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Abstract Channeling of light relativistic particles in crys-
tals is accompanied by intense radiation emission known as
channeling radiation. Typically all calculations of channel-
ing radiation aim in getting the total radiation intensity and
its dependence on the parameters of particles and crystals. In
the same time, since the discovery, the angular behaviours of
channeling radiation have been studied just in a few works, in
which only a polar dependence of the radiation intensity near
the forward direction is estimated. However, simple analysis
of the interaction potential predicts very specific features to
be observed in the angular distributions of channeling radi-
ation, especially at axial regime. In this work, for the first
time, the expressions for angular and spectral distributions
of electromagnetic radiation at axial channeling of relativis-
tic charged particles in thin crystals are analytically refined
within the QED theory. Obtained results allows predicting
complex structures of radiation intensity and polarisation dis-
tributions. The results obtained might be of special interests
for experimental studies.

1 Introduction

The interaction of relativistic charged particles in aligned
crystals remains of growing interest for theorists and experi-
mentalists since the first discoveries related to the possibility
of its use as a powerful source of electromagnetic radiation
based on the phenomena of coherent bremsstrahlung (CB)
and channeling radiation (CR) [1–9]. Both types of the radia-
tion have been in detail studied within classical and quantum
theoretical models as well as in many dedicated experiments
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that has formed rather adequate formalism of general com-
mon description of coherent radiation processes by charged
particles in crystals (see, for instance, in [10]). However, even
today some features of particles scattering in crystals can be
the origin of fine peculiarities to be observed in the emit-
ted electromagnetic radiation. In this work we examine the
influence of the asymmetry in angular scattering of axially
channeled electrons on the accompanying channeling radia-
tion.

So far the theory of electromagnetic radiation by elec-
trons in crystals has been developed for the planar chan-
neling regime within the approximations of both classical
and quantum mechanics revealing very details of the beam
motion in the crystal field characterised by strong redistri-
bution of the beam in a phase space [4,7,8,11–17]. Having
known the behaviours of channeled beam evolution in the
transverse space of motion, usually the calculations of radi-
ation characteristics are limited just in getting the total radi-
ation intensity. Its dependence on the angular distance from
the forward direction, for which the maximum of radiation
intensity is observed, is assumed to be azimuthally symmet-
ric at a small distance and just formally estimated. However,
new types of electromagnetic radiation can be observed at
well defined angular parameters of channeled particles (for
instance, see in [18]).

As regards the theory of CR at axial channeling the cal-
culations are mostly performed within the limits of classical
electrodynamics (CED), i.e. one calculates the trajectories of
channeled particles in the potentials of crystal axes followed
by the numerical integration of the derived CED expressions
[2,19–23]. Some details of the beam dynamics can be addi-
tionally included in the calculations of axial CR ones applied
a well known “quasi-classical theory” ([6] and Refs. therein).

In many papers the quantum electrodynamics (QED) esti-
mations of CR at axial channeling have been obtained (see,
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for instance, in [9,24]). These approximations are based on
studying the transverse wave functions of channeled particles
for the stationary Schrödinger equation and well describe
CR for single crystal axes (the single-string approximation).
However, taking into account the crystal periodicity in a plane
perpendicular to the crystal axes allows the ψ -function of
the transverse motion of a channeled particle to be presented
as a sum of Bloch functions [25–28], which satisfy the Dirac
equation (the many-beam approximation). The latter may
result in appearance of some singularities for the angular
and energy distributions of CR. For electrons and positrons
the quantum mechanical description of the projectile motion
at channeling conditions becomes mostly applicable for low
and moderate particle energies (≤ 100 MeV), as well as for
hyper-relativistic ones (≥ 10 GeV) [26].

In our previous works [14–17,29] we have developed a
new method to figure the Bloch wave functions for planar and
axial crystal orientations, the details of which is given in [30].
The present work aims in deducing the analytical expres-
sions for spectral-angular CR distributions in thin crystals
that demonstrate distinctive features of these dependences to
be, in our opinion, of a special interest for future experimental
studies.

2 CR probability matrix element

In QED the radiation probability is defined by the expression

dwi f = 2π

h̄
| Mi f |2 δ(E)d� f , (1)

which, in our case, is determined by the wave functions of
the quantum states for channeled projectile motion described
by Dirac equation in so-called continuous potential formed
by the system of crystal planes and axes. The potential is
strongly related to the crystal orientation with respect to
the projectile initial momentum. In this definition d� f =
1/(2π)3d3κ is the density of the final quantum states f , and
Mi f is the matrix element for the i → f transition accom-
panied by CR

Mi f = −e
∫

A∗J f i d
3r , (2)

where the vector A = √
2π h̄c2/ωεκeiκr represents the wave

function of a CR-photon with the polarisation vector εκ ,
J f i = � f γ�i is the current operator, namely, the proba-
bility density for the channeled particle transition i → f
with the Dirac γ -matrix.

The wave function of a channeled particle in the
i th quantum state can be written in the form �i =√(

Ei‖ + mc2
)/

2Ei‖uiψi (r), where [31]

ψi (r) = φi (r⊥) exp(ipi‖r‖/h̄), ui =
(

w
σ p̂c

c2m+Ei‖

)
(3)

Here w is the 2d-spinor normalised by the condition w+w =
1, σ are the Pauli matrixes. The transverse wave function
φi (r⊥) describes the i th quantum state of a relativistic chan-
neled particle of the mass γm (with the relativistic Lorentz
factor γ = E‖/mc2) by the Schrödinger equation [4,5,8,31]

Ĥφi (r⊥) =
(

p̂ 2⊥
2mγi

+U (r⊥)

)
φi (r⊥) = Ei⊥φi (r⊥) (4)

Besides, because of the crystal field periodicity, the trans-
verse wave function φi (r⊥) can be represented by Bloch
functions [25].

Successfully, having the longitudinal momentum of a
channeled particle directed along the z-axis, which is coaxial
with the crystal channeling chain, the matrix element for the
CR probability is calculated as follows

Mi f = −e

√
2π h̄c2

ω

∫
(α0

i f (r⊥)εκ )

× eiκ⊥r⊥eiκz z exp(i�pi f z/h̄)dr⊥dz (5)

with

α0
i f (r⊥) = c

Ei‖
φ∗
f (r⊥)p̂iφi (r⊥) (6)

Integration by z, this expression is deduced to much simpler
expression

Mi f = −e

√
2π h̄c2

ω
δ�pi f z/h̄,κz (αi f (κ⊥)εκ ) (7)

with the angular operator

αi f (κ⊥) =
∫

α0
i f (r⊥)eiκ⊥r⊥dr⊥ (8)

Since the operator equation ih̄p̂⊥ = −mγ [Ĥ⊥, r⊥], which
defines the wave functionφi (r⊥) for the i th quantum state of a
channeled particle (9), the angular operator can be presented
as a function of new matrix elements Xi f ⊥ and Zi f

αi f (κ⊥) =
(

−i
i f

c
Xi f ⊥, βZi f

)
, (9)

where h̄i f = εi − ε f , εl is the transverse energy of the lth
state of a channeled particle, β = v/c,
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Xi f ⊥ =
∫

eiκ⊥r⊥φ∗
f (r⊥)r⊥φi (r⊥)dr⊥,

Zi f =
∫

eiκ⊥r⊥φ∗
f (r⊥)φi (r⊥)dr⊥ (10)

Applying well developed math techniques of the angu-
lar analysis for radiation polarisation [32,33], we can easily
prove that the components of polarisation vector εκ of Eq.
(7) are defined by

εκ = 1√
2

(
� cos � cos � + i sin � ,

− i cos � + � cos � sin �,−� sin �
)

, (11)

where � and � are the azimuthal and polar angles, respec-
tively, and � is the radiation (photon) helicity.

3 Matrix transition elements for periodic potentials

Let define the wave function φi (r⊥) in a form of Bloch func-
tion in the cartesian coordinate system

φi,iz (x, y) = e
− iπ iz (x+y)

5ap
∑
mi ,ni

e
−i

(
4πmi x
ap

+ 4πni y
ap

)
Cmi ,ni
i,iz

, (12)

where Cmi ,ni
i,iz

are the Fourier components of the wave func-
tion, and mi , ni are the Fourier components numbers for the
i th energetic band of channeled electron transverse motion,
ap is the lattice constant. The iz index corresponds to the
internal point (numbered) within the i th energetic band.

The wave functions presented in the form (12) allow per-
forming the calculations without the limits of dipole approx-
imation. In this case for αi f (r⊥) we can get

αi f (r⊥) = −Cmi ,ni
i,iz

×
(

i f

c
Fx (κx , κy),

i f

c
Fy(κx , κy), −βFz(κx , κy)

)
,

(13)

where we have used the following nominations

Fx (κx , κy) = 16ap sin
(κyap

4

)
(−1)m f +mi+n f +ni

×
(
cos

( κx ap
4

) (
κxap + 4π(m f − mi )

) − 4 sin
( κx ap

4

))
(
κxap + 4π(m f − mi )

)2 (
κyap + 4π(n f − ni )

) ,

Fy(κx , κy) = 16ap sin
(κxap

4

)
(−1)m f +mi+n f +ni

×
(
cos

( κyap
4

) (
κyap + 4π(n f − ni )

) − 4 sin
( κyap

4

))
(
κyap + 4π(n f − ni )

)2 (
κxap + 4π(m f − mi )

) ,

Fz(κx , κy)

= 64 sin
( κx ap

4

)
sin

( κyap
4

)
(−1)m f +mi+n f +ni(

κxap+4π(m f −mi )
) (

κyap+4π(n f −ni )
) (14)

At such definitions we will be able to perform precise ana-
lytical calculations of CR via rather routine work. However,
it will not essentially change the quantitative data for the
forward CR. On the contrary, huge difference between the
energy of emitted CR photon and the longitudinal projec-
tile energy suggests all transformations to be done within the
dipole approach, i.e.

κxap 	 1 , sin
(κxap

4

)
⇒ κxap

4
,

κyap 	 1 , sin
(κyap

4

)
⇒ κyap

4
(15)

Hence, the above introduced matrix elements can be rewritten
in the following way

αi f (r⊥) = −
(

i f

c
κy,

i f

c
κx , −βκxκy

)
〈xy〉i f (16)

with

〈xy〉i f =
∫

φ∗
f (x, y)xyφi (x, y)dxdy

= −Cmi ,ni
i,iz

C
m f ,n f
f, fz

(−1)m f +mi+n f +ni a2
p

16π2(m f − mi )(n f − ni )
(17)

Finally, substituting in the formula (7) for the matrix element
of CR probability Mi f the polarisation vector εκ from Eq.
(11) and the transition matrix element αi f from Eq. (16), we
can get the square of the scalar function (αi f · ε∗

κ )

| (αi f · ε∗
κ ) |2 = ω2〈xy〉2

i f

8c2 F(�,�,ω) (18)

with the angular function F

F(�,�,ω) = sin2 �
(
β2ω2 sin4 � sin2(2�)

+2
i f (3 + 2 sin2 � cos(4�) + cos(2�))

− 4βi f ω cos � sin2 � sin2(2�)
)

(19)

4 Angular and spectral distributions

As a result of performed calculations, for the radiation prob-
ability (1) we can use the following expression

dwi f = αh̄

2π
| (αi f · ε∗

κ ) |2 δ(�Ei f − h̄ω)ωdω , (20)

where �Ei f  i f + βω cos �.
After integration of d Ii f = h̄ωdwi f over the CR pho-

ton frequencies ω, we get the angular distribution of CR by
axially channeled electrons

d I

do
=

∑
i, f

Pϑ,iz

αh̄ 6
i f 〈xy〉2

i f

16c2π
Fang(�,�) (21)
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Fig. 1 CR angular distribution for 10 MeV electrons channeled in Si
〈100〉 crystal (the arbitrary units have been used)

where

Fang(�,�) = sin2 �

(1 − β cos �)7

×
[
(3 + cos 2� + 2 sin2 � cos 4�(1 − β cos �)2

+β

(
β − 4(1 − β cos �)

cot �

sin �2

)
sin �4 sin 2�2

]
(22)

Here we have taken into account the initial population Pϑ,iz
of the i th energy band of the transverse electron motion (ϑ
is the angle of electron momentum relative to the crystal
axes). All further numerical calculations were carried out
for ϑ = ϑc/5, where ϑc is the critical channeling angle. It
is important to underline that the populations of the above-
barrier levels, which describe a quasi-channeling, is much
smaller than those of the sub-barrier ones. Therefore, the
contribution of these levels to the total radiation intensity is
extremely small.

Figure 1 shows in arbitrary units an example of the CR
angular distribution calculated for 10 MeV electrons chan-
neled along the 〈100〉 axes of a Si crystal1. This distribu-
tion exhibits an emphasised structural dependence, which is
tightly correlated to the crystal 〈100〉 orientation and does
not accordingly reveal an absolute maximum at the forward
direction. For clarity, Fig. 2 shows a section of the angular
distribution by the plane indicated in Fig. 1.

Further integration of d Ii f = h̄ωdwi f over allowed �

and � angles results in the formula for spectral distribution
of CR by axially channeled electrons

d I

dω
=

∑
i, f

Pϑ,iz

αh̄ 〈xy〉2
i f

16c4β5
Fsp

(
ω − i f

βω

)

×H(ω1)H(ω2) , (23)

1 The energy of 10 MeV in the numerical calculations for electrons
was chosen only because at this energy the electrons do not have very
many sub-barrier transverse levels (about 23 levels), while this energy
is sufficient for channeling.

Fig. 2 Arbitrary contour (level) plot of the CR angular distribution
for 10 MeV electrons channeled in Si 〈100〉 in a randomly selected
transverse plane shown in Fig. 1

Fig. 3 CR spectral distribution for 10 MeV electrons axially channeled
in Si 〈100〉 (the intensity is given in arbitrary units)

where H(...) is the Heaviside function with the following
arguments

ω1 = ω − i f

1 + β
, ω2 = i f

1 − β
− ω (24)

and

Fsp(ω) = (ω(1 + β) − i f )(i f − (1 − β)ω)

×(1 − β2)2ω4 + 2(3β − 1)ω22
i f + 4

i f (25)

An example of the total spectral distribution of CR calcu-
lated as the sum over all transitions between the energy bands
of the transverse motion for 10 MeV electrons channeled in
Si 〈100〉 is shown in Fig. 3. The calculations demonstrate
that, in contrast to the CR spectrum at planar channeling,
the emission at axial channeling along the Si 〈100〉 axis give
out a smooth function up to ∼33 keV energy. This is might
be a consequence of the much greater depth of the potential
well of the crystal axes in comparison to that of the planes.
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The maximum radiation intensity is predicted at the photon
energy ∼26.8 keV.

5 Axial CR polarisation

The dependence of the degree of polarisation CR on the inlet
direction of relativistic electrons into the Si crystal relative to
the 〈100〉 axis was calculated in [35] at the axial channeling
regime. A similar method has been applied to evaluate both
the degree of polarisation and the angular directions of polar-
isation for a new type of radiation, i.e. diffracted channeling
radiation (DCR), as a function of the emission angles [36].2

Let’s present the circular polarisation vector β� of a pho-
ton with the helicity � as

β� = 1√
2
(β2 + i�β3) , (26)

where β2 and β3 are the vectors of the photon linear polar-
isation [32]. Then, for the radiation intensity I� with the
polarisation β� proportional to the square of the matrix ele-
ment of the transition probability i → f , i.e. I� ∝ |αi f β�|2,
we obtain

I� ∝ 1

2

(
(αi f β2)

2 + (αi f β3)
2
)

(27)

Thus, the radiation intensity does not depend on the photon
helicity�, and we defiine a real value ofαi f for CR in the case
of axial channeling. This means that such radiation cannot
disclose a circular polarisation [37] but only a linear one with
the degree of polarisation defined as follows

P = |Me1|2 − |Me2|2
|Me1|2 + |Me2|2 , (28)

where e1 and e2 are the components of the polarisation vec-
tor β� perpendicular to the unit vector κ in the direction of
photon emission. As known [32], the vectors of the photon
linear polarisation β2 and β3 satisfy this condition by default.

Taking into account that in Eq. (27)

αi f β2 = √
2 �(αi f β�), αi f β3 = √

2��(αi f β�), (29)

where �(αi f ε
∗
κ ) and �(αi f ε

∗
κ ) are the real and imaginary

parts of the complex function (αi f ε
∗
κ ), we reduce the for-

mulas of the degree of polarisation for CR photons at axial
channeling

PCR = | �(αi f · ε∗
κ ) |2 − | �(αi f · ε∗

κ ) |2
| �(αi f · ε∗

κ ) |2 + | �(αi f · ε∗
κ ) |2 , (30)

2 Diffracted channeling radiation (DCR) till now has not been observed.

Fig. 4 Arbitrary contour plot of the degree of polarisation for CR by
10 MeV electrons channeled along Si 〈100〉 for a selected transverse
plane shown in Fig. 1

and the polarisation directions

tan φCR = �
�(αi f · ε∗

κ )

�(αi f · ε∗
κ )

(31)

Successfully, using the matrix element for the transition
probability Mi f from Eq. (12) and Eqs. (21), (28) we can
calculate the degree and directions of polarisation for CR
by axially channeled relativistic electrons. For the degree of
polarisation we obtain

PCR

= sin2 2�(3+β(cos 2�−4 cos �)2−16 cos2 2�(1−β cos �)2

sin2 2�(3+β(cos 2�−4 cos �)2+16 cos2 2�(1−β cos �)2
,

(32)

while for the directions of CR polarisation -

φCR = arctan

(
4(β cos � − 1) cot 2�

�(β(cos 2� + 3) − 4 cos �)

)
(33)

The angular dependence of the degree of polarisation cal-
culated by Eq. (32) is presented in Fig. 4.

Comparison of Figs. 2 and 4 indicates that CR exhibits a
degree of polarisation close to the maximum PCR = −1 in
the regions of maximum intensity.

The map of the angular directions of polarisation CR gen-
erated by 10 MeV electrons channeled along Si 〈100〉 axes
has been drawn according the formula (33) and shown in
Fig 5. The calculated scheme points out that the maximum
radiation intensities can be observed when the CR polarisa-
tion planes are directed along the y-axis.

One can underline that, using the equation �2 = 1, the
scalar function (αi f ε

∗
κ ) can be written in the form

(αi f ε
∗
κ ) = eiϕ

√
�(αi f ε∗

κ )2 + �(αi f ε∗
κ )2 , (34)
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Fig. 5 The map of angular directions of polarisation CR for photons
with positive helicity � = 1 (for � = −1 the directions will be oppo-
site) generated by 10 MeV electrons channeled along the 〈100〉 axes in
Si for selected transverse plane is shown in Fig. 1

where ϕ is the main value of the function

ϕ = arctan

(
�

�(αi f · ε∗
κ )

�(αi f · ε∗
κ )

)
, (35)

that allows the emission polarisation to be analysed in a typ-
ical way. Indeed, in this case the emission intensity does not
depend on the emitted photons helicity �. The latter essen-
tially simplifies its calculation.

6 Conclusions

Since the first works dedicated to the interaction of light rela-
tivistic particles in aligned crystals, the influence of the crys-
tal structure on the interaction potential has been mostly stud-
ied in order to define various scattering mechanisms of the
beams in crystals. These results obtained within the classical
and quantum approaches allowed the life-time in the chan-
neling bound state3 to be evaluated with a scope to calculate
the collimation or radiation abilities of a beam-aligned crys-
tal system (see, for instance, in [38]). For such calculations
carried out for highly relativistic energies, in general, a com-
plex field structure revealed at the fine diffraction pictures
of particles scattering in crystals is not of a decisive impor-
tance. It is even less weight for the case of planar channeling,
while at axial channeling we can observe very reach schemes
of particles angular scattering. The latter should essentially

3 Typically, at channeling we deal with a number of transverse bound
levels, which define the motion of the beams in the field of aligned
crystallographic planes and axes. In general, the beam channeling can
be characterised as a bound motion in the crystal field.

contribute to the formation of a structured angular distribu-
tion of channeled particles for various quantum levels of the
transverse bound motion that can be registered as fine angu-
lar and polarisation peculiarities in CR at axial channeling of
MeV electrons.

In our work the use of the Bloch wave function formal-
ism applied to the transverse motion of channeled particles
has permitted performing analytical calculations of CR at
axial channeling of relativistic electrons in thin crystals tak-
ing into account a strong angular redistribution of the beam4.
The method has become rather precise being applied for the
interaction potential formed by the crystal axes constructed
by fitting the measured electron form-factors.

Evaluating the possibility of observing the features of the
angular distribution of channeled radiation calculated by us,
it should be noted that it is usually believed that for low-
energy particles the angular distributions of radiation will
be quickly smeared by above-barrier particles arising due to
incoherent scattering. An estimate of the dechanneling length
for 10 MeV electrons at axial channeling in Si 〈100〉 gives the
value Ld = 0.215µm (see the expression in [18]). Obviously,
this is rather short distance for 10 MeV electrons. However,
during the time of flight of even this distance, electrons in
any case generate CR, which can be registered experimen-
tally; the emission of dechanneled electrons in the direction
of the channeling axes is essentially suppressed. As seen
from our expressions, the angular distribution profile is pre-
scribed by the function Fang(�,�). The intensity of CR can
be increased if to use the electrons of higher energies, which
are characterised by larger dechanneling length; for instance,
we get Ld = 1.1 µm for 50 MeV electrons channeled in Si
〈100〉. As seen, even for a bit higher electron energy we deal
with very thin crystals (∼ 1µm) that proves the feasibility
of recording the picture similar of one presented in Fig. 1.

Reported calculations based on the newly deduced for-
mulas for the radiation intensity show that the CR angular
distributions have a much more complex structure in com-
parison with the results obtained in the approximation of a
single crystal axes. This structure is associated with the crys-
tal symmetry in general and in the transverse plane as well.
So, for example, for a Si 〈100〉 crystal, four peaks should be
observed in the angular distributions, located symmetrically
about the crystal axis. The CR angular distribution geome-
try uniquely demonstrates an explicit dependence of the CR
probability on the azimuthal angle.

The radiation angular distribution in the case of axial chan-
neling has no axial-symmetry in the plane perpendicular to
the crystal axis. Axially symmetric angular distribution is

4 The calculations were performed without taking into account inelastic
scattering that is valid for a thin crystal. In thick crystals, on the con-
trary, inelastic events can essentially contribute to the scattering process
resulting in evident smoothing the structured pictures (blurring).

123



Eur. Phys. J. C (2022) 82 :196 Page 7 of 7 196

typically obtained in a single-string approximation (no inter-
ference between separated axes), while the influence of adja-
cent axes leads to a more complex structure. The estimates
can be performed in dipole approximation. However, the
Bloch-function technique enables getting precise analytical
expressions for the matrix elements of CR. But, it should be
underlined that the obtained matrix elements contain addi-
tional components for the wave vector of CR-photons, which
make extra extended the analytical expressions and, in turn,
significantly increase the determination time for the radiation
distribution.

A fundamentally new result of our work points out that the
radiation itself in the case of axial channeling in a crystal does
not exhibit circular polarisation, although the polarisation of
each individual photon is circular. Accordingly, the tilt angles
of the polarisation planes depend on the photons helicity. It
is also notable that even the numerical results are obtained
for 10 MeV electrons, our conclusions should be valid for
any crystals and particles at a wide range of energies (up to
∼1 GeV).
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