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Abstract In this work we study braneworld models in gen-
eralized f (R, T ) gravity theories where the action depends
on a function of the Ricci scalar R and the trace of the stress–
energy tensor T . We explore the so-called scalar–tensor rep-
resentation of the theory, where the dependence on R and T
are exchanged for two auxiliary real scalar fields. We intro-
duce a first-order formalism to relate the auxiliary fields with
the source field of brane and analyze four distinct possibilities
of current interest regarding compactification and asymme-
try of the brane. We investigate the behavior of the auxil-
iary fields and their stability in each one of the four cases.
For the models where the solution of the source field engen-
ders compact behavior, the auxiliary fields exhibit a hybrid
structure, behaving differently inside and outside the com-
pact region described by the source configuration. In par-
ticular, we found that the solutions of the auxiliary fields
are significantly modified in models where the geometry is
strongly influenced by the source field. Moreover, for the
model capable of engendering asymmetric features, the two
auxiliary fields also respond to modifications on the param-
eter that controls the asymmetry of the system.

1 Introduction

Five-dimensional braneworld models are theories of gravity
in a (4, 1) anti-de Sitter spacetime containing a four-brane
in the presence of a single extra dimension of infinite extent.
An interesting braneworld model was proposed by Randall
and Sundrum (RS) in 1999; it is known as the RS model [1]
and was motivated to provide an alternative explanation for
the hierarchy problem. In a braneworld, gravity is supposed
to flow through the extra dimension and the RS model is
sometimes referred to as the thin brane model. Soon after, in
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Refs. [2–4] the thin brane scenario was modified to incorpo-
rate a real scalar field, the source field capable of generating
a thick brane, in which the warp factor is now a smooth func-
tion of the extra dimension. In this thick brane scenario, the
presence of the real scalar field may be seen as the source
of the warped geometry that describes the five-dimensional
braneworld.

The braneworld idea has been considered in several differ-
ent contexts, for instance, to study the effects of a first-order
phase transition [5], the presence of internal structure [6–8]
asymmetric scenarios [9–17] and other possibilities [18,19].
More recently, it has been studied to contextualize important
questions concerning inflation, black holes, and dark energy,
for instance. In particular, one notices that in Refs. [20–22]
the authors examine black hole dynamics in braneworld sce-
narios. Most of the issues considered are based on propos-
als where the braneworld scenario is generalized by includ-
ing new terms in the Einstein-Hilbert action [23,24]. Con-
sequently, generalized functions of Lorentz invariant terms
have been included in the standard action, to find stable solu-
tions in brane models with F(R)-gravity [25–32], Gauss-
Bonnet [33–35], trace T of the energy-momentum tensor
[36], and other extended theories of gravity. In the context of
generalized models, a specific issue concerns the emergence
of inner structures of the brane. When this is the case, stud-
ies indicate that the internal modification of the brane may
change the resonance spectrum and location of the gravi-
ton when the brane is coupled with fermions [37–43]. This
is interesting, and gravitational resonances have also been
studied in teleparallel gravity, which may be considered as a
possible candidate for dark matter [44].

An interesting way to analyze generalized gravity mod-
els is through the scalar–tensor representation. In this sce-
nario, auxiliary scalar fields are introduced to replace invari-
ant contributions added to the model, but yet carrying all the
information encoded within. In this representation, we can
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describe the dynamics of auxiliary fields separately and, if
the brane has an inner structure, it will be determined in the
model by the solutions of the auxiliary fields. However, due
to the complexity of the equations of motion, the solutions
of the auxiliary fields are in general obtained via numeri-
cal methods, using as ansatz the solution of the source field
of the brane in models that develop analytical solutions. In
previous works, for instance, in Refs. [45,46], it was demon-
strated that, in the scenario where the brane is generalized by
the inclusion of a general function of the Ricci scalar and the
trace of the stress–energy in the form F(R, T ) [47], the fit-
ting parameters imposed on the ansatz of the source field are
less significant than the boundary conditions used to solve
the equations of motion that come from the scalar–tensor
representation. In order to further explore this behavior, in
Ref. [48], the dynamics of the source field was changed by
including a cuscuton term. In this new scenario, we verified
a quantitative change in the behavior of the auxiliary fields,
with the cuscuton term having a non-negligible influence on
the inner structure of the zero-mode which appears from the
stability of the gravitational sector.

The modification of gravitational theories by the inclusion
of non-standard kinetics, such as cuscuton, has been the sub-
ject of interesting investigations in recent years, in particular
as they offer new possibilities for solving important cosmo-
logical questions such as dark energy and dark matter. In
the braneworld scenario, models with K-fields were first pre-
sented in [49] and also generalized in [50,51]. On the other
hand, the cuscuton dynamics, which has been studied in Refs.
[52–54] to find exact solution describing an accelerating four-
dimensional universe with a stable extra dimension [52], the
possibility to construct analytic solutions for the cosmolog-
ical background evolution that mimics �CDM cosmology
[53], and the cuscuton gravity as a classically stable limiting
curvature theory [54], the cuscuton dynamics has also been
very recently investigated within the braneworld context in
Refs. [55,56]. Due to this, it is of current interest to under-
stand if other modifications in the structure of the source field
of the brane, such as the assumption that they describe com-
pact structures, can also affect the behavior of the auxiliary
fields. In this respect, we know that the compact structure of
the source field may induce a new behavior on the model,
producing what is known as hybrid brane, i.e., a brane that
behaves differently, having a thin or a thick profile inside
or outside the compact space [57]. Moreover, we can also
induce a compression of the brane geometry, as is done in
Ref. [58], to check how the auxiliary fields are modified in
these cases. It is also of interest to see how the auxiliary fields
modify when one changes the thick braneworld scenario to
admit asymmetric configurations.

To examine the above issues, we organize the present work
as follows. In Sect. 2 we introduce the general formalism
describing a f (R, T )-brane in the tensor–scalar representa-

tion, and describe the first-order formalism to explain the
interdependence between the auxiliary scalar fields and the
solution of the source field. In Sect. 3, we study several mod-
els, two of them to understand how the appearance of com-
pactlike configurations changes the behavior of the auxiliary
fields, and another one, to describe effects of the asymme-
try of the brane. In the first model, we introduce a simpler
possibility as a warm-up for the following investigations. In
particular, in the second model, we consider solutions with a
compactlike profile for the source field of the brane to study
the changes in the auxiliary fields. Moreover, in the third
model we also study modifications in the geometry of the
brane, to see how it affects the auxiliary fields. We also study
another possibility, the fourth model which allows for the
presence of asymmetric configurations. There we explore
how the warp factor, the auxiliary fields ϕ and ψ and the
potential U modify as we change the asymmetric profile of
the system. In Sect. 4 we investigate linear stability of the
gravitational sector, paying closer attention to the presence
of the compactlike behavior and the asymmetry of the model.
We end the work in Sect. 5, including our final comments and
conclusions.

2 Formalism

In this section we describe the scalar–tensor representation to
study generalized braneworld models of the f (R, T ) type,
where R is the Ricci scalar, and T is the trace of the stress–
energy tensor Tab. For this purpose, we assume the standard
metric used in the braneworld scenario with an additional
dimension y described by a line element given by

ds2 = e2A(y)ημνdx
μdxν − dy2, (1)

where ημν is the four-dimensional Minkowski metric with
signature (+ − −−), written in terms of a set of coordi-
nates xμ and A(y) is the warp function, which is supposed
to depend only on the extra dimension. In this case, the Ricci
scalar can be written as R = 8A′′ + 20A′2, where the prime
denotes derivative with respect to the extra dimension. Also,
Greek indices μ, ν, . . . run from 0 to 3 and Latin indices
a, b, . . . run from 0 to 4.

Let us now follow Ref. [36] and consider a generalized
action S in five-dimensions coupled to a scalar source field
as

S = 1

2κ2

∫
�

√|g| d5x
[
f (R, T ) − 2κ2Ls

]
, (2)

where κ2 = 8πG5/c4 is a coupling constant, with G5 the 5-
dimensional gravitational constant, and c the speed of light,
� is a five-dimensional spacetime manifold described by a
set of coordinates xa and |g| is the absolute value of the
determinant of the metric gab. In this work, we consider that
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the Lagrangian density Ls has the form

Ls = 1

2
∇aφ∇aφ − V (φ), (3)

where φ is a source field of the brane and ∇a represents the
covariant derivatives.

We can also obtain the stress–energy tensor Tab, defined
in the usual way as the variation of the Lagrangian density
with respect to the metric gab. Using Eq. (3) we obtain,

Tab = ∇aφ∇bφ − gab Ls . (4)

To obtain the trace of the stress–energy tensor, we make the
contraction with the metric, i.e., gabTab, thus,

T = −3

2
∇aφ∇aφ + 5V (φ). (5)

We could now obtain the equations of motion for the
source field and the modified field equations by varying
Eq. (2) directly with respect to φ and gab, respectively. How-
ever, let us perform a transformation to a dynamically equiv-
alent scalar–tensor representation by introducing two new
auxiliary scalar fields ϕ and ψ instead. As it was discussed
in Ref. [45], if fRR fT T �= f 2

RT , where the subscripts R and
T denote partial derivatives of the function f with respect to
these variables, respectively, we can express Eq. (2) as

S = 1

2κ2

∫
�

√|g|
(
ϕR + ψT −U (ϕ, ψ) − 2κ2Ls

)
d5x,

(6)

where the scalar fields ϕ and ψ and the scalar interac-
tion potential U (ϕ, ψ) are defined in terms of the function
f (R, T ) as

ϕ = ∂ f

∂R
, ψ = ∂ f

∂T
, U = ϕR + ψT − f. (7)

Now we can proceed to obtain the equations of motion by
treating each of these new fields as an independent quantity.
Note that Eq. (6) now depends on four quantities: the metric
gab, the auxiliary scalar fields ϕ and ψ , and the source field
of the brane φ. Varying Eq. (6) with respect to the auxiliary
scalar fields, ϕ and ψ , one obtains

Uϕ = R, Uψ = T, (8)

where Uϕ = ∂U/∂ϕ and Uψ = ∂U/∂ψ . The modified field
equations obtained from a variation of Eq. (6) with respect
to gab have the form,

−1

2
gab (ϕR −U ) + ϕRab − (∇a∇b − gab �) ϕ

= κ2Tab + 3

2
ψ∇aφ∇bφ + 1

2
gab ψT, (9)

where � ≡ ∇c∇c is the d’Alembert operator and Rab is the
Ricci tensor. Finally, the equation of motion for the source

field φ is given by,

∇a∇aφ + Vφ = − 3

2κ2 ∇a
(
ψ∇aφ

) − 5

2κ2 ψVφ, (10)

where Vφ = dV/dφ.
As usual, we now assume that the system is static and that

all scalar fields are functions of the extra dimension only,
i.e. ψ = ψ(y), ϕ = ϕ(y) and φ = φ(y). Moreover, in
the following calculations we will consider a system of geo-
metric units for which κ2 = 2 holds. Using this prescrip-
tion, the trace of the stress–energy tensor can be written as
T = 3φ′2/2 + 5V . We then obtain the equations of motion
for the auxiliary fields as

Uϕ = 8A′′ + 20A′2, (11)

Uψ = 3

2
φ′2 + 5V . (12)

On the other hand, given the isotropy of the system in the
four-dimensional spacetime, Eq. (9) features only two non-
vanishing and linearly independent components, which are

6ϕ
(
A′′ + 2A′2) + 6ϕ′A′ + 2ϕ′′ −U

= −2φ′2 − 4V −
(

3

2
φ′2 + 5V

)
ψ, (13)

−12ϕA′2 − 8ϕ′A′ +U = −2φ′2 + 4V

−
(

3

2
φ′2 − 5V

)
ψ. (14)

Furthermore, the equation of motion for the source field φ

given by Eq. (10) yields

φ′′+4A′φ′ =Vφ− 3

4
φ′ψ ′−

(
3

4
φ′′+3A′φ′− 5

4
Vφ

)
ψ. (15)

It is possible to show that from the five equations given
by Eqs. (11)–(15), only four are linearly independent. To
prove this statement, one takes the derivative of Eq. (14)
with respect to y, uses Eq. (13) to eliminate the dependency
on A′′, and uses Eqs. (11), (12), and (15) to eliminate the
dependencies in Uϕ , Uψ , and φ′′, respectively. As a result,
one recovers Eq. (14) itself, thus proving that this equation
is linearly dependent on the others. Consequently, one can
simplify the system by exchanging the two field equations in
Eqs. (13) and (14) by a linear combination of themselves to
obtain the simpler relation

3ϕA′′ + ϕ′′ − ϕ′A′ = −2φ′2 − 3

2
ψφ′2. (16)

Moreover, it was show in Ref. [45] thatUϕ ,Uψ andU can all
be regarded as independent quantities due to the presence of
two degrees of freedom in U , coming from the two arbitrary
dependencies of this function in the scalar fields ϕ and ψ .
Therefore, we can use the chain rule to write the potential U
as U ′ = Uϕϕ′ +Uψψ ′. If we now consider the Eqs. (11) and
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(12), we get

U ′ = (
8A′′ + 20A′2)ϕ′ +

(
3

2
φ′2 + 5V

)
ψ ′. (17)

This equation already encodes all the information from
Eqs. (11) and (12), while reducing the number of degrees
of freedom in U from two (explicit dependencies in ϕ and
ψ) to one (dependency on y only). Thus, Eq. (17) replaces
Eqs. (11) and (12). We are thus left with a simpler system
of three equations, i.e., Eqs. (15)–(17), for the six indepen-
dent degrees of freedom carried by the quantities ϕ, ψ , φ,
U , V , and A. This system is thus under-determined and one
needs to impose three extra constraints to close the system.
Let us proceed considering the first-order formalism in which
we rewrite the functions A, φ, and V in terms of a known
function W that depends solely on the source field φ, i.e.,

φ′ = Wφ, A′ = −2

3
W, (18)

where Wφ = dW/dφ. Note that if we know the function
W (φ), the first-order formalism must restrict the form of
the solution of the source field and the warp function A. In
this paper, we are interested in studying the behavior of the
auxiliary fields ϕ and ψ when the source field is a topological
defect solution. To guarantee the asymptotic behavior of the
solution of the source field, we will assume that the potential
has the standard form

V (φ) = 1

2
W 2

φ − 4

3
W 2. (19)

This is an important choice and it allows that we rewrite the
energy density as a total derivative in the form,

ρ(y) = d

dy

(
e2AW

)
.

At this point we have already introduced two constraints
on the system, i.e., Eqs. (18) and (19) (note that the two
equations in Eq. (18) contribute with a single constraint to
the system since an extra degree of freedom was added in
the quantity W ). The last constraint imposed on the system
will be the explicit form of the function W , which will be
introduced in the following sections. Introducing the con-
straints from Eqs. (18) and (19) into Eq. (15) one obtains a
connection equation for the field ψ in the form,

9ψ ′ + 2
(
8W − 3Wφφ

)
ψ = 0. (20)

Although we cannot solve this equation in general, we will
show that it is possible to obtain analytic solutions for some
specific situations. The two remaining equations in the sys-
tem, i.e., Eqs. (16) and (17), under these assumptions take
the forms

− 2ϕW 2
φ + ϕ′′ + 2

3
ϕ′W + 2W 2

φ + 3

2
ψW 2

φ = 0, (21)

and

U ′ = 4

(
5

3
W 2 − W 2

φ

)(
4

3
ϕ′ − ψ ′

)
. (22)

To demonstrate how the formalism presented in this sec-
tion works, we will consider some specific models that pro-
duce interesting braneworld scenarios which are geometri-
cally stable against first-order perturbations of the metric.

3 Specific models

Let us now proceed to some applications of the scalar–tensor
formalism via the first order procedure described in the pre-
vious section. In this sense, we will start by defining each dis-
tinct model via the explicit form of the function W = W (φ),
which depends solely on the source scalar field φ.

3.1 First model

As a first case, let us consider that the W (φ) function is
described by the sine-Gordon model, i.e.,

W (φ) = 2a sin φ, (23)

where a is a real parameter. For a > 0 we have kink solutions
and for a < 0 we have anti-kink solutions, which essentially
present the same physics, and thus in the following we shall
deal with a > 0 without loss of generality. We know that
this model generates stable solutions in situations with stan-
dard gravity. Thus, it is a good starting point to analyze the
changes induced by the introduction of the auxiliary func-
tions described in the previous section. Considering the first
of Eq. (18), we obtain a kink-like solution for φ in the form,

φ(y) = 2 arctan
[

tanh(ay)
]
, (24)

where the parameter a controls the characteristic width of the
solution, without changing its asymptotic value φv = ±π/2
when y → ±∞ as we can observe in Fig. 1, for the values
a = 1, 2, 3. Note that as a increases, the source field solution
becomes more and more concentrated near the origin.

In the limit where a goes to infinity, the solution behaves
like a sign function, defined by

sign(y) =
⎧⎨
⎩

−1 to y < 0,

0 to y = 0,

1 to y > 0.

The potential V (φ) obtained using Eq. (23) in Eq. (19)
can be written as

V (φ) = 2a2 − 22

3
a2 sin2(φ). (25)

For the asymptotic value of the solution, the potential
assumes the value V (φv) = −16a2/3. In this limit, V plays
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Fig. 1 Kink solution given by Eq. (24) for a = 1 (solid line), a = 2
(dashed line) and a = 3 (dot-dashed line)

Fig. 2 Warp factor e2A given by Eq. (26) for a = 1 (solid line), a = 2
(dashed line) and a = 3 (dot-dashed line)

the role of a cosmological constant �5 ≡ V (φv), and thus
as �5 < 0 the Bulk is asymptotically AdS5.

The warp function is obtain from the second of Eq. (18),
using the Eq. (23) and the solution in Eq. (24), and it takes
the form

A(y) = (2/3) ln
[
sech(2ay)

]
. (26)

In Fig. 2 we show the warp factor e2A for the values a =
1, 2, 3. Note that just like the source field solution, the warp
factor also becomes more and more concentrated as the a
parameter increases.

We verified that the Kretschmann scalar defined by

K = 40A′4 + 16A′′2 + 32A′2A′′,

exhibits the expected behavior, i.e., it remains finite for the
entire range of the extra dimension y. In particular, K (0) =
(32a/3)2 and K (y → ±∞) = 40(4a/3)4.

Let us now analyze the behavior of auxiliary fields starting
with ψ(y). For this, we use the Eq. (23) and the solution in
Eq. (24) to write Eq. (20) as

9ψ ′ + 44a tanh(2ay)ψ = 0. (27)

Fig. 3 Field ψ(y) given by Eq. (28) for ψ0 = −1, a = 1 (solid line),
a = 2 (dashed line) and a = 3 (dot-dashed line)

This differential equation can be solved analytically and
yields solutions of the form,

ψ(y) = ψ0 sech22/9(2ay), (28)

where ψ0 is an integration constant. Figure 3 show the behav-
ior of field ψ given by Eq. (28). In this plot we used ψ0 = −1
and a = 1, 2, 3. As expected, this field behaves similarly
to the warp factor close to the origin. This result suggests
that this field also has a strong tendency to shrink around
y = 0, displaying compacticity. We have verified that for
other negative values of ψ0 the general behavior of the field
does not change qualitatively. However, if ψ0 becomes posi-
tive, then the corresponding solution is reflected around the y
axis, exhibiting a bell-shaped behavior. In any case, the field
always vanishes asymptotically.

The other two quantities, i.e., the fields ϕ(y) and the poten-
tialU (y) can only be obtained through numerical integrations
of Eqs. (21) and (22), subjected to the boundary conditions
ϕ(0) = ϕ0, ϕ′(0) = 0 and U (0) = U0, for some constant
parameters ϕ0 and U0. Furthermore, since these equations
also feature an explicit dependency in ψ , the results will also
be influenced by the parameter ψ0. Depending on the val-
ues of ϕ0 and ψ0, the solution for ϕ can have a plethora of
different qualitative behaviors. For example, taking ψ0 = 1,
one verifies that for ϕ0 � 1.75 the solution for ϕ presents
a single global minimum at y = 0 and grows outwards, for
ϕ0 � 1.5 the solution for ϕ presents a single global maximum
at y = 0 and decreases outwards, and for 1.5 � ϕ0 � 1.75
the field ϕ undergoes a phase transition between these two
behaviors. These results are show in Fig. 4. As for the solu-
tion forU , we verified that the parameterU0 functions solely
as a translation along the vertical axis, and thus we have con-
sideredU0 = 0 for simplicity, without loss of generality. The
shape of U is also qualitatively influenced by the parameters
ϕ0 and ψ0. Taking ψ0 = 1, one verified that U presents a
local minimum at y = 0 surrounded by two maxima and
an outwards decrease for ϕ0 � 0.8, a local maximum at
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Fig. 4 Plot of field ϕ(y) for a = 1,U0 = 0, and ψ0 = 1 with ϕ0 = 1.4
(solid line), ϕ0 = 1.55 (dashed line), and ϕ0 = 1.7 (dotdashed line)

Fig. 5 Plot of potential U (y) for a = 1, U0 = 0 and ψ0 = 1 with
ϕ0 = 0.8 (solid line), ϕ0 = 1.3 (dashed line), and ϕ0 = 1.6 (dotdashed
line)

y = 0 surrounded by two minima and an outwards increase
for ϕ0 � 1.5, and a phase transition between these two behav-
iors for 0.8 � ϕ0 � 1.5. These results are shown in Fig. 5.
For both ϕ and U , the effects of the parameter a are the same
as before, i.e., to contract the solutions closer to y = 0, and
thus we chose not to include an analysis of this parameter in
the figures.

3.2 Second model

Let us now analyze the effects of a compactlike behavior of
the source field φ in the auxiliary fields ψ , ϕ, and the potential
U . As it was shown in Ref. [57], we can obtain compact kinks
in models with standard dynamics if we consider W (φ) in
the form

W (φ) = φ − φ2n+1

2n + 1
, (29)

with n a positive integer, i.e., n ≥ 1. Note that for n = 1, we
recover to the φ4 model. In Ref. [45] the authors studied brane
models in the scalar–tensor representation having kinklike
solutions for the source field in the φ4 model. While in the

Fig. 6 Kink solution obtain by Eq. (31) for n = 1 (solid line), n = 2
(dashed line) and n = 20 (dot-dashed line)

previous work the solutions were free to live in every region
of the space, here the solutions may shrink towards a compact
space as n increases to larger values. To verify this, we can
take Eq. (29) and the first of Eq. (18) to write

φ′ = 1 − φ2n . (30)

The general solution of this equation can be written in terms
of the hypergeometric function 2F1 in the form,

φ × 2F1

(
1

2n
, 1,

2n + 1

2n
, φ2n

)
= y. (31)

Unfortunately, this equation is not invertible in general for
any value of n, and thus we plot the results numerically in
Fig. 6. We can see that when n grows the solution becomes
more and more concentrated in the compact region between
y = ±1. Close to the origin, the solution behaves as a straight
line. This can be seen if we expand Eq. (31) in a Taylor series
around the origin and take the large n limit, where we obtain
φ(y) ≈ y. Thus, in the limit at which the solution becomes
compact, we have

φ(y) =
{
y for |y| ≤ 1,

sign(y) for |y| > 1.

The warp function is obtained using Eq. (29) in the second
of Eq. (18). Although we can not invert Eq. (31) to get the
warp function in terms of y analytically, given the fact that
φ is always injective in y and, consequently, an invertible
function, we can still get the warp function in terms of the
source field in the form

A(φ) = −
φ2 + 2nφ2 × 2F1

(
1
n , 1, n+1

n , φ2n
)

3(2n + 1)
. (32)

In Fig. 7 we show the behavior of warp factor, using the
numerical solution of Eq. (31). In Ref. [57], it was shows
that the warp factor behaves differently inside and outside
of the compact space, indicating that the brane has a hybrid
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Fig. 7 Warp factor e2A(y) plotted for same values of n used in Fig. 6

Fig. 8 Kretschmann scalar plotted for n as in Fig. 6

structure. This can be seen by expanding Eq. (32), from which
one obtains in the large n limit

A(y) =
{−y2/3 to |y| ≤ 1,

−2|y|/3 + 1/3 to |y| > 1.

Note that inside the compact space the behavior follows the
expected for thick brane, whereas outside it corresponds to a
thin brane scenario, which proves the hybrid structure of the
brane.

Using Eqs. (29) and (30), we can express the Kretschmann
scalar in terms of the solution of the source field in the form,

K = 64

9

(
1 − φ2n)4 + 640

81

(
φ − φ2n+1

2n + 1

)4

−256

27

(
1 − φ2n)2

(
φ − φ2n+1

2n + 1

)2

. (33)

In Fig. 8 we show the behavior of Kretschmann scalar. Note
that as n increases, it becomes more and more confined in
the compact space.

We now continue our analysis by extending the discus-
sion for the auxiliary fields. First, let us use the first-order

Fig. 9 Plot of ψ(y) giving by Eq. (35) depicted for ψ0 = −1 and n as
in Fig. 6

equations to rewrite the Eq. (20) as

9ψ ′ + 2

(
8φ + 6nφ2n−1 − 8φ2n+1

2n + 1

)
ψ = 0. (34)

As it was done for the warp factor, given the invertibility of
φ as a function of y, we can use the chain-rule to write ψ

as a function of the source field, such that ψ ′ = ψφφ′. With
this, we can obtain the solution of ψ analytically in terms of
the source field, i.e.,

ψ(φ) = ψ0
(
1 − φ2n)2/3

e−8 s(φ)/9, (35)

where

s(φ) = φ2 + 2

2n + 1
B

(
φ2n; 1 + 1

n
, 0

)
,

and B (x; a, b) is the incomplete beta function defined as

B
(
x; a, b

) =
∫ x

0
ta−1(1 − t)b−1dt,

where a and b are two parameters. In Fig. 9 we show the pro-
file of ψ(y) for different values of n. We see that in the large
n limit, the field tends to become more and more confined in
the compact region.

The auxiliary fieldϕ and the potentialU are again obtained
via numerical methods subjected to the boundary conditions
ϕ(0) = ϕ0, ϕ′(0) = 0, U (0) = 0. Similarly to the previous
case, depending on the values of ψ0 and ϕ0 the solution for
the field ϕ can feature a single minimum at y = 0, a single
peak at y = 0, or a phase transition between these two values.
However, there is a crucial difference between this model and
the one presented in Sect. 3.1. For the previous model, for
a fixed value of ψ0, this phase transition between the two
behaviors occurred for a fixed range of ϕ0, independently
of the free parameter a. However, in this model the range
of values of ϕ0 for which the phase transition occurs is also
controlled by the parameter n, which means that even for
a specific combination of ϕ0 and ψ0 one can have different
qualitative behaviors of the field ϕ0 by varying the parameter
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Fig. 10 Numerical plot of ϕ(y) for ϕ′(0) = 0, ψ0 = 1, and ϕ0 = 1.59,
with n = 1 (solid line), n = 2 (dashed line) and n = 20 (dot-dashed
line)

Fig. 11 Numerical plot ofU (y) forU (0) = 0, ψ0 = 1, and ϕ0 = 1.54,
with n = 1 (solid line), n = 2 (dashed line) and n = 20 (dot-dashed
line)

n. These results are plotted in Fig. 10. Regarding the potential
U , the situation is similar. The possible qualitative behaviors
of U are the same as in the previous model in Sect. 3.1,
but for a fixed ψ0 the range of values for ϕ0 for which the
phase transition occurs is strongly dependent on n, being thus
possible to chose a specific combination of ψ0 and ϕ0 and
still have different qualitative behaviors of U . These results
are shown in Fig. 11.

As a next model, we will propose a different situation,
where the compactification process will be more concen-
trated on the geometry rather than the source field.

3.3 Third model

Let us now examine a third model that allows for impor-
tant modifications in the geometry of the brane and how this
interferes with the auxiliary fields. To do this, we consider a
W (φ) of the form,

W (φ) = − 1√
λ(1 − λ)

ln

[
1 − √

λ sn(φ, λ)

dn(φ, λ)

]
, (36)

Fig. 12 Kink solution given by Eq. (37), plotted for λ = 0 (thick-solid
line), λ = 0.3 (thin-solid line), λ = 0.6 (dashed line) and λ = 0.9
(dot-dashed line)

where λ is a real parameter which is in the range [0, 1).
The functions sn(φ, λ) and dn(φ, λ) are the Jacobi’s ellip-
tic functions. For λ = 0 we have the usual trigonometric
functions, and for λ = 1 we recover the hyperbolic func-
tions. In Ref. [58] the authors showed that the parameter λ

significantly affects the compactification of the warp factor.
Using the first-order formalism, we find the solution for

the source field φ from the first of Eq. (18) as

φ(y) = sn−1
[

tanh

(
y

1 − λ

)
, λ

]
. (37)

It can be shown that we obtain the model analyzed in Sect. 3.1
when λ = 0. On the other hand, if λ �= 0 we have a qualitative
difference with respect to the previously studied model. In
this case, the asymptotic value of the solution change for
φ(y → ±∞) → ±φv , where,

φv = K (λ),

where K (λ) is the complete elliptic integral of the first kind
(not to be confused with the Kretschmann scalar). For λ = 0
we have K (0) = π/2 and, on the other hand, if λ → 1 we
have K (λ → 1) → ∞. Figure 12 shows the solution of
field given by Eq. (37) for λ = 0, 0.3, 0.6, 0.9. One notices
that λ changes the thickness of the topological defect so that
it becomes more and more concentrated at the origin as λ

increases towards unity. However, in this case we also have
a shift in the asymptotic values of the field configuration.

We can also use the first-order formalism to express the
scalar potential V given by the Eq. (19) as

V (φ) = −
cn2(φ, λ)

[
dn2(φ, λ) + 2

√
λ sn(φ, λ) − 2

]

2(λ − 1)2 dn2(φ, λ)
(√

λ sn(φ, λ) − 1
)2

− 4

3λ(λ − 1)2

[
ln

( dn(φ, λ)

1 − √
λ sn(φ, λ)

)]2
. (38)
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Fig. 13 Warp factor plotted for λ = 0 (thick-solid line), λ = 0.3
(thin-solid line), λ = 0.6 (dashed line) and λ = 0.9 (dot-dashed line)

Using the asymptotic value of the source field solution one
verifies that the asymptotic value of the potential is given by

V (φ → ±φv) = − 1

3λ(λ − 1)2

[
ln

1 − λ(
1 − √

λ
)2

]2

.

Note that since λ is in the range [0, 1), the asymptotic value
of the potential is negative. We know that this result leads to
an AdS5 brane, since the cosmological constant is defined
as �5 ≡ V (φ → φv) < 0 in five dimensions. When the
parameter λ tends to zero we have that �5 → −4/3, and
when λ tends to one we have �5 → −∞.

The warp factor is obtained numerically from the second
of Eq. (18) is shown in Fig. 13, where we have used the same
values for λ, i.e., λ = 0, 0.3, 0.6, 0.9. Note that unlike the
previous model Sect. 3.2, the warp factor undergoes a strong
compression with the increase of the parameter λ, with its
thickness rapidly approaching zero as λ gets closer and closer
to one. This result suggests that this compactification in the
geometry is much more intense than that described in the
previous sections.

We also verify that the Kretschmann scalar presents a stan-
dard behavior. In this case, K is given in terms of φ as

K (φ) = 512cn2(φ, λ)
[
2 − dn2(φ, λ) − 2

√
λ sn(φ, λ)

]
81λ(λ − 1)4dn2(φ, λ)

[√
λ sn(φ, λ) − 1

]2

×
[

ln

(
dn(φ, λ)

1 − √
λsn(φ, λ)

)]2

+ 5

81λ2 (λ − 1)4

[
ln

(
dn(φ, λ)

1 − √
λ sn(φ, λ)

)]4

+
[

4 cn(φ, λ)

3 (λ − 1)dn(φ, λ)

]4

. (39)

The asymptotic limits of the above expression are

lim
y→0

K (y) = 64

9(λ − 1)4 ,

and

lim
y→±∞ K (y) = 40

81λ2(λ − 1)4

[
ln

1 − λ(
1 − √

λ
)2

]4

.

Note that when λ → 0 we have K (0) → 64/9 and K (y →
±∞) → 640/81. On the other hand, if λ → 1 we have
K (0) = K (y → ±∞) → ∞, suggesting that the limit
λ = 1 is unreachable, which was already taken into account
when this value was excluded from the interval range of λ.

Let us now analyze how the model proposed in this section
modifies the auxiliary fields. Using the function given by
Eq. (36) into Eq. (20), one obtains a differential equation
that can be solved numerically for ψ ,

9ψ ′+6
sn(φ, λ)

dn2(φ, λ)
ψ+ 16ψ√

λ(1−λ)
ln

[
dn(φ, λ)

1−√
λ sn(φ, λ)

]
=0.

The result of this calculation is shown in Fig. 14. It is
visible that the compactification is also quite accentuated
with an increase in λ, corresponding to a consequent decrease
in the thickness of the field.

The field ϕ and the potential U must again be obtained
via numerical methods, subjected to the boundary conditions
ϕ(0) = ϕ0, ϕ′(0) = 0, and U (0) = 0. Similarly to the pre-
vious cases studied, the general behavior of the field ϕ can
be either a global minimum and outwards increase, a global
maximum and an outwards decrease, or some transition state
between these two behaviors. In this model, the compactifi-
cation parameter λ also influences the qualitative behavior of
this field, which means that even for a specific combination of
ϕ0 and ψ0 the qualitative behavior of ϕ might change depend-
ing on the value of λ, and thus this parameter has a stronger
influence on the solutions than the compactification param-
eter a in Sect. 3.1. In Fig. 15, we plot solutions for ϕ with
different values of λ. As for the solutions for the potential U ,
similarly as the previous models, the behaviors of this func-
tion can again be either a local minimum at y = 0 surrounded
by two maxima and an outwards decrease, a local maximum
surrounded by two minima and an outwards increase, or some
transition phase between the two, depending on the combi-
nation of parameters chosen. For a fixed combination of ψ0

and ϕ0, the parameter λ also influences strongly the shape of
the potential U , allowing for different qualitative behaviors.
These results are plotted in Fig. 16.

3.4 Fourth model

Let us now focus on a different issue concerning the study of
braneworld scenarios in the presence of asymmetry. This pos-
sibility was explored before in [9–17] in several distinct situ-
ations. Here, we want to examine how the asymmetry works
in the scalar–tensor representation of the f (R, T ) brane, and
how it modifies the behavior of the fields ϕ and ψ . Since this

123



191 Page 10 of 15 Eur. Phys. J. C (2022) 82 :191

Fig. 14 Plot of ψ(y) for ψ0 = −1, λ = 0 (thick-solid line), λ = 0.3
(thin-solid line), λ = 0.6 (dashed line) and λ = 0.9 (dot-dashed line)

Fig. 15 Numerical plot of ϕ(y) for ψ0 = 1 and ϕ0 = 1.51, with λ = 0
(solid line), λ = 0.4 (dashed line), and λ = 0.8 (dot-dashed line)

Fig. 16 Numerical plot ofU (y) forU (0) = 0, ψ0 = 1, and ϕ0 = 1.47,
with λ = 0 (solid line), λ = 0.4 (dashed line), and λ = 0.8 (dot-dashed
line)

is a first approach to this issue, we shall work on a simpler
setting without taking into consideration the effects of com-
pactification of the source field φ. To implement this, let us
take the function W (φ) to be

W (φ) = c + φ − 1

3
φ3, (40)

Fig. 17 Warp factor e2A given by Eq. (41) for c = 0 (thick solid line),
c = 0.2 (thin solid line) and c = 0.4 (dashed line)

where the real constant c must belong in the range −2/3 <

c < 2/3 to preserve the physical relevance of the solutions.
This model reduces to the one studied in Sect. 3.2 with n = 1
in the particular case of c = 0, and here we add c to build
the asymmetric scenario; see, e.g., Ref. [13].

We can verify that c does not modify the source field solu-
tion, which in this case can be obtained by the first-order for-
malism as φ(y) = tanh(y). On the other hand, the parameter
c changes in the warp function, which can be written as

A(y) = −2c

3
y + 4

9
ln[sech(y)] − 1

9
tanh2(y). (41)

In Fig. 17 we show the warp factor obtained in Eq. (41) for
c = 0, 0.2, 0.4. We verify that in the parameter region con-
sidered for c the warp factor becomes asymmetric but remains
localized, vanishing asymptotically. The Kretschmann scalar
is also influenced by this parameter, such that

K = 64

81

(
9 − 12c2 + 10c4

)
+ 512

81
c
(

5c2 − 3
)

tanh(y)

+256

27

(
7c2−4

)
tanh2(y)+ 512

243
c
(

36−5c2
)

tanh3(y)

+256

81

(
24 − 13c2

)
tanh4(y) − 5120

81
c tanh5(y)

+256

243

(
5c2 − 59

)
tanh6(y) + 4096

243
c tanh7(y)

+5056

243
tanh8(y)− 2560c

2187
tanh9(y)

−4864

2187
tanh10(y)+ 640

6561
tanh12(y). (42)

So, K (0) = 64(9 − 12c2 + 10c4)/81 and K (y → ±∞) =
640(2 ± 3c)4/6561. Also, for c �= 0 the brane connects
two different AdS5 spaces, with the cosmological constants
becoming �5 ≡ V (φ → ±φv) = −4(2 ± 3c)2/27.

Taking Eq. (40) into Eq. (20) and taking the source field
solution φ(y) = tanh(y) one obtains a differential equation
for ψ as
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Fig. 18 The field ψ(y) given by Eq. (43) depicted for ψ0 = −1 and
c = 0 (thick solid line), c = 0.2 (thin solid line) and c = 0.4 (dashed
line)

9ψ ′(y) + 4

3

(
12c + 21 tanh(y) − 4 tanh3(y)

)
ψ(y) = 0.

This equation can be solved analytically and yields a solution
of the form

ψ(y) = ψ0
e−8 tanh2(y)/27

cosh68/27(y)
e−16cy/9. (43)

Figure 18 shows this auxiliary field ψ for ψ0 = −1 and
c = 0, 0.2, 0.4. Note that for c �= 0 the minima value of
ψ(y) is displaced from y = 0, but the asymptotic values
remain the same. This exact result show that the parameter c
induces an asymmetric behavior in the auxiliary field ψ . We
verified that the results are qualitatively similar for negative
values of c.

Let us now verify how the auxiliary field ϕ responds to
variations in c. To do so, we take Eqs. (21) and (22) with
the function (40) and solve them numerically. For c = 0,
the general behaviors of the scalar field ϕ are the same as
in the previous models, i.e., either a single peak at y = 0, a
single minimum at y = 0, or some transition phase between
the two. However, as c increases, the induced asymmetry can
radically change the behavior of ϕ. For a single-peak solution
with c = 0, an increase in c can raise one of the asymptotic
values above the central value, which ceases to be a global
maximum. For c large enough, this local maximum can even
disappear and the field ϕ becomes monotonically increasing.
A similar analysis holds for the single minimum behavior.
These results are plotted in Fig. 19. Regarding the potential
U , for c = 0 the general possible behaviors are the standard,
i.e., either a local minimum at y = 0 surrounded by two max-
ima and an outwards decrease, a local maximum surrounded
by two minima and an outwards increase, or a transition state
between the two. However, again the asymmetry induced by
the parameter c can produce clear changes in the potential
U , leading to complicated behaviors with sequences of peaks
and droughts of different heights. These results are plotted in
Fig. 20. In both cases we use c as in Fig. 17 and also the set

Fig. 19 Plot of ϕ(y) for ψ0 = 1 and ϕ0 = 1.45, with c = 0 (thick
solid line), c = 1 (thin solid line), and c = 0.4 (dashed line)

Fig. 20 Plot of U (y) for U (0) = 0, ψ0 = 1, and ϕ0 = 1.45, with
c = 0 (thick solid line), c = 1 (thin solid line), and c = 0.4 (dashed
line)

of initial conditions: ψ0 = 1 and ϕ0 = 1.45. Note that the
asymptotic behaviors also depends on the parameter c.

4 Tensor perturbations

In this section, we will perform a linear stability analysis of
the gravitational sector considering linear perturbations in
the metric gab and in the scalar field φ in the form ημν →
ημν +hμν(r, y) and φ → φ(y)+ ξ(r, y), where r represents
the four-dimensional position vector. The perturbed metric
is given by

gab = e2A(
ημν + hμν

)
dxμdxν − dy2, (44)

where hμν satisfies the transverse and traceless (TT) condi-
tions ∂μhμν = 0 and ημνhμν = 0. Furthermore, it was show
in Ref. [36] that if the function f (R, T ) in Eq. (2) is separable
in the form f1(R) + f2(T ), the perturbative equation of the
geometric sector decouples from the perturbation of the field
φ. In the scalar–tensor representation this condition is identi-
cal to considering the potential U (ψ, ϕ) = U1(ψ) +U2(ϕ).
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With this prescription, the equation for the perturbation hμν

obtained from Eq. (9) can be written as
(

−∂2
y −4A′∂y+e−2A�(4)− ϕ′

ϕ
∂y

)
hμν = 0.

We can write hμν in terms of a new z-coordinate defined
in terms of the y-coordinate as dz = e−A(y)dy, and also
perform a redefinition of the perturbation in the metric of the
form Hμν = eipr e3A(z)/2ϕ1/2hμν . Under these redefinition,
the stability of the gravitational sector is determined by a
Schrodinger-like equation in the form
[

− d2

dz2 + U(z)

]
Hμν = p2Hμν, (45)

where the potential U is written as

U(z) = α2(z) − dα

dz
, (46)

and the function α(z) is defined as

α(z) = −3

2

d A

dz
− 1

2

d

dz

(
ln ϕ

)
.

Equation (45) can be factorized in the form S†S Hμν =
p2Hμν , where S† = −d/dz + α(z) and p2 ≥ 0. Therefore,
given the positivity of the eigenvalue p2, the theory remains
stable against tensor perturbations. The massless graviton
state represented by the zero-mode is then

H (0)
μν (z) = Nμν

√
ϕ(z) e3A(z)/2, (47)

where Nμν is a normalization factor. Following construction
conducted in this section, one verifies that the field ϕ must
always be positive to guarantee that the perturbations in the
metric remain real, see Eq. (47). This condition must con-
strain the values of the initial conditions that we can use to
solve the differential equations Eqs. (20)–(22). Moreover, a
transformation back to the variable y leads to a form of the
stability potential as

U(y) = e2A
[

2A′(ln ϕ
)′+ 1

4

(
ln ϕ

)′2+ 1

2

(
ln ϕ

)′′
]

+3

4
e2A(

5A′2 + 2A′′). (48)

In what follows, we analyze the behavior of the stability
potential given by Eq. (48) and the graviton zero-mode in
Eq. (47), for the four models studied in this work.

4.1 Stability of the first model

Figure 21 shows the stability potential U and the graviton
zero-mode H (0)

μν for the solutions obtained in Sect. 3.1. Note
that only the initial conditions that preserve a real mode-zero
are considered. In this situation, one verifies that the stability
potential might have one of two behaviors depending on the

Fig. 21 Potential of stability (top panel) and zero-mode (bottom panel)
for the model studied in Sect. 3.1, represented for a as in Fig. 1 and
ψ0 = ϕ0 = 10 (left panel), ψ0 = −ϕ0 = −10 (right panel)

values of ψ0 and ϕ0: either it presents a single potential well
at y = 0 or it presents a potential barrier at y = 0 with
two potential wells. Consequently, the graviton zero-mode
will be either a single peak at y = 0 or develop internal
structure, respectively. As the parameter a increases, we also
verify that there is a narrowing of the spacial distribution of
these functions, while increasing the numerical values at the
origin y = 0. However, the parameter a has no influence in
the presence of internal structure, i.e., a variation in a while
keeping the remaining parameters constant can not induce or
eliminate internal structure, it simply enhances the already
existing behavior.

4.2 Stability of the second model

Figure 22 shows the stability potential U and the gravi-
ton zero-mode H (0)

μν for the solutions obtained in Sect. 3.2.
There, we depict the situations for ψ0 = ϕ0 = 10 and
ψ0 = −ϕ0 = −10, i.e., conditions that preserve the real
nature of the graviton zero-mode. Similarly to the previous
case, we verify that the sign of ψ0 controls the qualitative
behavior of the stability potential, which can again have a
potential-well behavior or a potential-barrier behavior. Con-
sequently, for the first situation the graviton zero-mode will
also be a single peak at y = 0 and for the second situation
it develops an internal structure. Furthermore, an increase
in the parameter n pushes the spacial distributions of these
functions into the region −1 < y < 1, as expected. However,
the parameter n does not have any influence on the presence
of internal structure, as variations on this parameter leave the
central value of the stability potential at y = 0 unchanged.
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Fig. 22 Potential of stability (top panel) and zero-mode (bottom panel)
obtained for the model considered in Sect. 3.2 with ψ0 = ϕ0 = 10 (left
panel) and ψ0 = −ϕ0 = −10 (right panel) and n as in Fig. 6

Fig. 23 Potential of stability (top panel) and zero mode (bottom panel)
for the model studied in Sect. 3.3, represented for λ = 0.7, 0.8, 0.9 and
ψ0 = ϕ0 = 10 (left panel), ψ0 = −ϕ0 = −10 (right panel)

4.3 Stability of the third model

The results for the model where the compactification occurs
in the geometry, i.e., the model studied in Sect. 3.3, are
shown in Fig. 23. Here we use the same parameter region
used before. Note that the quantities are all real only if
ψ0 = ϕ0 = 10 and ψ0 = −ϕ0 = −10. Again, the same qual-
itative behaviors for the stability potential (and consequently
for the graviton zero-mode) are obtained, with a clear depen-
dence on the value of ψ0. Furthermore, it is also clear that an
increase in the parameter λ compactifies the solutions closer
to y = 0, while simultaneously increasing their values at the
origin. Similarly to what happens for the model in Sect. 3.1,
the parameter λ does not influence the presence of internal
structure, it merely enhances the already present behavior.

Fig. 24 Potential of stability (two top panel) and zero-mode (two bot-
tom panel) obtain for the model of Sect. 3.4 with c = 0, 0.2, 0.4 and
ψ0 = ϕ0 = 10 (two left panel) and ψ0 = −ϕ0 = −10 (two right panel)

4.4 Stability of the fourth model

Finally, for the model studied in Sect. 3.4, we have the behav-
iors of the stability potential and the graviton zero-mode
shown in Fig. 24. Here the potential and the zero-mode
were displayed for the initial conditions ψ0 = ϕ0 = 10,
ψ0 = −ϕ0 = −10 and c = 0, 0.2, 0.4. For the case ψ0 > 0
the stability potential is always a single potential well sur-
rounded by two potential barriers. As the value of c increases,
the height of one of these barriers decreases, while the other
increases. As a consequence, the graviton zero-mode changes
from a symmetric single peak at y = 0 to a peak at some
yc < 0 that decreases rapidly for y > yc and slowly for
y < yc. In this case, internal structure is never developed.
On the other hand, for ψ0 < 0, we verify that the stability
potential corresponds to a potential barrier surrounded by two
potential wells. As the value of c increases, one of the poten-
tial wells deepens, whereas the other shallows. For c = 0,
the potential barrier present in the stability potential induces
an internal structure on the graviton zero-mode. However, as
the value of c increases, one of the peaks of the graviton zero
mode increases and the other decreases, eventually leading
to the disappearance of the local minimum at y = 0 and a
loss of the internal structure.

5 Comments and conclusions

In this paper, we have investigated the effects on the aux-
iliary fields of branes described by the scalar–tensor rep-
resentation of generalized f (R, T ) gravity, caused by the
presence of compactlike and asymmetric configurations of
the source field. We verified that the compactification of the
source field of the brane changes not only the behavior of the
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auxiliary fields but also the structure of the stability potential
and zero-mode of the tensor perturbations. To achieve these
conclusions, we developed a first-order formalism to estab-
lish the relationships between fields and obtain analytical and
numerical results for the four different models investigated
in this work.

In the first model, studied in Sect. 3.1, we verified that the
first-order formalism can be used to obtain analytical solu-
tions for the auxiliary field ψ(y). This is a new and interesting
result, because it enables an analysis of the asymptotic behav-
ior of this field, regardless of the initial conditions imposed
for solving the equations of motion. We verified that the value
of the field ψ at the origin is determinant for the behavior of
the field ϕ(y) and for the potential U (y). The initial condi-
tions also contribute for the emergence of a inner structure in
the zero-mode of the tensor fluctuations. We also verified that
the change in the thickness of the solution of the source field
interferes with the location of the studied quantities close to
the origin, but it does not change the asymptotic values of
the fields.

The second model studied in Sect. 3.2 is particularly inter-
esting in the sense that it seems to induce the appearance of
a hybrid profile at the brane, i.e., the brane behaves as a
thick brane near the origin and as a thin brane for |y| > 1.
Moreover, for the generalized action used in this work, in the
stability analysis we also verified that the stability potential
might develop a potential barrier at the origin surrounded by
two potential wells, thus inducing a volcano-shaped graviton
zero-mode with internal structure.

The third model, studied in Sect. 3.3, also presented inter-
esting results. In this case, we verified that with the introduc-
tion of a parameter λ it was possible to shrink the warp factor,
inducing a strong confinement effect in the auxiliary fields
ϕ and ψ . These effects did not lead to qualitative changes in
the auxiliary fields, such as the appearance of a hybrid struc-
ture as presented in the second model. However, it showed
that both auxiliary fields can be strongly linked to the source
field solution. We also studied the stability for this model, and
verified that both the stability potential and the graviton zero-
mode respond to the effects of shrinking of the warp factor.
As in the second model, the potential of stability may also
change its shape and induce internal structure in the graviton
zero-mode.

We have also studied the issue of asymmetric branes. This
was done in Sect. 3.4, with the fourth model. The results
showed that the brane becomes asymmetric in the presence
of nonzero values of the parameter c, which controls the
asymmetric profile of the system. Moreover, both the ϕ and
ψ fields get modified by the presence of the asymmetry. We
believe that the modification in ψ is mainly related to the
modification of the trace of the stress–energy tensor T , which
depends on the potential V (φ) which changes in the presence
of c. Also, the modification in ϕ is mainly connected to the

modification of the warp factor, which is directly modified
by the presence of the parameter c. In this case, even though
the stability potential can develop a potential barrier at the
origin, this does not guarantee that the graviton will have
a local minimum at y = 0 due to the asymmetry of the
potential.

The internal structure that appears in some braneworld
scenarios can change the resonance spectrum and the loca-
tion of the graviton. In this sense, the profile of the auxiliary
fields must somehow interfere with the resonant spectrum of
the brane. This is an interesting possibility, that can be studied
asking how the auxiliary fields can interfere with the reso-
nance spectrum of the brane in the presence of fermions and
gauge fields. We are also interested in other braneworld sce-
narios, in particular, in mimetic gravity recently considered
in Refs. [59–61] and also, in the case of braneworld scenar-
ios with bulk fluids parametrized by a nonlinear equation of
state [62]. Moreover, the Horndeski theory and related gen-
eralizations provide interesting possibilities to study scalar–
tensor theories of generalized gravity [63] and this adds more
motivation to study braneworld issues within the Horndeski
scenarios [64]. These and other related issues are now under
investigation and we hope to report on them in the near future.
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