the first few terms of f , m, and
aφ extending (33) (defining r2H = r2+ − r2−):

f = 1 − M̂

(R − r2−)
+

1
2 M̂

(
M̂ − r2H

)
+ 4

3 Q̂2

(R − r2−)2
+

4
9

(
a(−1)
φ

)2 − 1
6 M̂

(
M̂2 − 3M̂r2H + 2r4H

)
+ 4

9 Q̂2
(
−4M̂ + 3r2H

)
+ 2

3 Ĵ 2

(R − r2−)3

+
2
9

(
a(−1)
φ

)2 (−2M̂ + 3r2H
)

+ 16
9 a(−1)

φ Ĵ Q̂ + 1
9 Q̂2

(
11(M̂ − r2H)2 − 2M̂r2H

)

(R − r2−)4

+
1

24 M̂(M̂ − r2H)(M̂ − 2r2H)(M̂ − 3r2H) + Ĵ 2
(
− 7

6 M̂ + r2H
)

+ 32
27 Q̂4

(R − r2−)4
+ O

(
R−5

)
,

m = (R − r2−) − 1

2

(
M̂ + r2H

)
+

4
3 Q̂2

(R − r2−)
+

1
72

(
16
(

a(−1)
φ

)2 + 3M̂3 − 3M̂r4H

)
+ 2

9 Q̂2
(
−4M̂ + 3r2H

)
+ 5

6 Ĵ 2

(R − r2−)2

+
1

360

(
−M̂ + 5r2H

)(
16
(

a(−1)
φ

)2 + 3M̂3 − 3M̂r4H

)
+ 88

45 a(−1)
φ Ĵ Q̂

(R − r2−)3

+
1
45 Q̂2

(
9M̂2 − 40M̂r2H + 23r4H

)
+ Ĵ 2

(
− 29

30 M̂ + 5
6 r

2
H

)
+ 128

135 Q̂4

(R − r2−)3
+ O

(
R−4

)
,

aφ = a(−1)
φ

(R − r2−)
+

2
3 Ĵ Q̂ + 1

6 a(−1)
φ

(
M̂ + 3r2H

)

(R − r2−)2
+

1
12 a(−1)

φ

(
M̂2 + 2M̂r2H + 3r4H

)
+ 1

6 Ĵ Q̂
(
−M̂ + 4r2H

)

(R − r2−)3

+
− 1

360 a(−1)
φ

(
16
(

a(−1)
φ

)2 − 6M̂3 − 45M̂2r2H − 48M̂r4H − 45r6H

)

(R − r2−)4

+
− 34

135 a(−1)
φ M̂ Q̂2 − 7

30 a(−1)
φ Ĵ 2 + 1

60 Ĵ Q̂
(

5M̂2 − 15M̂r2H + 34r4H
)

+ 8
135 Ĵ Q̂3

(R − r2−)4
+ O

(
R−5

)
. (36)

As discussed in more detail in Sect. 3.3, our reduced
Einstein–Maxwell equations possess the shift symmetry
R �→ R+R0, which also shifts the constants r2± → r2± +R0.
The above expansion was obtained under the simplifying
assumption r2− = 0 and then converted to a form that is man-
ifestly invariant under this shift symmetry. Elsewhere in the
text, we will use rH to denote the location of the outer hori-
zon in general. So, strictly speaking, the numerical value of
rH in the above expansion should only be interpreted as the
location of the horizon under the assumption r2− = 0.

This expansion is used several times in Sect. 4 to test
whether some differential constraints forced by special alge-
braic types would be satisfied on-shell, that is, satisfying the

Einstein–Maxwell equations and our boundary conditions.
For instance, deducing the condition (60) required an expan-
sion at least to the order given above.

3.2 Regularity at the horizon

The vanishing f (rH) on the horizon signals a coordinate sin-
gularity there, as is expected for coordinates adapted to a

timelike Killing vector when it becomes null. The regularity
of the metric (2) and the corresponding vector potential at
the horizon must then be checked in other coordinates that
penetrate the horizon, where the only requirement for a ten-
sor field to be regular is for it to have smooth components in
that coordinate system.

Traditionally, the simplest horizon penetrating coordi-
nates on a black hole are of Eddington–Finkelstein type.
The coordinates (28) that we have introduced to play
the role of the Bondi frame at null infinity are actually
also of Eddington–Finkelstein type at the horizon. The
(u+,R, θ, φ+, ψ+) coordinates regular at the future hori-
zon and (u−,R, θ, φ−, ψ−) ones regular at the past horizon.

123



215 Page 10 of 20 Eur. Phys. J. C (2022) 82 :215

We will show below the horizon regularity of our improved
ansatz (19) with respect to these coordinates. Unfortunately,
neither of these coordinate systems is regular at the bifurca-
tion sphere where the two horizons intersect. Thus we will
also introduce Kruskal-like coordinates that cover a neigh-
borhood of the bifurcation sphere and show that our improved
ansatz is regular there as well.

To reproduce the horizon behavior (9) imposed in the orig-
inal work [19], we must set f = m = N = 0 at R = r2H. As a
consequence of the integration of the equation of motion (23)
for N, we must set rH = r2+, where we have required r+ 	= 0
and ordered the integration constants as r2+ > r2−. Combining
these requirements with regularity at the horizon, via smooth-
ness of the tensor components (29) in Eddington–Finkelstein
coordinates, gives the horizon asymptotics

f = O
(
R − r2H

)
, (37a)

m = O
(
R − r2H

)
, (37b)

aφ = O(1) , (37c)

N = (r2+ − r2−)(R − r2H) + O
(
(R − r2H)2

)
, (37d)


 = O(1) , (37e)

a0 = O(1) , (37f)

with each function also smooth inR at the horizon and where
the leading coefficients of f andm are non-vanishing. Again,
the asymptotics of N, 
 and a0 are obtained by integrating
the conservation laws (23), which remain consistent with the
regularity of the tensor coefficients in (29).

Kruskal (or Kruskal–Szekeres) coordinates for
Schwarzschild spacetime are well-known. It is not as easy
to find analogous coordinates constructed for the Kerr and
related black holes. The original construction by Carter [6]
was restricted to the (t, r) plane along the rotation axis. Pre-
torius and Israel [33] seem to have been the first to construct

global double-null coordinates regular on the Kerr bifurca-
tion sphere. Motivated by applications in the global non-
linear stability of Kerr and related black holes, analogous
double-null coordinates have been constructed also for a
wider class of geometries, see [5,10] and references therein.

For our purposes, since we are interested only in a neigh-
borhood of the bifurcation sphere, it is easiest to follow the
idea from the much simpler construction by Hayward [13].
Namely, consider a constant κ , which we will choose appro-
priately, and the coordinates (U, V, θ,�,�) defined by

dU

U
− dV

V
= κ dt, dt = 1

κ

(
dU

U
− dV

V

)
,

dU

U
+ dV

V
= κ

√
m
N

dR
2 f

,

√
m
N

dR
2 f

= 1

κ

(
dU

U
+ dV

V

)
,

d� = dφ − 
(r2H) dt,

dφ = d� + 
(r2H)

κ

(
dU

U
− dV

V

)
,

d� = dψ − 
(r2H) dt,

dψ = d� + 
(r2H)

κ

(
dU

U
− dV

V

)
. (38)

Integrating the second equation, we find

d ln(U V ) = κ

2 f ′(r2H)

√
m′(r2H)

N′(r2H)

dR

R − r2H
+ O((R − r2H)0)

⇐⇒ U V = (R/r2H − 1)h(R), h(R) = 1

+O(R − r2H
)
, (39)

provided we choose the overall integration constant appro-
priately and set

κ = 2 f ′(r2H)

√
N′(r2H)

m′(r2H)
. (40)

In these new Kruskal coordinates, denoting �
 = 
 −

(r2H), the metric takes the form

gμν =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

V 2 (�
)2N
κ2U 2V 2m

2 f
κ2U V

− U V (�
)2N
κ2U 2V 2m 0 −V (�
)N

κU Vm sin2 θ −V (�
)N
κU Vm cos2 θ

2 f
κ2U V

− U V (�
)2N
κ2U 2V 2m U 2 (�
)2N

κ2U 2V 2m 0 U (�
)N
κU Vm sin2 θ U (�
)N

κU Vm cos2 θ

0 0 m
f 0 0

−V (�
)N
κU Vm sin2 θ U (�
)N

κU Vm sin2 θ 0
(
m2 cos2 θ+ f N sin2 θ

)
f m sin2 θ

( f N−m2)
f m sin2 θ cos2 θ

−V (�
)N
κU Vm cos2 θ U (�
)N

κU Vm cos2 θ 0 ( f N−m2)
f m sin2 θ cos2 θ

(
m2 sin2 θ+ f N cos2 θ

)
f m cos2 θ

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (41)
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Recalling that �
, f,m,N = O(R − r2H
) = O(U V ), with

the leading terms of f and m non-vanishing, all the compo-
nents and also

det g = − 4mN
κ4U 2V 2 cos2 θ → −4r4Hm

′(r2H)N′(r2H)

κ4 cos2 θ

(42)

remain finite asR → r2H. Hence, under the conditions already
imposed by (37), the metric is regular in the Kruskal coor-
dinates (U, V, θ,�,�) in a neighborhood of the bifurcation
sphere U = V = 0, where the future and past horizons
R = r2H intersect. The vector potential transforms to

A = �(a0 + 
aφ)

κU V
(V dU − U dV )

+aφ(sin2 θ d� + cos2 θ d�)

+ d

[
a0(r2H) + 
(r2H)aφ(r2H)

κ
ln

U

V

]
, (43)

where we have used the shortcut notation

�(a0 + 
aφ) =
(

a0 + 
(r2H)aφ

)

−
(

a0(r2H) + 
(r2H)aφ(r2H)
)

. (44)

As discussed in the case of Eddington–Finkelstein-like coor-
dinates, the last term of the vector potential is singular but
pure gauge (it is exact), while the rest of the terms are mani-
festly regular.

Explicitly solving the coordinate transformation, we find

U =
√
R/r2H − 1 eκt/2

√
h,

dU = κ

2

√
R/r2H − 1 eκt/2

√
h

(√
m
N

dR
2 f

+ dt

)
,

V =
√
R/r2H − 1 e−κt/2

√
h,

dV = κ

2

√
R/r2H − 1 e−κt/2

√
h

(√
m
N

dR
2 f

− dt

)
,

� = φ − 
(r2H)t,

d� = dφ − 
(r2H) dt

� = ψ − 
(r2H)t,

d� = dψ − 
(r2H) dt . (45)

Next, we repeat the Fuchsian analysis of R = r2H as a
regular singular point of the BVP part (24) of the Einstein–
Maxwell equations restricted to our ansatz, to determine
the remaining free parameters in the Taylor expansion of
the solution. Since the steps of the procedure were already
explained in Sect. 3.1, we merely summarize the results. For
convenience, we will denote ρ ≡ R − r2H.

Plugging the leading terms (37) into the BVP system (24),
a direct calculation shows that they are compatible, without

any new restrictions on the undetermined coefficients. Again,
we have written the BVP system in such a way that all can-
celling leading terms appear on the left-hand side. Upon lin-
earization, we find that the leading multiplier matrices S and
T may just be taken to be identity. The resulting E0(ρ∂ρ)[v]
operator is

⎡
⎢⎢⎣

(ρ∂ρ − 3)(ρ∂ρ − 1)
f (1)

m(1) (ρ∂ρ − 1) 0
0 (ρ∂ρ − 1)2 0

− a(0)
φ

(m(1))2 − 2Q̂( Ĵ+2Q̂a(0)
φ )

(r2+−r2−)2 − 4 f (1) Q̂( Ĵ+2Q̂a(0)
φ )

m(1)(r2+−r2−)2 (ρ∂ρ)2

⎤
⎥⎥⎦

×
⎡
⎣

δ f
δm
δaφ

⎤
⎦ . (46)

Exchanging the first two rows and columns, we see that the
matrix is lower triangular, so that we can immediately read
off its eigenvalues and determinant (the indicial equation).
The critical ρk exponents are k = 0 (2), 1 (3), 3 (1), with
multiplicities indicated in parentheses. Note that regularity
at the horizon excludes any logarithmic terms like ρk(log ρ)l

in the expansion. Multiplicities in the critical exponents that
generate the same eigen-vectors do not generate more free
parameters. At k = 0 we already have the free leading coef-
ficient of aφ . At k = 1, we have the free leading coefficients
of f and m. At k = 3 we have one new free coefficient in
the expansion of f and no restrictions on the other free coef-
ficients. Finally, enforcing the limit C/ f 2 → 0 needed to
ensure that the constraint C = 0 (25) is enforced by the com-
patibility equation (26) does not bring in any new restrictions
on the free parameters. Once the Taylor series for f,m, aφ

have been determined, we can also integrate the first order
conservation laws (23) for 
 and a0. For each of them, there
is a free parameter that appears as an additive constant. In
summary, the following leading terms uniquely fix the Tay-
lor series of a solution in powers of ρ = R− r2H, with all free
parameters explicitly shown:

f = f (1)ρ + · · · + f (3)ρ3 + O
(
ρ4
)

,

m = m(1)ρ + O
(
ρ2
)

,

aφ = a(0)
φ + O(ρ) ,

N = (r2+ − r2−)ρ + ρ2,


 = 
(0) + O(ρ) ,

a0 = a(0)
0 + O(ρ) . (47)

The additive constants 
(0) and a(0)
0 are not fixed by the

requirements of regularity at the horizon (37). Instead, they
must be fixed by enforcing compatibility with the prescribed
limits (30) at infinity, as was discussed at the end of Sect. 3.1.
Thus, the parameters 
(0) and a(0)

0 are uniquely fixed, but
their values cannot be obtained locally at the horizon.
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3.3 Well-posedness

In this section we discuss the well-posedness of the BVP
system (24) with the boundary conditions prescribed by
asymptotic flatness (Section 3.1) and regularity at the hori-
zon (Sect. 3.2), as well as the overall uniqueness of the cor-
responding charged rotating black hole solution.

The BVP system (24) is a second order ODE sys-
tem for three unknowns, with external parameters r2+, r2−,
Ĵ and Q̂. With the external parameters fixed, its solu-
tion space is hence 6-dimensional (counting the free ini-
tial data at any regular point, for instance). The conclu-
sion of Sect. 3.1 is that there is a 2-dimensional space of
solutions compatible with asymptotic flatness (parametrized
by the constants f (−1),m(0), a(−1)

φ (33), with one con-
straint (34) among them). The conclusion of Sect. 3.2 is
that there is a 4-dimensional space of solutions compati-
ble with regularity at the horizon, parametrized by the con-
stants f (1), f (3),m(1), a(0)

φ in Equation (47). Hence, within
the overall 6-dimensional solution space, the intersection of
these 2- and 4-dimensional families will generically be 0-
dimensional, meaning that the solution if it exists is expected
to be locally unique (under small perturbations of free param-
eters at either boundary). In other words, the boundary con-
ditions prescribed by Sects. 3.1 and 3.2 define a well-posed
BVP for the non-linear system (24).

The BVP system (24) itself depends on 4 external param-
eters, the integration constants r2+, r2−, Ĵ , Q̂ from the conser-
vation laws (23). Two of them, Ĵ and Q̂, have direct phys-
ical interpretations as being proportional to the total angu-
lar momentum and total charge, respectively (13). Because
the total Einstein–Maxwell system of equations restricted to
the ansatz (19) is autonomous with respect to R, the coor-
dinate shift R → R + R0 is a symmetry, since it is also
compatible with both the horizon and asymptotic bound-
ary conditions. However, being a simple coordinate trans-
formation it does not change the isometry class of the solu-
tion. Note that this shift affects the integration constants as
r2± → r2± + R0. We can use the shift symmetry to place the
horizon at any convenient location, for example by setting
r2− = 0, which we will assume from now on. This choice
places the horizon at rH = r+. Having decided the location
of the horizon, by the well-posedness of the BVP discussed
in the previous paragraph, the solution is (locally) uniquely
fixed by the three remaining parameters. In particular, the
total mass can be written as M̂ = M̂(r2H, Ĵ , Q̂), where we
can use the relation (35) between f (−1) and M̂ . Physically,
it is more convenient to dynamically invert this relationship
to r2H = r2H(M̂, Ĵ , Q̂).

In summary, we see that the isometry class of a charged
rotating black hole with ansatz (19) and satisfying the
Einstein–Maxwell equations is (locally) uniquely deter-

mined by its total mass M̂ , total angular momentum Ĵ , and
total charge Q̂.

As proof of concept, taking the above well-posedness
discussion into account, we have implemented a numerical
solver for the BVP system (24) that takes the external M̂ ,
Ĵ and Q̂ parameters as input and constructs the correspond-
ing solution of the Einstein–Maxwell equations both outside
and inside the horizon. On the exterior region, we use BVP
solver in a basis of Chebyshev polynomials that are weighted
at infinity and the horizon by the expected asymptotics and
boundary conditions. Once the solution on the exterior region
has converged, its values and derivatives near the horizon are
used to feed into a standard ODE solver for the interior region.
Figure 1 illustrates the resulting solution for generic values
of the external parameters. In particular, we see that even a
naive extrapolation of the exterior solution inside the horizon
shows rather good agreement with the interior solution on a
sizable neighborhood of the horizon.

4 Algebraic classification

In this section, we study algebraic types of curvature tensors
and of the electromagnetic tensor in the charged Myers–Perry
metric.

Recall that four-dimensional Kerr and Kerr–Newman
black holes are of Petrov type D and both metrics admit a
Kerr–Schild form (1) with geodesic k. Furthermore, for the
Kerr–Newman black hole, the null eigenvectors of the elec-
tromagnetic tensor F coincide with the principal null direc-
tions of the Weyl tensor [27] (i.e., Weyl tensor and F are
aligned).

Although the vacuum Myers–Perry black hole is of type
D [12,32] and admits Kerr–Schild form with geodesic k, it
has been pointed out already in [23], that its charged gener-
alization does not admit the Kerr–Schild form assuming that
the vector potential A coincides (up to normalization) with
k. As a consequence of the algebraically special form of the
Ricci tensor in the charged Myers–Perry black hole, we will
also arrive at the incompatibility of the charged Myers–Perry
black hole metric with Kerr–Schild ansatz (1) with geodesic
k, but without employing the strong constraint A ∝ k.

For determining the compatibility of the charged Myers–
Perry metric with the Kerr–Schild form with geodesic k, we
will employ the following proposition from [28]:

Proposition 1 (Geodesicity of the Kerr–Schild vector k
[28]) The null vector k in the Kerr–Schild metric (1) is
geodesic if, and only if, it is an aligned null direction of the
Ricci tensor, i.e., if Rabkakb = 0.

Note (see [28]) that if k in the Kerr–Schild metric (1) is
geodesic, then k is also a multiple aligned Weyl direction
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Fig. 1 Numerical solution for the black hole with external parameters
M̂ = 5, Ĵ = 1, Q̂ = 2. The horizon radius is dynamically deter-
mined to be rH ≈ 1.32464. The horizontal variable is R̄ = r2H/R, with
R̄ = 0 corresponding to infinity and R̄ = 1 to the horizon, indicated

by the dashed vertical line. The barred functions have been rescaled as
f̄ = f/(1 − R̄), m̄ = mR̄/r2H and āφ = a(1 − R̄). The thick curves
show the exterior solution and its extrapolation some distance inside
the horizon. The thin curves show the interior solution

(WAND) of the spacetime, and thus the spacetime is alge-
braically special. Since we also show in this section that the
charged Myers–Perry metric is not algebraically special, this
could be used as another argument against compatibility with
the Kerr–Schild form with geodesic k.

We also discuss the algebraic properties of the test electro-
magnetic field in the Myers–Perry background and compare
this field with the weak field limit of the charged Myers–Perry
metric.

4.1 Algebraic type of Maxwell and Ricci tensors

The Maxwell tensor obtained from the potential (20) reads

Fμν =

⎛
⎜⎜⎜⎜⎜⎝

0 −a′
0 0 0 0

a′
0 0 0 a′

φ sin2 θ a′
φ cos2 θ

0 0 0 aφ sin(2θ) −aφ sin(2θ)

0 −a′
φ sin2 θ −aφ sin(2θ) 0 0

0 −a′
φ cos2 θ aφ sin(2θ) 0 0

⎞
⎟⎟⎟⎟⎟⎠

.

(48)

The eigenvalues and eigenvectors of Fμ
ν are given by

1. Eigenvalue 0, eigenvector kμ

(0) = 2
α
(a′

φ, 0, 0,−a′
0,−a′

0).

2. Eigenvalues ±α, where

α = 2

√
− f a′2

φ + N
m

a′2, (49)

and a′ = a′
0 + 
a′

φ , eigenvectors

kμ

(±) =
√

2

f mN
α
(
−Na′,∓ f Nα, 0, f ma′

φ

−Nωa′, f ma′
φ − Nωa′) . (50)

3. Eigenvalues ±iβ, where β = 2 f aφ

m
with eigenvectors

�
μ

(±) = √
f/2m (0, 0,±i,− cot θ, tan θ) . (51)

The above eigenvectors can be used to construct a null basis

� = m(0) = k(+), n = m(1) = −k(−), m(2) = k(0),

m(3) = √
2 ��(+), m(4) = √

2 ��(+) . (52)
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The only non-vanishing scalar products are then � · n = 1
and m(i) · m( j) = δi j for i, j = 2, 3, 4 and the metric reads

gμν = 2�(μnν) + δi j m
(i)
μ m( j)

ν . (53)

In this basis, the Maxwell tensor reads

Fμν = 2α�[μnν] − 2βm(3)
[μ m(4)

ν] , (54)

and the stress-energy tensor has the form

Tμν = Fμρ Fν
ρ − 1

4
gμν Fρσ Fρσ

= 1

2

(
α2 − β2

)
m(2)

μ m(2)
ν +

(
α2 + β2

) (
m(3)

μ m(3)
ν

+m(4)
μ m(4)

ν − 2�(μnν)

)
. (55)

Since both tensors F and T in (54) and (55) contain only
boost weight zero terms, they are both algebraically special,
more precisely of type D in the algebraic classification of ten-
sors [22]. Note that this property holds off-shell (i.e., without
imposing the field equations).

The Einstein equations (with 4πG5 = 1)

Rμν − 1

2
Rgμν = 2Tμν, Rμν = 2Tμν − 2

3
gρσ Tρσ gμν,

(56)

take the form

Rμν = −4

3

(
2α2 + β2) �(μnν) + 2

3

(
α2 − β2)m(2)

μ m(2)
ν

+2

3

(
α2 + 2β2)m(3)

μ m(3)
ν + 2

3

(
α2 + 2β2)m(4)

μ m(4)
ν .

(57)

The Ricci tensor is thus of type D on-shell (i.e., assuming
that the Einstein equations hold).

Consider a general vector v = v0n + v1� + v2m(2) +
v3m(3) + v4m(4) in the above null basis. We want to identify
all null vectors v obeying Rabv

avb = 0. Provided α 	= 0,
from the null condition and Equation (57) it follows that v2 =
v3 = v4 = 0 and v0v1 = 0. Up to a factor, � and n are thus the
only null vectors obeying Rabv

avb = 0. The exceptional case
α = 0, after using the conservation laws (23), corresponds
to

− f a′2
φ + Q̂2 f 2

Nm
= 0. (58)

This condition looks independent from the reduction of the
equations of motion to the constrained BVP (24) and (25),
so it is likely inconsistent with them. Formally, this can be
checked by substituting the leading order asymptotic expan-
sion expansion (33). Setting to zero the resulting leading
O(R−3

)
coefficient gives Q̂ = 0, meaning that only the

uncharged case allows α = 0.
The null congruence � (and n) is geodesic if and only if

a′
φa′′

0 − a′
0a′′

φ = 0 . (59)

This condition also looks independent from the reduction
of the equations of motion to the constrained BVP (24)
and (25), so it is likely inconsistent with them. Formally,
this can be checked by continuing the expansion (33) by
two more subleading orders (as we have done in (36)) and
plugging it into the desired geodesic condition (59). Setting
to zero any non-vanishing terms in the resulting asymptotic
series then imposes non-trivial constraints on the parameters
which determine the general solution (namely M̂ , a(−1)

φ and

r±, Ĵ , Q̂, as discussed in Sect. 3.1). The first non-trivial term
in the expansion of (59) appears at order O(R−6

)
. Setting

to zero the coefficients of R−6 and R−7 determines the M̂
and a(−1)

φ parameters, while plugging these values into the

coefficient of R−8 and setting it to zero results in the simple
constraint

Ĵ 3 Q̂5 = 0 . (60)

In other words, the geodesic condition (59) on � cannot hold
whenever both Ĵ 	= 0 and Q̂ 	= 0.

This result, together with Proposition 1, clearly explains
why the metric for a charged rotating black hole in five dimen-
sions cannot be written in the Kerr–Schild form (1) with a
geodesic k, while the limiting cases with either Q̂ = 0 or
Ĵ = 0 are compatible with this form.

4.1.1 Electromagnetic test field

It is of also of interest to compare the results of the previous
section with the cases of a test field and the weak-field limit. It
is well known that in a vacuum spacetime, Killing vectors can
be used to construct electromagnetic test fields obeying vac-
uum Maxwell equations in the background spacetime [39].
The contribution of the test field to the energy-momentum
tensor is neglected and thus test fields have a physical mean-
ing only in the weak-field limit. Electromagnetic test fields
for the five-dimensional Myers–Perry black hole were ana-
lyzed in [3]. Additional properties of test fields in various
five-dimensional black hole/ring spacetimes were studied in
[27]. In particular, it has been shown in [27] that for the
Myers–Perry black hole, null eigenvectors of the test field are
aligned with the WANDs of the background vacuum Myers–
Perry metric. The Weyl tensor and the Maxwell tensor are in
this case both of type D and aligned.

The Maxwell tensor corresponding to the test field poten-
tial Aμ = α̂δ

μ
t reads
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!Fμν = α̂M̂

(R + a2)2

⎛
⎜⎜⎜⎜⎝

0 1 0 0 0
−1 0 0 a sin2 θ a cos2 θ

0 0 0 −a(R + a2) sin(2θ) a(R + a2) sin(2θ)

0 −a sin2 θ a(R + a2) sin(2θ) 0 0
0 −a cos2 θ −a(R + a2) sin(2θ) 0

⎞
⎟⎟⎟⎟⎠

, (61)

and the eigenvalues and corresponding null eigenvectors
of Fμ

ν are given by

± αT = ± 2α̂M̂
√
R

(R + a2)2 , (62)

kμ

T(±) =
(

a + R
a

,∓ 2
√
R

a(a2 + R)

(
a4 + 2a2R

+R(R − M̂)
)

, 0, 1, 1
)

, (63)

where the subscript T stands for “test field”.

4.1.2 Behaviour for small charge and comparison with the
test field

Let us introduce the function b by

aφ = Q̂b . (64)

Then the field equations (24) and constraint (25) contain only
even powers of Q̂, and for small charge we can expand the
metric and potential functions in terms of Q̂2:

f =
∞∑

k=0

f(k)

Q̂2k

k! , m=
∞∑

k=0

m(k)

Q̂2k

k! , b=
∞∑

k=0

b(k)

Q̂2k

k! .

(65)

By neglecting second and higher powers of Q̂, the field equa-
tions (24) and constraint (25) for the leading terms f(0),
m(0) and b(0) reduce to the vacuum field equations for the
uncharged Myers–Perry black hole, plus one additional equa-
tion for b(0):

m(0)(b
′
(0)m(0))

′−b(0) f(0) =2 Ĵ
f(0)m2

(0)

N2 . (66)

The Functions f(0) and m(0) thus correspond to the vacuum
Myers–Perry metric (18), and Eq. (66) is solved by

b(0) = Ĵ

M̂(a2 + R)
. (67)

Setting α̂ = Q̂/M̂ , the eigenvalue α (49) of the Maxwell
tensor reduces to the eigenvalue αT (62) of the test field and
the eigenvectors (50) reduce to the test field eigenvectors (63).

Therefore, in the weak field limit the Maxwell tensor (48)
reduces to the test field tensor (61) and is aligned with the
(vacuum) background Weyl tensor. As we will see in the next

section, this alignment of the Weyl and electromagnetic ten-
sors does not survive beyond the weak field approximation.

4.2 Algebraic type of the Weyl tensor

4.2.1 Weyl type of the metric ansatz

It is well-known that the Kerr–Newman black hole in four
dimensions is an algebraically special solution of Weyl type
D. As we will point out below, for the five-dimensional
charged rotating black hole this does not hold anymore. The
algebraic classification of the Weyl tensor in higher dimen-
sions is based on the alignment of a null vector, the so-called
Weyl aligned null direction (WAND), where the definition of
the Weyl types is linked with the multiplicity of such a WAND
(see for example [29] for a review). The standard approach to
determine the algebraic type of a given Weyl tensor is to find
an aligned null frame in which the vanishing components
of the Weyl tensor then indicate its type. Here, we employ
the higher-dimensional extension of the Bel–Debever crite-
ria [30], another simpler and frame-independent method to
answer the question whether the five-dimensional charged
rotating black hole solution is algebraically special. The Bel–
Debever criterion for a specific algebraic type is a polynomial
equation involving the Weyl tensor and an unknown null vec-
tor �, which is the respective WAND of given multiplicity.
For instance, the Weyl tensor is of algebraic type II if and
only if there exists a null vector � satisfying

CII
μνρστ ≡ �[σ Cμ]λ[νρ�τ ]�λ = 0 . (68)

Taking the regular metric ansatz (19) in terms of the radial
coordinate R into account, it is convenient to start with a
general � of the form

�μ =
(

− �̂t

f
, 2

√
N
m

�̂R,
�̂θ

√
m

,

√
m
f N

�̂φ

− �̂t


f
,

√
m
f N

�̂ψ − �̂t


f

)
, (69)
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which simplifies the condition for � being null:

8
[
(�̂t )2 − (�̂R)2 − (�̂θ )2

]
−
[
3(�̂φ)2 + 2�̂φ �̂ψ + 3(�̂ψ )2

]

+ 4
[
(�̂φ)2 − (�̂ψ)2

]
cos(2θ) − (�̂φ − �̂ψ )2

×
[

cos(4θ) + 2m2

f N
sin2(2θ)

]
= 0 .

(70)

The Bel–Debever criterion (68) for the Weyl tensor of our
ansatz (19) is considerably complicated. It turns out that the
simplest component of the rank-5 tensor CII

Rtφθψ
factorizes

and yields the condition

[
(�̂θ )2 + (�̂R)2

] [
�̂t
(
N f ′ + f N′ − 2

f N
m

m′
)

+
√

f N3

m
(�̂φ sin2 θ + �̂ψ cos2 θ)
 ′

⎤
⎦ = 0, (71)

where a prime denotes a derivative with respect toR. We thus
obtain two branches: either the first bracket vanishes, which
entails �θ = �R = 0, or the second bracket vanishes. Both
conditions ensure that the component CII

Rtφθψ
vanishes, and

for each branch we can simplify the criterion (68) by sub-
stituting back the corresponding condition. We then repeat
this procedure: picking up the remaining simplest compo-
nent which factorizes, and plugging the condition in each
new subbranch into the criterion (68), until all the compo-
nents of the criterion are satisfied. In this way, we obtain at
the end 109 sets of conditions on the metric functions and the
components of the WAND � under which the Bel–Debever
criterion for type II (68) is satisfied. However, all these sets
are contained in the following 9 disjunct cases:

1 : (�̂t )2 = (�̂R)2 + (�̂θ )2 + (�̂φ)2 sin2 θ + (�̂ψ )2 cos2 θ,

f N = m2, 
 ′ = 0, f ′′ = ( f ′)2

4 f

+ f
4N(N′′ + 1) − 3(N′)2

12N2 , (72a)

2 : �̂θ = 0, �̂ψ = �̂φ, (�̂t )2 = (�̂R)2 + (�̂φ)2,
(

f N
m2

)′
= 
 ′ = 0, f ′′ = f 2

3m2 + ( f ′)2

4 f

+ f
4NN′′ − 3(N′)2

12N2 , (72b)

3 : �̂θ = 0, �̂φ = 0, �̂ψ = 0, (�̂t )2 = (�̂R)2,
(

f N
m2

)′
= 
 ′ = 0, f ′′ = 5 f 2

3m2 + ( f ′)2

4 f

+ f
4N(N′′ − 4) − 3(N′)2

12N2 , (72c)

4 : �̂θ = 0, �̂φ = 0, �̂ψ = 0, (�̂t )2 = (�̂R)2,

(
f N
m2

)′
= 
 ′ = 0, f ′′ = − f 2

3m2 + ( f ′)2

4 f

+ f
4N(N′′ + 2) − 3(N′)2

12N2 , (72d)

5 : �̂θ = 0, �̂φ = 0, �̂ψ = 0, (�̂t )2 = (�̂R)2,
(

f N
m2

)′
= 0, 
 ′′ = 3(N f ′ − f N′)
 ′

4 f N
, (72e)

6 : �̂t = �̂φ

√
N
f m


, �̂θ = 0,

�̂ψ = �̂φ, (�̂R)2 = (�̂φ)2
(

N
f m


 2 − 1

)
,

(
f N


m2

)′
= 0, 4m2 f ′′ = f 2

+ m f ′(2m f ′ − 3N

 ′)
f

− f ((m′)2 − 2mm′′)

+ 3N
m′
 ′ − m( f ′m′ − 2N

 ′′), (72f)

7 : �̂t = �̂φ

√
N
f m


, �̂θ = 0,

�̂ψ = �̂φ, (�̂R)2 = (�̂φ)2
(

N
f m


 2 − 1

)
,

(
f N


m2

)′
= 0, (N
 2 − f m)
 ′′

= 8 f 3
 + 3mN
 2 f ′
 ′

4 f m

− f m
2
 2 − 
N′
 ′ + N(
 ′)2

N


− 
 ′ 6m f ′ + 
(3
N′ − 7N
 ′)
4

, 12 f ′′ = 20 f 2

m2

+ 3( f ′)2

f
− 4
 ′

(
3 f ′



− 5N
 ′

m

)

− 3 f (N′)2

N2 + 2 f
5N′
 ′ − 2
(4 − N′′)

N


− f
11(
 ′)2 − 12

 ′′


 2 , (72g)

8 : �̂R = 0, �̂θ = 0, �̂ψ = �̂φ, (�̂t )2 = (�̂φ)2,


 ′ = �̂φ

�̂t

√
f 3N
m3

(
m2

f N

)′
,

6 f ′′ = f 2

m2 + 3
( f ′)2

f
− f ′N′

N
+ 2 f (N′)2

N2

− 3 f
(m′)2 − 2mm′′

m2 − f
m′N′ + 2mN′′

mN
, (72h)

9 : �̂t = −�̂φ

√
f N3

m

 ′

N f ′ + f N′ − 2 f N
m m′ ,

�̂θ = 0, �̂ψ = �̂φ, (�̂R)2 + (�̂φ)2 = (�̂t )2,
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f ′′

2 f
= (m′)2

m2 − 2m′N′

mN
+ m′′

m
+
(

2 f ′

f
+ 
 ′′


 ′

)

(
f ′

2 f
+ N′

2N
− m′

m

)
+ (N′)2

N2 − N′′

2N
,

2(2 f Nm′ − m(N f ′ + f N′))m′′ = 2m2N( f ′)3

f 2

+ 2 f N(m′)3

m
+ f (N f ′ − (m′)2N′)

− f 2 2Nm′ − mN′

m

− m f ′ −2m f ′N′ − 3N2(
 ′)2 + N(5 f ′m′ + 4m f ′′)
f

− mN′( f ′m′ + 4m f ′′)
+ Nm′( f ′m′ + 8m f ′′) − N2
 ′(3m′
 ′ + 2m
 ′′) .

(72i)

In other words, the metric ansatz (19) is of Weyl type II
if and only if the conditions of any of these 9 cases are
met. Nevertheless, it is not clear so far whether these con-
ditions could be satisfied on-shell. First, we recall that the
uncharged and non-rotating limits of the charged rotat-
ing solution lead to known exact solutions, namely the 5-
dimensional Myers–Perry black hole and the 5-dimensional
charged Schwarzschild–Tangherlini black hole, respectively,
which are given in Sect. 2.1. Although both special solu-
tions are of Weyl type D, they satisfy the type II conditions
from distinct cases which suggests that the charged rotat-
ing solution is of more general algebraic type. Specifically,
the Myers–Perry black hole fulfills the conditions of case 9,
whereas the charged Schwarzschild–Tangherlini black hole
meets the conditions of case 5.

Now, let us discuss the compatibility of the conditions
(72) with a general charged rotating solution of the Einstein–
Maxwell equations. The conditions of cases 1, 2, 3 and 4 are
satisfied only in the non-rotating limit, since for 
 ′ = 0 we
obtain Ĵ = 0 from the conservation law (23c) together with
the BVP (24c). To analyze the remaining cases, we make use
of the on-shell asymptotic expansions (36) of the functions
f , m and aφ , where without loss of generality we set r2− =
0. In the case 5, plugging the asymptotic expansions into
(N f/m2)′ = 0, the numerator given by N f = R2 − (M̂ +
r2H)R+ 1

2 M̂(M̂ + r2H)+ 4
3 Q̂2 +O(R−1

)
and the denominator

given by m2 = R2 − (M̂ + r2H)R + 1
4 (M̂ + r2H)2 + 8

3 Q̂2 +

O(R−1
)

differ at order R0. Therefore, N f/m2 in general
depends on R and the conditions of case 5 are not fulfilled.
Analogously, in cases 6 and 7, from the first terms of the
asymptotic expansion of (N f 
/m2)′ = 0 it is obvious that
the fraction ofN f 
 = Ĵ +O(R−1

)
andm2 = R2+O(R) is

not independent of R, such that also this condition is not met
for a general solution. Substituting the asymptotic expansion
(36) in the condition 
 ′ = ±√N f 3/m3[m2/(N f )]′ of case
8 we obtain 2 Ĵ/R3 = ±(16Q̂2 − 3M̂2 + 3r4H)/(6R7/2) +
O(R−4

)
, requiring Ĵ = 0. Lastly, in case 9 the leading order

term in its condition reads −4 ĴR + O(R0
) = 0, and again

requires that Ĵ = 0, such that none of the conditions can be
fulfilled for a general charged rotating solution.

4.2.2 Weyl type on the horizon

We have shown above that in the bulk the charged Myers–
Perry metric is algebraically general. In this section, we
determine the algebraic type of the metric on the horizon.
The form (41) is manifestly regular at the horizons and the
bifurcation sphere, but it is more cumbersome than neces-
sary. In Kruskal-like coordinates, an a priori regular ansatz
may be parameterized as follows, where any function with
implicit coordinate dependence depends only on the product
U V and have non-vanishing leading terms of order zero, e.g.,
F = F(U V ) = F(0) + O(U V ):

ds2 = 2F dU dV + N [W (U dV − V dU )

− sin2 θ dφ − cos2 θ dψ]2

+M dθ2 + M sin2 θ cos2 θ(dφ − dψ)2, (73)

!gμν =

⎛
⎜⎜⎜⎜⎝

V 2 N W 2 F − U V N W 2 0 V N W sin2 θ V N W cos2 θ

F − U V N W 2 U 2 N W 2 0 −U N W sin2 θ −U N W cos2 θ

0 0 M 0 0
V N W sin2 θ −U N W sin2 θ 0 (N sin2 θ + M cos2 θ) sin2 θ (N − M) sin2 θ cos2 θ

V N W cos2 θ −U N W cos2 θ 0 (N − M) sin2 θ cos2 θ (N cos2 θ + M sin2 θ) cos2 θ

⎞
⎟⎟⎟⎟⎠

. (74)

To determine the type of the Weyl tensor on the horizon,
we employ the null coframe � = dU , n = dV , m(2) = dθ ,
m(3) = dφ − dψ , m(4) = W (V dU − U dV ) + dφ (up to
normalization).

Calculating all boost-weight +2 components of the Weyl
tensor Cαβγ δ�αm(i)

β�γ m( j)
δ , we find that they all vanish

for U = 0. Furthermore, all boost-weight +1 components
vanish there as well. It follows that � is a multiple WAND
at U = 0. Similarly, n is a multiple WAND at V = 0.
Therefore, the spacetime is at least of Weyl type II at either of
the horizons (V = 0 or U = 0) and type D at the bifurcation
sphere (U = V = 0). The same results also hold for the
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Riemann tensor. Note that these observations hold even off-
shell, without imposing the Einstein–Maxwell equations.

5 Discussion

We have studied various mathematical aspects of a charged
rotating black hole with two equal-magnitude angular momenta
in five dimensions.

In Sect. 3, we proposed a metric ansatz (19) which is
regular on the horizon. Furthermore, for this metric ansatz
the Einstein–Maxwell system (24) and (25) is autonomous,
which is technically convenient. We studied geometric regu-
larity conditions for the Einstein–Maxwell system (24) fol-
lowing from asymptotic flatness with the absence of incom-
ing and outgoing radiation, as well as regularity at the hori-
zon. By comparing the solution at the singular end-points
with these conditions, we showed that the boundary value
problem is well-posed.

In Sect. 4, we performed the algebraic classification of
the curvature tensors and the electromagnetic tensor F. We
found that the Weyl tensor is algebraically general in the
bulk, type II on the horizon, and type D on the bifurcation
sphere. The electromagnetic field strength tensor F and the
stress-energy tensor T are both of type D off-shell, while the
Ricci tensor is type D on-shell. These algebraic properties are
inconsistent with the Kerr–Schild form (1) of the metric with
geodesic k, such that the charged rotating black hole with two
equal-magnitude angular momenta in five dimensions can-
not be described by such a Kerr–Schild metric. On the other
hand, changing to coordinates appropriate for studying the
on-horizon properties of the spacetime, the metric (73) takes
a form somewhat reminiscent of the Kerr–Schild form. In this
case, however, the background metric is a four-dimensional
type D warped product metric, and the “Kerr–Schild” vector
is not null.
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Appendix A: Comparison with the work of Fan, Liang,
Mei

In [9], Fan et al. looked at the same metric ansatz, introduced
by Kunz et al. [19,24], for a 5-dimensional charged rotating
black hole that we are considering in this work. They claim
to have reduced the corresponding Einstein equations to only
two scalar variables (their Z and Aφ). In contrast, in Sect. 3,
the most we could reduce our system to is the three scalar
variables f , m, aφ , in Eqs. (24) and (25). Unfortunately,
a closer comparison reveals some inconsistencies in their
formulas.

In more detail, the parametrization of the ansatz used in
[9] is

ds2 = −F dt2

+dR2

W
+ R2

(
dx2

1 − x2 + (1 − x2) dφ2 + x2 dψ2
)

+N
[
(1 − x2) dφ + x2 dψ

]2

−2B
[
(1 − x2) dφ + x2 dψ

]
dt, (75a)

A = At dt + Aφ

[
(1 − x2) dφ + x2 dψ

]
. (75b)

where a comparison with our parametrization (19) reveals
the dictionary

x = cos θ, (76a)

r = √
m/ f , (76b)

F = f − N
m


 2, (76c)

W = N
(
m′

m
− f ′

f

)2

, (76d)

N = N
m

− m
f

, (76e)

B = N
m


, (76f)

At = a0, (76g)

Aφ = aφ, (76h)
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where all derivatives on the right-hand side are with respect
to our coordinate R = r2. In the two equations,

W = 16Z(c0+Z)

r2(∂r Z)2 , Eq. (3) of [9]
N = Z

r2 F
− B2

F − r2, Eq. (4) of [9]

the first one introduces a new variable Z = Z(r) and a con-
stant c0, while the second one follows from this definition
in conjunction with the Einstein equations. Using our dictio-
nary and simple algebraic manipulation, we find that Z and
c0 are uniquely determined by the identities

Z = N = (R − r2+)(R − r2−), c0 + Z = (N′/2)2

=
(
R − r2+ + r2−

2

)2

, (77)

where we have used the form of N (23) imposed by the Ein-
stein equations. Next, after introducing the variable Ãφ in
their Equation (7), their formula (6) for F is equivalent to
a combination of our (23c) and (24c). However, their final
complicated formula (8) for B turns out to be inconsistent.
We have verified the inconsistency by plugging in our gen-
eral asymptotic solution (36), for any non-trivial values of
the free parameters M̂ and a(−1)

φ . Unfortunately, the claimed
reduction by [9] of the Einstein equations to just the two vari-
ables Z and Aφ cannot be correct without the validity of their
Equation (8), which we have also verified cannot be saved by
undoing possible sign errors or other minor typos. Finally,
the asymptotic solution at infinity (9) for Z and Aφ in [9]
cannot be matched up to our asymptotic solution (36) by any
correspondence between their free parameters (m, a, s) and
ours (M̂, a(−1)

φ ), with an inconsistency appearing already at
the next subleading order.
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