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Abstract Models of natural supersymmetry give rise to
a weak scale mweak ∼ mW,Z ,h ∼ 100 GeV without any
(implausible) finetuning of independent contributions to the
weak scale. These models, which exhibit radiatively driven
naturalness (RNS), are expected to arise from statistical anal-
ysis of the string landscape wherein large soft terms are
favored, but subject to a not-too-large value of the derived
weak scale in each pocket universe of the greater multi-
verse. The string landscape picture then predicts, using the
Isajet SUSY spectra generator Isasugra, a statistical peak at
mh ∼ 125 GeV with sparticles generally beyond current
LHC search limits. In this paper, we investigate how well
these conclusions hold up using other popular spectra gener-
ators: SOFTSUSY, SPHENO and SUSPECT (SSS). We built
a computer code DEW4SLHA which operates on SUSY Les
Houches Accord files to calculate the associated electroweak
naturalness measure �EW . The SSS generators tend to yield
a Higgs mass peak ∼ 125–127 GeV with a superparticle
mass spectra rather similar to that generated by Isasugra. In
an Appendix, we include loop corrections to �EW in a more
standard notation.

1 Introduction

Supersymmetrization of the Standard Model (SM) elegantly
solves the gauge hierarchy problem (stabilizing the newly
discovered Higgs boson mass under quantum corrections)
but at the expense of including a host of new matter states,
the so-called superpartners. Early expectations from natural-
ness predicted superpartners at or around the weak scale [1–
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4]. For instance, the naturalness upper bound for the gluino
was predicted (under the naturalness measure �BG � 30)
to be mg̃ � 400 GeV. In contrast, the current mass limits
from LHC Run 2 searches with 139 fb−1 claim mg̃ � 2.25
TeV [5,6]. The yawning gap between the weak scale and the
superpartner mass scale – the little hierarchy problem (LHP)
[7] – has lead many authors to conclude [8–10] that the weak
scale supersymmetry [11] hypothesis is under intense pres-
sure, and possibly even excluded.

However, it has been pointed out that the resolution to the
LHP lies instead in that conventional early measures of nat-
uralness over-estimated the finetuning [12–14]. The BG log

derivative measure [2], �BG ≡ maxi | ∂ logm2
Z

∂ log pi
| where the pi

are fundamental parameters of the low energy effective field
theory (EFT), depends strongly on what one assumes are
independent parameters. To derive the bounds in Refs. [1–
4], the authors adopted common scalar masses m0, gauginos
masses m1/2 and A-terms as independent parameters. How-
ever, in more ultraviolet complete theories, such as string
theory, these parameters are all correlated. Adopting cor-
related soft terms then greatly reduces the amount of fine-
tuning which is calculated, often by 1–2 orders of magni-
tude. An alternative measure �HS ≡ δm2

Hu
/m2

h , (which

is inconsistent with �BG in that it splits m2
Hu

(weak) into

m2
Hu

(HS) + δm2
Hu

which destroys the focus point behavior
inherent in �BG) discards RG contributions which show the
interdependence of m2

Hu
and δm2

Hu
.

An alternative measure for naturalness �EW was pro-
posed in [15,16] based on the notion of practical natural-
ness [17]: that all independent contributions to an observable
O should be comparable to or less than O. For instance, if
O = o1+· · ·+on where the oi are independent contributions
to O, and if o1 � O, then some other unrelated contribu-
tion would have been a huge opposite sign contribution of
precisely the right value such as to maintain O at its mea-
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sured value. Such finetunings, while logically possible, are
thought to be highly implausible unless the contributions oi
are related by some symmetry, in which case they would not
actually be independent. Practical naturalness has been suc-
cessfully applied for instance by Gaillard and Lee in the case
of the KL −KS mass difference to correctly predict the value
of the charm quark mass [18]. It is also closely related to pre-
dictivity in physical theories in that missing contributions to
an observable, such as higher order corrections in perturba-
tion theory, should be (hopefully) small so that leading order
terms provide a reliable estimate to any perturbatively calcu-
lated observable.

The minimization conditions for the MSSM Higgs poten-
tial allows one to relate the observed value of the weak
scale to terms in the minimal supersymmetric standard model
(MSSM) Lagrangian:

m2
Z/2 = (m2

Hd
+ �d

d ) − (m2
Hu

+ �u
u ) tan2 β

tan2 β − 1
− μ2 (1)

where m2
Hu

and m2
Hd

are Higgs sector soft breaking masses,
μ is the (SUSY-conserving) μ parameter and tan β = vu/vd
is the ratio of Higgs field vacuum expectation values. The
�d

d and �u
u terms contain a variety of loop corrections to the

Higgs potential and are detailed in Ref. [16] in the notation
of Weak Scale Supersymmetry (WSS) [11] and given in the
Appendix of this paper in the more standard notation from
Martin [19]. The most important of the loop corrections typ-
ically comes from the top-squark sector, �u

u (t̃1,2). Note that
all contributions in Eq. 1 are evaluated at the weak scale typ-
ically taken as Q2 = mt̃1mt̃2 such as to minimize the logs
which are present in the �u

u (t̃1,2) contributions.
The �EW measure is defined as

�EW ≡ |largest contribution to RHS of Eq. 1|/(m2
Z/2). (2)

One can quickly read off the consequences for a low value
of �EW :

• m2
Hu

, which in the decoupling limit functions like the SM
Higgs doublet and gives mass to the W , Z and h bosons,
must be driven under radiative EWSB to small negative
values, a condition known as radiatively-driven natural-
ness (RNS). Thus, electroweak symmetry is barely bro-
ken.

• The μ parameter, which feeds mass to the W , Z and h
bosons as well as to the higgsinos, must be within a factor
of several of mW,Z ,h ∼ 100 GeV.

• mA ∼ mHd in the decoupling limit can live in the TeV
regime since the contribution of m2

Hd
is suppressed by a

factor tan2 β.
• Top squark contributions to the weak scale are loop sup-

pressed and so can live in the TeV range while maintain-
ing naturalness.

• The gluino contributes at two-loops [20] and via RG run-
ning contributions to the stop soft masses [21,22] and so
also can live in the TeV range,

• First and second generation sfermion contributions to the
weak scale are via Yukawa-suppressed 1-loop terms and
via 2-loop RG contributions (which are dominant) [23].
Thus, they can live in the 10–50 TeV regime which helps
solve the SUSY flavor and CP problems [24].

An advantage of �EW is that it is model independent inso-
far as it only depends on the weak scale sparticle and Higgs
mass spectrum and not on how they are arrived at. Thus, a
given spectrum will generate the same value of �EW whether
it was computed from the pMSSM or some high scale model.
Also, requiring the contributions to m2

Z/2 to be comparable
to or less than its measured value typically corresponds to
an upper limit of �EW � 30. The turn-on of finetuning for
�EW � 30 is visually displayed in Fig. 1 of Ref. [17].

While WSS seems ruled out under the older naturalness
measures [1–4], there is still plenty of natural parameter space
left unexplored by LHC under the �EW measure [25]. How-
ever, the �EW measure does predict the existence of light
higgsino-like EWinos χ̃±

1 and χ̃0
1,2 with mass ∼ 100–350

GeV. The light higgsinos can be produced at decent rates at
LHC, but owing to their small mass gaps mχ̃0

2
− mχ̃0

1
∼ 5–

10 GeV, there is only small visible energy released in their
decays, making detection a difficult [26] (but not impossible
[27,28]) prospect. The higgsino-like LSP χ̃0

1 is thermally
underproduced as dark matter, leaving room for axionic dark
matter as well [29].

The�EW naturalness measure is built in to the Isajet/Isasugra
[30,31] event/spectrum generator. Also, the crucial 1-loop
corrections to the Higgs potential have been calculated within
the (non-standard) notation of WSS [16]. As a result, of the
spectrum generators available, Isasugra has been used the
most for such studies. These include sparticle mass bounds
from naturalness, and parameter space limits and lucrative
collider signatures from natural SUSY. However, a vari-
ety of other SUSY/Higgs spectra generators are available,
including SUSPECT [32], SOFTSUSY [33] and SPHENO
[34]. Some special Higgs spectrum calculators include Feyn-
HIGGS [35] and SUSYHD [36] and others [37]. Thus, it
would be useful to know how other spectrum generators com-
pare to Isasugra in their natural SUSY spectra. For this rea-
son, we have built a computer code DEW4SLHA which oper-
ates on a SUSY Les Houches Accord file (SLHA) [38] which
is the standard output of spectrum generators. The program
computes the associated value of �EW and all the various
contributions. In Sect. 2 of this paper, we introduce the code
DEW4SLHA along with pointers on its accessibility.

While natural SUSY is highly interesting in its own right,
some authors maintain that naturalness should cede ground to
the emergent landscape/multiverse picture of string theory:
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if the cosmological constant �cc is finetuned to tiny values
via anthropic selection in the multiverse, then why not also
the weak scale? There is expected to be a statistical pull to
large soft SUSY breaking terms via a power law [39–41] or
log distribution [42] in the landscape of string theory vacua.
However, one of the most important predictions of SUSY
theories is the magnitude of the weak scale mweak . Agrawal
et al. [43,44] have shown that if the pocket universe value
of the weak scale is greater than a factor of 2–5 times our
universe’s measured value, then complex nuclei, and hence
atoms as we know them, would not arise. Now in a subset of
vacua with the MSSM as low energy EFT but with variable
soft terms, then absent finetuning, the pocket universe value
of the weak scale mPU

weak will nearly be the maximal contri-
bution to the RHS of Eq. 1. Thus, a value mPU

Z ∼ 4mOU
Z

corresponds to a value �EW � 30. This anthropic veto has
been used along with a landscape pull to large soft terms
to make statistical predictions from the string landscape for
the SUSY and Higgs boson masses. It is found using Isas-
ugra that the Higgs mass mh rises to a peak at mh ∼ 125
GeV while sparticles such as the lightest stop and gluino are
pulled to values beyond LHC13 search limits. It would also
be of interest to confirm or refute these results using other
spectra/Higgs mass calculators.

Thus, in this paper we first introduce the public code
DEW4SLHA in Sect. 2. In Sect. 3, we apply this code to
a natural SUSY benchmark point to compare spectra from
Isasugra against results from SOFTSUSY, SUSPECT and
SPHENO. As such, our paper follows previous compari-
son work but within the context of natural SUSY and string
landscape phenomenology [45,46]. In Sect. 3, we also move
beyond benchmark points to compare Higgs mass and natu-
ralness contours in the scalar mass vs. gaugino mass param-
eter planes for just the SOFTSUSY spectrum generator. In
Sect. 4, we use SOFTSUSY to generate statistical landscape
predictions to compare against earlier work from Isasugra.
A summary and conclusions are given in Sect. 5. In an
Appendix A, we present expressions for the �u

u and �d
d con-

tributions in the standard notation of S. P. Martin’s SUSY
primer [19].

2 The DEW4SLHA code

A new code, DEW4SLHA, has been developed in Python
3 by D. Martinez to evaluate �EW from any user-supplied
SLHA-format output from a spectrum generator such as
Isajet, SOFTSUSY, SUSPECT, or SPHENO. The standalone
executable can be found at SPSVERBc1, along with instruc-
tions on how to run the program from a Linux terminal. The
source code can be found at SPSVERBc2. The DEW4SLHA
code uses the SLHA particle/sparticle pole masses from
block MASS and the running soft term values from block

MSOFT. DEW4SLHA has the capability to operate on SLHA
files with a single-scale output or a grid of outputs, with the
number of grid points specified by Switch 11 in the SLHA
block MODSEL. In the case of the latter, DEW4SLHA
extracts the values of parameters at the maximum grid scale
and computes DEW using the parameters at this scale.1 The
computational routine of the program follows the equations
presented in the Appendix A and then orders the 44 1-loop
contributions to the Higgs minimization condition by mag-
nitude. Two corrections at the 2-loop level are included in
the routine to include the effects of the gluino mass on the
DEW measure [20]. Similar codes have been developed but
are not to our knowledge publicly available [47,48].

3 Natural SUSY benchmark points

Using the code DEW4SLHA, we can now compare spectra
generated from the various spectra calculators for a partic-
ular natural SUSY benchmark point. For the BM point, we
adopt the two-extra-parameter non-universal Higgs model
(NUHM2) [49,50] with input parameters

m0, m1/2, A0, tan β, μ, mA, (3)

where we have traded the high scale Higgs soft masses m2
Hu

and m2
Hd

for the more convenient weak scale parameters μ

and mA. Then we adopt the benchmark parameter values
m0 = 5 TeV, m1/2 = 1.2 TeV, A0 = −8 TeV, tan β = 10,
μ = 200 GeV and mA = 2 TeV. A pictorial representation
of the spectra using SOFTSUSY is shown in Fig. 1 where
we see that indeed the higgsinos and Higgs boson h lie in the
100 − 200 GeV range whilst the top-squarks and gluino live
in the several TeV regime.

In Table 1, we list the mass spectra and �EW values
from each of four spectra generators. For ISAJET, we use
version 7.88 [30] while for SUSPECT we use version 2.51
[32]. For SOFTSUSY, we use version 4.1.10 [33] including
two-loop corrections to mg̃ and the default two-loop cor-
rections to mh . We use SPHENO version 4.0.4 [34] with
MSSM-to-SM matching at scale Q = mSUSY = √mt̃1mt̃2 .
In contrast, SOFTSUSY imposes EFT matching at Q = mZ

while ISAJET uses multiple scales [?]. The gluino masses
are all within 1.5% of each other. The naturalness param-
eters for three codes are all less than thirty; the outlier

1 The default SLHA output grid option starts at a high scale Q2
max =

mt̃1mt̃2 and ends at a scale Q2
min = m2

Z . (See p. 13 of arXiv:0311123
[38], MODSEL = 11, 12 discussion.) The user may override these
default values and adopt much higher scales which may not make
sense in the present context. A warning message will be printed if the
user selects a value of Qmax > 2√mt̃1mt̃2 . The default scale choice
Q = √mt̃1mt̃2 is chosen to minimize potentially large logs that can
occur in the dominant radiative corrections �u

u (t̃1) and �u
u (t̃2). We urge

caution to any potential users in cases of overriding default parameters.
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Fig. 1 Sparticle and Higgs
mass spectra for a natural SUSY
benchmark point from
SOFTSUSY

here is SPHENO where also the light top squark mass mt̃1
is somewhat higher than the other codes. Here, the top
squark masses are highly sensitive to mixing which comes
from the weak scale value of At and indeed the values
of At (Q) for Isasugra/SOFTSUSY/SUSPECT/SPHENO are
−4898/ − 4830/ − 4894/ − 5090 GeV, respectively. Thus,
SPHENO has slightly more stop mixing than the other codes
which increases �EW somewhat. Another difference comes
from the value of mh generated: both SOFTSUSY and SUS-
PECT generate mh ∼ 127.4 GeV whilst SPHENO generates
mh = 125.2 GeV and Isasugra generates mh = 124.7 GeV.
It can be remarked that Isasugra has the least sophisticated
light Higgs mass calculation, and includes only third gener-
ation sparticle 1-loop contributions to mh . Another feature is
that the Isasugra value of mχ̃±

1
is about six GeV higher than

SOFTSUSY and SUSPECT while the SPHENO is six GeV
lower. These values depend sensitively on the scale choice at
which each EWino mass is calculated. For instance, Isasugra
uses the Pierce et al. (PBMZ) [51] recipe to calculate each
mass separately at each mass scale.

In Table 2, we list the top 46 contributions to �EW from
each of the spectra codes. We see from line 1 that the largest
contribution comes for each code from �u

u (t̃2) which sets
the value of �EW , and where we see that SPHENO gives the
largest value. The second largest contribution comes from
�u

u (t̃1) as might be expected. The next several largest con-
tributions come from Hd , μ and Hu and �u

u (b̃1,2) although
the ordering of these differs among the codes. In general, the
agreement for the remaining contributions is typically within
expectations.

In Fig. 2, we show the values of a) mh , b) mt̃1,2
, c) �EW

and d) At versus A0/m0 for the NUHM3 model with param-
eters as in the caption but with varying A0. (NUHM3 splits

Table 1 Sparticle and Higgs mass spectra from four spectra generators
for a natural SUSY benchmark point with m0 = 5 TeV, m1/2 = 1.2
TeV, A0 = −8 TeV, tan β = 10 with μ = 200 GeV and mA = 2 TeV

Parameter Isasugra SOFTSUSY SUSPECT SPHENO

mg̃ 2830.7 2794.3 2838.6 2827.6

mũL 5440.3 5403.2 5406.0 5412.8

mũR 5561.7 5521.3 5523.0 5521.8

mẽR 4823.0 4817.3 4818.1 4825.8

mt̃1 1714.3 1682.8 1746.9 1942.1

mt̃2 3915.1 3879.0 3899.2 3947.0

mb̃1
3949.1 3871.6 3891.7 3939.1

mb̃2
5287.5 5266.4 5277.2 5281.7

m τ̃1 4745.7 4746.1 4749.1 4757.4

m τ̃2 5110.2 5109.7 5110.8 5107.2

m ν̃τ
5116.8 5108.7 5113.8 5106.2

mχ̃±
2

1020.2 1027.5 1030.6 1031.9

mχ̃±
1

209.7 203.1 203.0 197.3

mχ̃0
4

1033.5 1027.3 1031.1 1032.0

mχ̃0
3

540.1 536.4 537.2 538.1

mχ̃0
2

−208.3 −208.6 −208.7 −203.0

mχ̃0
1

197.9 197.2 197.1 191.9

mh 124.7 127.3 127.5 125.2

�EW 24.8 23.0 28.2 44.1

first/second generation sfermion soft terms from third gen-
eration ones so that m0(1, 2) �= m0(3).) These plots are
obtained using SOFTSUSY and can be compared to simi-
lar plots in Ref. [15] using Isasugra. We see from frame a)
that the value of mh is actually maximal at large negative At

values (which are shown in frame d)). The large mixing in
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Table 2 Top 46 contributions to �EW for our natural SUSY benchmark point for four different spectra calculator codes

Order Isajet SoftSUSY Suspect Spheno

1 24.819, �u
u (˜t2) 23.015, �u

u (˜t2) 28.227, �u
u (˜t2) 44.062, �u

u (˜t2)

2 19.367, �u
u (˜t1) 18.318, �u

u (˜t1) 20.372, �u
u (˜t1) 27.465, �u

u (˜t1)

3 10.449, �u
u (O(αsαt )) 10.074, Hd 10.294, Hd 11.205, Hu

4 10.424, Hd 9.618, μ 9.621, μ 10.298, Hd

5 9.625, μ 6.985, �u
u (O(αsαt )) 7.405, �u

u (O(αsαt )) 9.621, μ

6 5.861, Hu 4.557, �u
u (˜b2) 4.044, �u

u (˜b2) 8.321, �u
u (O(αsαt ))

7 4.164, �u
u (̃τ2) 4.316, �u

u (̃τ2) 3.761, �u
u (̃τ2) 3.604, �u

u (˜b1)

8 3.933, �u
u (˜b2) 3.252, �u

u (̃τ1) 2.801, �u
u (� 2nd gen. q̃) 2.505, �u

u (̃τ2)

9 2.970, �u
u (̃τ1) 2.909, �u

u (� 2nd gen. q̃) 2.801, �u
u (� 1st gen. q̃) 2.486, �u

u (˜b2)

10 2.912, �u
u (� 2nd gen. q̃) 2.909, �u

u (� 1st gen. q̃) 2.653, �u
u (̃τ1) 2.468, �u

u (� 2nd gen. q̃)

11 2.912, �u
u (� 1st gen. q̃) 2.761, Hu 2.507, �u

u (˜b1) 2.468, �u
u (� 1st gen. q̃)

12 2.003, �u
u (˜b1) 2.101, �u

u (˜b1) 1.212, �u
u (χ̃±

2 ) 1.263, �u
u (χ̃±

2 )

13 1.169, �u
u (χ̃±

2 ) 1.191, �u
u (χ̃±

2 ) 9.235e−1, �u
u (˜Z0

3) 1.133, �u
u (̃τ1)

14 9.765e−1, �u
u (˜Z0

3) 9.114e−1, �u
u (˜Z0

3) 7.312e−1, Hu 9.538e−1, �u
u (˜Z0

3)

15 6.987e−1, �u
u (˜Z0

4) 6.924e−1, �u
u (˜Z0

4) 7.076e−1, �u
u (˜Z0

4) 7.381e−1, �u
u (˜Z0

4)

16 5.98e−1, �u
u (H±) 6.083e−1, �u

u (H±) 6.264e−1, �u
u (H±) 6.755e−1, �u

u (H±)

17 1.532e−1, �u
u (t) 1.438e−1, �u

u (t) 1.440e−1, �u
u (t) 2.064e−1, �u

u (˜Z0
1)

18 5.924e−2, �u
u (˜Z0

1) 7.522e−2, �u
u (˜Z0

1) 7.687e−2, �u
u (˜Z0

1) 1.361e−1, �u
u (t)

19 5.543e−2, �d
d (H0) 5.305e−2, �d

d (H0) 5.564e−2, �d
d (H0) 5.831e−2, �d

d (H0)

20 4.758e−2, �d
d (˜Z0

3) 4.397e−2, �d
d (˜Z0

3) 4.507, �d
d (˜Z0

3) 4.649e−2, �d
d (˜Z0

3)

21 4.3e−2, �u
u (Z0) 4.175e−2, �d

d (˜b2) 3.909e−2, �d
d (˜b2) 4.341e−2, �d

d (˜t1)

22 4.3e−2, �d
d (˜b2) 3.783, �u

u (Z0) 3.825e−2, �u
u (Z0) 3.889e−2, �u

u (Z0)

23 3.748e−2, �d
d (˜t1) 3.438, �d

d (˜t1) 3.713e−2, �d
d (˜t1) 2.793e−2, �d

d (˜b2)

24 3.198e−2, �d
d (� 2nd gen. q̃) 3.128e−2, �d

d (� 2nd gen. q̃) 3.075e−2, �d
d (� 2nd gen. q̃) 2.706e−2, �d

d (� 2nd gen. q̃)

25 3.198e−2, �d
d (� 1st gen. q̃) 3.128e−2, �d

d (� 1st gen. q̃) 3.075e−2, �d
d (� 1st gen. q̃) 2.706e−2, �d

d (� 1st gen. q̃)

26 2.329e−2, �u
u (h0) 2.377e−2, �u

u (h0) 2.395e−2, �u
u (h0) 2.323e−2, �u

u (h0)

27 1.875e−2, �d
d (˜Z0

4) 1.841e−2, �d
d (˜Z0

4) 1.895e−2, �d
d (˜Z0

4) 2.152e−2, �u
u (˜Z0

2)

28 1.669e−2, �d
d (̃τ1) 1.787e−2, �d

d (̃τ1) 1.504e−2, �d
d (̃τ1) 1.974e−2, �d

d (˜Z0
4)

29 1.279e−2, �d
d (χ̃±

2 ) 1.276e−2, �d
d (χ̃±

2 ) 1.326e−2, �d
d (χ̃±

2 ) 1.719e−2, �d
d (˜Z0

1)

30 1.102e−2, �d
d (̃τ2) 1.107e−2, �u

u (H0) 1.079e−2, �u
u (H0) 1.553e−2, �d

d (˜b1)

31 1.095e−2, �d
d (O(αsαt )) 1.101e−2, �d

d (̃τ2) 1.034e−2, �d
d (˜b1) 1.380e−2, �d

d (χ̃±
2 )

32 9.869e−3, �u
u (˜Z0

2) 8.412e−3, �d
d (˜b1) 9.897e−3, �d

d (̃τ2) 8.754e−3, �u
u (H0)

33 8.366e−3, �d
d (˜b1) 7.381e−3, �d

d (O(αsαt )) 7.391e−3, �d
d (O(αsαt )) 8.132e−3, �d

d (O(αsαt ))

34 8.083e−3, �u
u (H0) 7.315e−3, �u

u (˜Z0
2) 7.180e−3, �u

u (˜Z0
2) 7.408e−3, �

d,u
d,u (H±)

35 6.658e−3, �
d,u
d,u (H±) 6.542e−3, �

d,u
d,u (H±) 6.877e−3, �

d,u
d,u (H±) 6.470e−3, �d

d (̃τ2)

36 5.469e−3, �u
u (W±) 5.400e−3, �u

u (W±) 5.467e−3, �u
u (W±) 6.324e−3, �d

d (̃τ1)

37 2.611e−3, �d
d (˜Z0

2) 2.660e−3, �d
d (˜Z0

2) 2.717e−3, �d
d (˜Z0

2) 5.561e−3, �u
u (W±)

38 1.081e−3, �d
d (˜Z0

1) 2.305e−3, �d
d (˜Z0

1) 2.428e−3, �d
d (˜Z0

1) 2.441e−3, �u
u (χ̃±

1 )

39 7.420e−4, �d
d (h0) 2.044e−3, �u

u (χ̃±
1 ) 2.336, �u

u (χ̃±
1 ) 1.630e−3, �d

d (˜Z0
2)

40 4.723e−4, �
d,u
d,u (Z0) 7.568e−4, �d

d (h0) 7.776e−4, �d
d (h0) 7.394e−4, �d

d (h0)

41 4.205e−4, �u
u (χ̃±

1 ) 4.069e−4, �
d,u
d,u (Z0) 4.199e−4, �

d,u
d,u (Z0) 4.265e−4, �

d,u
d,u (Z0)

42 1.000e−4, �d
d (˜t2) 2.013e−4, �d

d (˜t2) 2.673e−4, �d
d (˜t2) 4.215e−4, �d

d (˜t2)

43 6.007e−5, �
d,u
d,u (W±) 5.808e−5, �

d,u
d,u (W±) 6.002e−5, �

d,u
d,u (W±) 6.098e−5, �

d,u
d,u (W±)

44 9.197e−6, �d
d (χ̃±

1 ) 2.608e−5, �d
d (χ̃±

1 ) 2.986e−5, �d
d (χ̃±

1 ) 3.085e−5, �d
d (χ̃±

1 )
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Table 2 continued

Order Isajet SoftSUSY Suspect Spheno

45 2.315e−8, �d
d (b) 2.302e−8, �d

d (b) 2.282e−8, �d
d (b) 1.895e−8, �d

d (b)

46 9.579e−9, �d
d (τ ) 7.904e−9, �d

d (τ ) 7.812e−9, �d
d (τ ) 7.783e−9, �d

d (τ )

Fig. 2 Values of a mh , b mt̃1,2
, c �EW and d At (Q) vs. A0/m0(3) for the NUHM3 model with m0(1, 2) = 10 TeV, m0(3) = 5 TeV, m1/2 = 0.7

TeV, tan β = 10 with μ = 200 GeV and mA = 2 TeV

the stop sector lifts the value of mh to the 125 GeV regime,
but in this case only for negative At values. The stop mass
eigenstates are shown in frame b) where again, when there
is large mixing, the eigenstates have the largest splittings
and mt̃1 becomes lowest in value. In frame c), we show the
corresponding value of �EW . Here we see that for large tri-
linear At , then there can be large cancellations in �u

u (t̃1,2)

which lead to decreased finetuning. The kinks in the curve
occur due to transitions from one maximal contribution to
�EW to a different one. The dominant contributions to �EW

in the middle of the plot comes from top-squark contribu-
tions whilst the left and right edges come from tau-slepton
contributions (as in Fig. 2 of Ref. [15]). The low value of

�EW coincides with the uplift in mh to ∼ 125 GeV for large
negative values of At .

In Fig. 3, we show the third generation contributions to
�EW vs. A0/m0(3) for the same parameters as in Fig. 2, but
using SOFTSUSY. These can be compared with the same plot
using Isasugra in Fig. 2 of Ref. [15]. Here, we see that the
contributions from staus and sbottoms are generally rather
small, and the top-squark contributions typically dominate.
But for large |A0/m0(3)|, then cancellations in both �u

u (t̃1)
and �u

u (t̃2) occur, and the stop contributions become compa-
rable to those of the other third generation sparticles, giving
reduced finetuning and greater naturalness.
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Fig. 3 Third generation
contributions to �EW for the
same model parameters as Fig. 2
vs. A0/m0(3) in the m0 vs. m1/2
plane of the NUHM2 model
with μ = 200, tan β = 10,
A0 = −1.6m0 and mA = 2 TeV

Fig. 4 Contours of naturalness
measure �EW and mh in the m0
vs. m1/2 plane of the NUHM2
model with μ = 200,
tan β = 10, A0 = −1.6m0 and
mA = 2 TeV

3.1 Natural regions of m0 vs. m1/2 plane

In Fig. 4, we show the m0 vs. m1/2 parameter plane for the
NUHM2 model with A0 = −1.6m0, μ = 200 GeV and
mA = 2 TeV. The plot is generated using SOFTSUSY but
can be compared with similar results from Isasugra in Fig.
8b of Ref. [52]. From the plot, we see the lower-left corner
is actually excluded due to charge-or-color-breaking (CCB)

vacua which occur for too large A0 values. Both SOFTSUSY
and Isasugra generate CCB regions there. We also show con-
tours of Higgs mass mh = 123 and 127 GeV. These are qual-
itatively similar to the Isasugra results but shifted to the right
by a couple hundred GeV in m0. Thus, much of the param-
eter space allows for the measured Higgs mass mh ∼ 125
GeV. We also show naturalness contours for �EW = 15
and 30. These can also be compared against the LHC Run
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Fig. 5 Distribution of soft SUSY breaking terms in subset of landscape vacua with the NUHM3 model as low energy EFT and an n = 1 statistical
draw. We show distributions in a m0(1, 2), b m0(3), c m1/2 and d A0

2 gluino mass limit mg̃ � 2.25 TeV as shown by the light
blue contour. The important point is that both SOFTSUSY
and Isasugra agree that the bulk of this parameter space plane
is EW natural, in accord with LHC gluino mass limits, and
in accord with the measured Higgs mass. This is in contrast
to older naturalness measures which required much lower
gluino masses [1–4] and also Higgs boson masses [53].

4 String landscape distributions from SOFTSUSY

In this section, we wish to compare SUSY landscape pre-
dictions using a spectrum calculator other than Isasugra.
Here, we choose SOFTSUSY. The assumption is that the
MSSM is the low energy EFT in a fertile patch of landscape
vacua, but with different sets of soft SUSY breaking terms
in each pocket universe, and hence a different value for the
weak scale mPU

weak �= mOU
weak in each pocket universe (here,

OU = our universe). Following Douglas [39], Susskind [40]
and Arkani-Hamed, Dimopoulos and Kachru [41], we will
assume the soft terms scan in the landscape as a power-law:

mn
sof t where n = 2nF + nD − 1 with nF the number of

F breaking fields and nD the number of D breaking fields.
Here, we assume n = 1 corresponding to SUSY breaking
by a single F term, where F is distributed as a random com-
plex number. As in Ref. [54], we expect each soft term in the
NUHM3 model to scan independently.

We perform the linear soft term scan over NUHM3 space
as follows:

• m0(1, 2) : 0.1–60 TeV,
• m0(3) : 0.1–20 TeV,
• m1/2 : 0.5–10 TeV,
• A0 : −50 - 0 TeV,
• mA : 0.3–10 TeV

with μ = 200 GeV and tan β scanned uniformly between
3 − 60. The goal is to set upper limits on scan parameters
that are beyond the upper limits that will result from imposing
the anthropic conditions. We also require appropriate EWSB
and so veto vacua with CCB minima or with no EWSB. We
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Fig. 6 Distribution of Higgs and EWino sector from a subset of landscape vacua with NUHM3 model as low energy EFT and an n = 1 statistical
draw. We show distributions in a mh , b) mA, c) tan β and d) mχ̃0

2
− mχ̃0

1

also require the Agrawal condition on the magnitude of the
weak scale [43]:

• mPU
Z < 4mOU

Z ,

which corresponds to �EW < 30. Thus, the following results
generated using SOFTSUSY can be compared to comparable
results in Ref. [55] using Isasugra.

The resultant distribution in input parameters from the
SOFTSUSY scan is shown in Fig. 5. In frame (a), we see
the distribution in first/second generation GUT scale soft
masses peaks around 20 TeV and spans ∼ 5–40 TeV. While
first/second generation scalars contribute to the weak scale
via Yukawa suppressed terms, they also contribute via EW
D-term contributions (which largely cancel due to cancella-
tion of EW quantum numbers) and via two-loop RG terms
which, when large, drive third generation scalars to tachy-
onic values [23]. The last of these effectively sets the upper
bound, allowing form0(1, 2) as high as 40–50 TeV. This pro-
vides a mixed decoupling/quasi-degeneracy solution to the

SUSY flavor and CP problems [24] since the upper bound
is flavor independent. In frame (b), the third generation soft
masses are bounded by much lower values: m0(3) ∼ 1–10
TeV with a peak around 5 TeV. Here, the upper bound comes
from requiring not-too-large values of �u

u (t̃1,2) values. In
frame (c), we see the distribution in m1/2, which ranges form
0.5 − 3 TeV. The upper bound is set because if m1/2 is too
large, it drives the stop soft terms to large values and again
�u

u (t̃1,2) gets too big. In frame (d), we plot the distribution in
−A0. There is hardly any probability around A0 ∼ 0 so we
expect large mixing in the stop sector, which ends up driving
mh to large values. But A0 cannot become too large (neg-
ative) lest it pushes the top squark soft terms to tachyonic
values via RG running.

In Fig. 6, we show n = 1 landscape scan probability dis-
tributions from the EW sector. In frame (a), we show the
distribution in light Higgs mass mh . Using SOFTSUSY, the
distribution rises to a peak mh ∼ 128 GeV, which is several
GeV higher than the result from Isasugra. This is consis-
tent with SOFTSUSY generating mh typically a couple GeV

123



172 Page 10 of 17 Eur. Phys. J. C (2022) 82 :172

Fig. 7 Distribution of strongly interacting sector masses from a subset of landscape vacua with NUHM3 model as low energy EFT and an n = 1
statistical draw. We show distributions in a mg̃ , b mũL , c mt̃1 and d mt̃2

higher than Isasugra. In frame (b), we see the distribution
in mA which runs from 1–9 TeV with a peak around 4 TeV.
Thus, we expect a decoupled SUSY Higgs sector with the
couplings of h being very close to their SM values. In frame
(c), the distribution in tan β peaks around 10–20. The upper
bound is set because if tan β gets too big, then the �u

u (b̃1,2)

terms become large (large b and τ Yukawa couplings) and the
model is more likely to generate a large mPU

weak . In frame (d),
we show the χ̃0

2 − χ̃0
1 mass difference which is important for

LHC higgsino-pair searches [27]. In this case, the landscape
predicts mχ̃0

2
− mχ̃0

1
∼ 5–15 GeV.

In Fig. 7, we show n = 1 landscape distributions for
strongly interacting SUSY particles using SOFTSUSY. In
frame (a), we see the gluino mass mg̃ ∼ 2 − 7 TeV. The
LHC13 limit of mg̃ � 2.25 TeV just excludes the lower edge
of the expected values. Thus, from the landscape point of
view, it is no surprise that LHC has so far failed to detect
gluinos. In frame (b), we show the distribution in left up-
squark mass (which is indicative of both first and second
generation sfermion masses). The distribution ranges from

mũL ∼ 10–40 TeV, so these sparticles are likely far beyond
LHC reach. In frame (c), we show the distribution in light
top-squark mass. Here we find mt̃1 ∼ 1–2 TeV, so again it
may come as no surprise that LHC has so far not discov-
ered evidence of top-squark pair production. The heavier top
squark distribution mt̃2 is shown in frame (d). Here we see
it ranges between 2 − 5 TeV. All these results are in qualita-
tive agreement with previous results generated using Isasugra
[55].

5 Conclusions

We have created a publicly available computer code
DEW4SLHA which computes the electroweak finetuning
measure �EW from any SUSY/Higgs spectrum generator
which produces the standard SUSY Les Houches Accord
output file. The code then allows us to compare naturalness
and landscape predictions from various spectra codes against
each other.
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We have used the DEW4SLHA code in Sect. 3 to com-
pare natural SUSY spectra from Isasugra, SOFTSUSY, SUS-
PECT and SPHENO. The outputs for a natural SUSY bench-
mark point are generally in good agreement although SOFT-
SUSY and SUSPECT gives values of mh a couple GeV
higher than Isasugra or SPHENO. We also computed the top
44 contributions to �EW which are typically in agreement
although SPHENO generates slightly more stop mixing than
the other codes. The SOFTSUSY code was used to display
cancellations in �u

u (t̃1,2) that lead to increased naturalness
for large stop mixing (which also lifts the value of mh ∼ 125
GeV).

We also used SOFTSUSY to corroborate predictions for
sparticle and Higgs boson masses from the string landscape
where a draw to large soft terms along with an anthropic
requirement on the weak scale mPU

weak < 4mOU
weak leads to

statistical predictions from compactified string models with
the MSSM as the low energy EFT. SOFTSUSY generates a
Higgs mass peak mh ∼ 127 − 128 GeV, slightly higher than
Isasugra. SOFTSUSY also generates sparticle mass spectra
typically beyond LHC13 reach, confirming earlier Isasugra
results.
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Appendix A: Appendix of corrections

Starting with the effective potential, we have to one-loop
order

VHiggs = Vtree + �V (A.1)

Vtree =
(

|μ|2 + m2
Hu

) ∣

∣

∣H0
u

∣

∣

∣

2 +
(

|μ|2 + m2
Hd

) ∣

∣

∣H0
d

∣

∣

∣

2

−
(

bH0
u H

0
d + c.c.

)

+
(

g2 + g′2)

8

×
(

∣

∣

∣H0
u

∣

∣

∣

2 −
∣

∣

∣H0
d

∣

∣

∣

2
)2

(A.2)

where b ≡ Bμ.
In the DR

′
scheme, to remove the dependence of the 1-

loop effective potential on m2
ε , we can write [56]

�V = 1

16π2 V
(1)

DR
′ (A.3)

where

V (1)

DR
′ =

∑

n

(−1)2sn (2sn + 1) h
(

m2
n

)

≡ STr(h(m2
n)),

h(x) = x2

4

[

ln(x) − 3

2

]

and

ln(x) ≡ ln

(

x

Q2

)

with Q being the renormalization scale. One must also be
careful to account for color multiplicity and charge multi-
plicity factors, where

n
˜f =

{

1, ˜f = color neutral sparticle

3, ˜f = squark

represents the number of colors of ˜f and

ncharge =
{

1, ˜f is uncharged

2, ˜f is charged
.

For notation purposes, we may write

vu =
〈

H0
u

〉

and vd =
〈

H0
d

〉

such that

v2
u + v2

d = v2 = 2m2
Z

g2 + g′2 ≈ (174 GeV)2.

Then, defining the parameter β through

tan(β) ≡ vu

vd

one may write

vu = v sin(β) and vd = v cos(β).

Therefore, the minimization conditions are:

m2
Hu

+ �u
u + |μ|2 − b cot(β) − m2

Z

2
cos(2β) = 0 (A.4)

and

m2
Hd

+ �d
d + |μ|2 − b tan(β) + m2

Z

2
cos(2β) = 0 (A.5)
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where we treat vu,d as real variables in the differentiation
such that the derivatives of �V (vu, vd) can be written as

�u
u = ∂�V (vu, vd)

∂v2
u

= ∂�V

∂vu

∂vu

∂v2
u

︸︷︷︸

1
2vu

+∂�V

∂vd

∂vd

∂v2
u

︸︷︷︸

0

= 1

2vu

∂�V

∂vu
, (A.6)

�d
d = ∂�V (vu, vd)

∂v2
d

= ∂�V

∂vu

∂vu

∂v2
d

︸︷︷︸

0

+∂�V

∂vd

∂vd

∂v2
u

︸︷︷︸

1
2vd

= 1

2vd

∂�V

∂vd
, (A.7)

�d
u = ∂ (�V )

∂(vuvd + c.c.)
, (A.8)

with

�d
u = �u

d . (A.9)

With these notes in mind, we can write the minimization
conditions as

m2
Z =

∣

∣

∣m2
Hd

+ �d
d − m2

Hu
− �u

u

∣

∣

∣

√

1 − sin2(2β)
︸ ︷︷ ︸

cos(2β)

− m2
Hu

− �u
u − m2

Hd
− �d

d − 2 |μ|2

(A.10)

and

sin(2β) = 2b

m2
Hu

+ �u
u + m2

Hd
+ �d

d + 2 |μ|2 (A.11)

or equivalently

b =
[(

m2
Hu

+ �u
u + |μ|2

)

+
(

m2
Hd

+ �d
d + |μ|2

)]

× sin(β) cos(β).

The � contributions are, explicitly,

�u
u =

∑

n

(−1)2sn

32π2 (2sn + 1)m2
n

(

∂m2
n

∂v2
u

)

(

ln
(

m2
n

)

− 1
)

,

�d
d =

∑

n

(−1)2sn

32π2 (2sn + 1)m2
n

(

∂m2
n

∂v2
d

)

(

ln
(

m2
n

)

− 1
)

,

�d
u = �u

d

=
∑

n

(−1)2sn

64π2 (2sn + 1)m2
n

(

∂m2
n

∂ (vuvd)

)

(

ln
(

m2
n

)

− 1
)

,

(A.12)

with

F(m2) = m2
[

ln
(

m2
)

− 1
]

. (A.13)

The color and charge factors are accounted for as mentioned
above, and each individual contribution is given below.

A.1 Squarks and sleptons

The stop squark squared mass matrix is given by

m2
˜t =

[

m2
˜tL

+ m2
t + �ũL a∗

t vu − μytvd
atvu − μ∗ytvd m2

˜tR
+ m2

t + �ũ R

]

(A.14)

where

�φ =
(

T3φ − Qφ sin2(θW )
)

(

g2 + g′2

2

)

(v2
d − v2

u) (A.15)

where T3φ is the third component of the weak isospin of φ,
and Qφ is the electrical charge of φ. Hence,

∂�φ

∂v2
u

= −(T3φ − Qφ sin2(θW )
︸ ︷︷ ︸

xW

)

(

g2 + g′2

2

)

and

∂�φ

∂v2
d

= (

T3φ − QφxW
)

(

g2 + g′2

2

)

.

At tree-level, the following mass relations hold for the run-
ning masses:

mt = ytvu, (A.16)

mb = ybvd , (A.17)

mτ = yτ vd . (A.18)

The eigenvalues of Eq. (A.14) are

m2
˜t1,2

= 1

2

(

m2
˜tL

+ 2m2
t + m2

˜tR
+ �ũL + �ũ R

∓
√

(m2
˜tL

− m2
˜tR

+ �ũL − �ũ R )2 + 4
[|at |2v2

u − vdvu ytμ∗a∗
t + vdvu ytμat + vdvu + |μ|2v2

d y
2
t
]

)
(A.19)
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where m2
˜t1

< m2
˜t2

.
Note that

g2
Z ≡ g2 + (

g′)2

8
so that m2

Z ≡ 4v2 · g2
Z .

The trilinear couplings are written in “reduced” form, i.e.,

ai ≡ Ai · yi
with yi the corresponding Yukawa coupling.

The radiative correction terms are then

�u
u (˜t1,2) = 3

16π2 F(m2
˜t1,2

) ·
[

y2
t − g2

Z ∓ a2
t − 2g2

Z · �
˜t

m2
˜t2

− m2
˜t1

]

(A.20)

with

�
˜t ≡ 2

(

1

2
− 4

3
sin2(θW )

)

·
[

m2
˜tL

− m2
˜tR

2
+
(

m2
Z cos(2β)

·
[

1

4
− 2

3
sin2(θW )

])]

and

�d
d (˜t1,2) = 3

16π2 F(m
˜t21,2

)

[

g2
Z ∓ y2

t · μ2 + 2g2
Z · �

˜t

m2
˜t2

− m2
˜t1

]

(A.21)

where the minus (plus) sign corresponds to˜t1(2).
Next, with the bottom squark mass matrix

m2
˜b

=
[

m2
˜bL

+ �
˜dL a∗

bvd − μybvu
abvd − μ∗ybvd m2

˜bR
+ �

˜dR

]

, (A.22)

the eigenvalues are computed to be

m2
˜b1,2

= 1

2

(

m2
˜bL

+ �
˜dL + m2

˜bR

+�
˜dR ∓

√

(−m2
˜bL

− �
˜dL + m2

˜bR
+ �

˜dR )2 + 4(a∗
bvd − μvu yt )(abvd − μ∗vu yt )

)

.

(A.23)

Thus, the radiative correction terms are

�u
u (˜b1,2) = 3

16π2 F(m2
˜b1,2

) ·
[

y2
b − g2

Z ∓ a2
b − 2g2

Z · �
˜b

m2
˜b2

− m2
˜b1

]

(A.24)

with

�
˜b = 2

(

1

2
− 2

3
sin2(θW )

)

·
(

m2
bL

− m2
bR

2
− m2

Z cos(2β)

·
[

1

4
− 1

3
sin2(θW )

])

and

�d
d (˜b1,2) = 3

16π2 F(m2
˜b1,2

) ·
[

g2
Z ∓ y2

b · μ2 + 2g2
Z · �

˜b

m2
˜b2

− m2
˜b1

]

.

(A.25)

Similarly, one can obtain the result for the staus by exchang-
ing b → τ , nτ̃ , col. → 1, and

�τ̃ ≡ 2

(

1

2
− 2 sin2(θW )

)

·
[

m2
τ̃L

− m2
τ̃R

2
−
(

1

4
− sin2(θW )

)

]

.

A.2 Sfermions

For a general sfermion ˜fL ,R in the first or second generation,
the masses can be parameterized based on the boundary con-
ditions of the model. It can be shown that for these sfermions,

∂m2
˜f

∂v2
u,d

=
v2
d

︷︸︸︷±
︸︷︷︸

v2
u

(T3˜f − Q
˜f xW )

(

g2 + g′2

2

)

(A.26)

which leads to the cancellation between first and second gen-
eration sfermion corrections, where the cancellation arises
between �u

u (˜f ) and �d
d (˜f ). Indeed, one finds that for the

squarks,

�u
u

(

˜fL ,R
) = −3

4π2

(

T3˜fL ,R
− Q

˜fL ,R
xW
)

g2
Z F

(

m2
˜fL ,R

)

(A.27)

and

�d
d

(

˜fL ,R
) = +3

4π2

(

T3˜fL ,R
− Q

˜fL ,R
xW
)

g2
Z F

(

m2
˜fL ,R

)

.

(A.28)

For the sleptons in the 1st and 2nd generations, replace the
color factor of 3 in the numerator with 1, and for the slepton
sneutrinos, replace the color factor of 3 → 1 and the charge
factor from 2 → 1.
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A.3 Neutralinos

For the neutralinos, the unsquared mass matrix can be given
by the following, where cβ = cos(β), sβ = sin(β), and
likewise for other angles:

m
˜N =

⎡

⎢

⎢

⎣

M1 0 −cβsWmZ sβsWmZ

0 M2 cβcWmZ −sβcWmZ

−cβsWmZ cβcWmZ 0 −μ

sβsWmZ −sβcWmZ −μ 0

⎤

⎥

⎥

⎦

.

(A.29)

One could square this matrix and solve for the eigenvalues
by brute force using the Ferrari method, and then differen-
tiating the resultant squared mass eigenvalues. Instead, we
use the method proposed by Ibrahim and Nath for taking the
derivatives of eigenvalues [57]. Consider the characteristic
polynomial of the squared neutralino mass matrix. The coef-
ficients will each be functions of vu, vd . As such, one may
write in general form

F(λ) = λ4 + bλ(vu, vd)λ
3 + cλ(vu, vd)λ

2

+ dλ(vu, vd)λ + eλ(vu, vd)

= 0.

(A.30)

Then the eigenvalues have derivatives given by

∂m2
˜Ni

∂v2
u,d

=
−Dv2

u,d
F

DλF

∣

∣

∣

∣

λ=m2
˜Ni

, (A.31)

which can be obtained by taking the derivative of Eq. (A.30),
with i = 1, 2, 3, 4,

DλF ≡ dF

dλ
, (A.32)

and

Dv2
u,d

F = ∂bλ

∂v2
u,d

λ3 + ∂cλ

∂v2
u,d

λ2 + ∂dλ

∂v2
u,d

λ + ∂eλ

∂v2
u,d

/ (A.33)

From there, the explicit form of �
u,d
u,d (˜Ni ) for i = 1, 2, 3, 4

can be written, which will take the form

�
u,d
u,d (˜Ni ) = −1

16π2

⎡

⎣

−Dv2
u,d

F

DλF

∣

∣

∣

∣

λ=m2
˜Ni

⎤

⎦ F(m2
˜Ni

)/ (A.34)

A.4 Charginos

The chargino mass matrix is in 2 × 2 block form on the off-
diagonals, and can be squared to obtain the squared mass
matrix,

m2
˜C

=

⎡

⎢

⎢

⎣

M2
2 + g2v2

d g(M2vu + vdμ) 0 0
g(M2vu + μvd) g2v2

u + μ2 0 0
0 0 M2

2 + g2v2
u g(M2vd + μvu)

0 0 g(M2vd + μvu) g2v2
d + μ2

⎤

⎥

⎥

⎦

. (A.35)

This has doubly degenerate eigenvalues

m2
˜C1,2

= 1

2

[

|M2|2 + |μ|2 + g2(v2
u + v2

d)

∓
√

[

g2(vu + vd)2 + (M2 − μ)2
] [

g2(vd − vu)2 + (M2 + μ)2
]

] (A.36)

with m2
˜C1

< m2
˜C2

, leading to

�u
u (˜C1,2) = −g2

16π2

(

1 ∓ (−2) · m2
W · cos(2β) + M2

2 + μ2

m2
˜C2

− m2
˜C1

)

F(m2
˜C1,2

) (A.37)

and

�d
d (˜C1,2) = −g2

16π2

(

1 ∓ 2 · m2
W · cos(2β) + M2

2 + μ2

m2
˜C2

− m2
˜C1

)

× F(m2
˜C1,2

). (A.38)

with m2
W given below.

A.5 Weak bosons

Using the mass relations

m2
W = g2

2
v2 �⇒ ∂m2

W

∂v2
u,d

= g2

2
(A.39)

and

m2
Z = (g2 + g′2)

2
(v2) �⇒ ∂m2

Z

∂v2
u,d

= g2 + g′2

2
(A.40)
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such that the radiative corrections are

�u
u (W±) = �d

d (W±) = 3g2

32π2 F(m2
W ) (A.41)

and

�u
u (Z0) = �d

d (Z0) = 3(g2 + g′2)
64π2 F(m2

Z ). (A.42)

A.6 Higgs bosons

For the Higgs bosons, we have the mass relations (withm2
h0

<

m2
H0

)

m2
h0,H0

= 1

2
(

m2
A0

+ m2
Z ∓

√

(m2
A0

− m2
Z )2 + 4m2

Zm
2
A0

sin2(2β)

)

(A.43)

and

m2
A0

= 2b

sin(2β)
= 2|μ|2 + m2

Hu
+ m2

Hd
(A.44)

Therefore,

�u
u (h0, H0) = g2

Z

16π2
[

1 ∓ m2
Z + m2

A0
· (1 + 4 cos(2β) + 2 cos2(2β)

)

m2
H0

− m2
h0

]

F(m2
h0,H0

)

(A.45)

and

�d
d (h0, H0) = g2

Z

16π2
[

1 ∓ m2
Z + m2

A0
· (1 − 4 cos(2β) + 2 cos2(2β)

)

m2
H0

− m2
h0

]

F(m2
h0,H0

).

(A.46)

Then, for the charged Higgs, with the relation

m2
H± = m2

A0
+ m2

W (A.47)

one simply finds that

�
u,d
u,d (H±) = g2

32π2 F(m2
H±). (A.48)

A.7 SM fermions

Finally, we can use the mass relations mentioned in Eqs.
(A.16)–(A.18) to obtain the top, bottom, and τ contributions:

�u
u (t) = −3y2

t

16π2 F(m2
t ), (A.49)

�d
d (t) = 0, (A.50)

�u
u (b) = 0, (A.51)

�d
d (b) = −3y2

b

16π2 F(m2
b), (A.52)

�u
u (τ ) = 0, (A.53)

�d
d (τ ) = −y2

τ

16π2 F(m2
τ ). (A.54)

We choose

Q = √

mstop1
mstop2 (A.55)

as the renormalization scale used in the function F .
From these terms, one can use the minimization conditions

to define the naturalness measure �EW :

�EW ≡ 2 max |Ci |
m2

Z
(A.56)

where the Ci terms are the individual contributions from
the Higgs minimization condition (i = Hu, Hd , μ,�u

u , �d
d ).

Specifically, Cμ = |μ|2,

CHu = −m2
Hu

tan2(β)

tan2(β) − 1
and CHd = m2

Hd

tan2(β) − 1
,

and

C�u
u

= −�u
u tan2(β)

tan2(β) − 1
with C�d

d
= �d

d

tan2(β) − 1
.
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