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Abstract In this paper I discuss how to consistently incor-
porate higher-order corrections to the bubble-nucleation rate
at finite temperature. Doing so I examine the merits of differ-
ent approaches, with the goal of reducing uncertainties for
gravitational-wave calculations. To be specific, the region
of applicability and accuracy of the derivative expansion is
discussed. The derivative expansion is then compared to a
numerical implementation of the Gelfand–Yaglom theorem.
Both methods are applied to popular first-order phase tran-
sition models, like a loop-induced barrier and a SM-EFT
tree-level barrier. The results of these calculations are pre-
sented in easy-to-use parametrizations that can directly be
used in gravitational-wave calculations. In addition, higher-
order corrections for models with multiple scalar fields, such
as singlet/triplet extensions, are studied. Lastly, the main goal
of this paper is to investigate the convergence and uncertainty
of all calculation. Doing so I argue that current calculations
for the Standard Model with a tree-level barrier are inaccu-
rate.

1 Introduction

Gravitational waves offer a new way to study primordial
phase transitions. And the area is increasingly active [1–20]
after the discovery of gravitational waves by the LIGO collab-
oration [21]. As such, much work is spent looking at the Elec-
troweak phase transition. Being the pivotal moment when the
Higgs field broke the Electroweak symmetry. What’s more,
the Electroweak phase transition can perchance explain the
observed Baryon asymmetry.

Yet little is known about the transition as it took place
mere nanoseconds after the Big Bang. Far too early for light
to escape. With direct observations tricky, other methods are
needed to shed light on the phase transition – like using grav-
itational waves.
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To wit, if the transition is strongly first-order, then, akin to
boiling water, bubbles nucleate and can create turbulence
in the primordial plasma: Generating gravitational waves
[18,22–26]. These bubbles are also crucial for generating
a Baryon asymmetry. The idea is that, with adequate charge-
parity violation, left- and right-handed particles interact with
the bubble walls differently. This, together with Baryon vio-
lating processes, can create an asymmetry [27–30].

However, this relies on a strong first-order transition in
the early universe. But it’s unknown if such a transition took
place. For one, the Standard Model with the measured Higgs
mass can’t provide a first-order phase transition by itself
[31–33]. New physics is needed. For another, given a first-
order phase transition, current calculations of the bubble-
nucleation rate leave much to be desired – corrections to the
leading-order rate are largely unexplored. These considera-
tions take on a new light since higher-order corrections to
the nucleation rate is one of the main uncertainties for grav-
itational wave production [1]. What’s more, barring these
issues, there are additional uncertainties for predictions of
the gravitational wave spectrum [6,10,22,34]. Addressing
these issues is vital, for if gravitational waves from a phase
transition are discovered, accurate predictions are a must to
identify the underlying theory.

So with major theoretical challenges and upcoming grav-
itational wave experiments [35–38], there’s a need to push
the theory forward.

One of the main hurdles for robust calculations comes
from that bubble nucleation is a tunneling process – inter-
twined with thermal escape – and is non-perturbative in
nature. Although tunneling is theoretically well-understood
in quantum mechanics, much less is known in quantum field
theory. In practice the only viable approach is to use saddle-
point approximations. In short, the path integral is approxi-
mated by a field configuration obeying the classical equations
of motion. For tunneling this is the bounce solution [39,40].
To leading order the nucleation rate is controlled by the expo-
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nent of the action evaluated on the bounce. Further, Gaussian
fluctuations around the bounce results in functional determi-
nants. These determinants give sub-leading corrections to the
leading-order bounce action.

These calculations are quite involved even at zero tem-
perature, yet, there are further complications at finite tem-
perature. Because once a bubble has nucleated at zero-
temperature, it can grow unimpeded; with a velocity rapidly
approaching the speed of light [39]. This is not the case at
finite temperature. As bubbles nucleate they are slowed down
by collisions in the hot plasma – making the probability for
a bubble to nucleate, and grow, depend on dissipation pro-
cesses [34,41,42].

To untangle the calculations it’s useful to factorize dissipa-
tion effects from pure tunneling ones. This factorization can
be achieved if the temperature is sufficiently large. Because
temperature effects can then be integrated out [43–47]. In
essence the nucleation rate factors into a dynamical and a
statistical part. The dynamical factor depends on real-time
dynamics and incorporates bubble growth and damping; the
statistical one is equivalent to the zero-temperature tunneling
calculation in three dimensions.

Both the statistical and dynamical factors can be studied
on the lattice [34]. Yet in practice Lattice simulations are, too,
slow for large parameter scans. Not to mention that analyti-
cal techniques often give further insight into the underlying
physics.

Though, analytical methods have their share of problems.
For one, calculations are often only performed at leading
order. For another, there’s an ongoing debate of how to incor-
porate higher-order corrections; a great many proposals exist
in the literature [6,48–53]. And it can be hard to gauge the
accuracy of these methods.

Accordingly, this paper vies to lay the groundwork for
consistently incorporating higher-order corrections to the
bubble-nucleation rate. These corrections are described by
Feynman diagrams in the bounce background. The bounce
solution varies over space-time, and as such it is in general
impossible to calculate the diagrams exactly. To combat this,
it’s possible to either use a derivative expansion or numerical
methods. The derivative expansion is intuitive, but in prac-
tice often not well-behaved. This, combined with a number
of conflicting implementations of the derivative expansion,
makes it hard to assess its accuracy.

So in this paper I discuss when, and how, the derivative
expansion can be used. In particular, I compare the deriva-
tive expansion with exact numerical computations using the
Forman/Gelfand–Yaglom theorem [54–57] for a variety of
models. The exact numerical results can be used as inputs for
gravitational-wave calculations. To facilitate this, the calcu-
lations are summarized in easy-to-use parametrizations.

Besides numerics, I discuss how perturbative calculations
sometimes converge slowly. In short, unless one is careful,
large uncertainties might be introduced.

The paper is organized as follows. In the following section
I review effective potential and saddle-point-approximation
methods. The next section discusses the derivative expansion
and shows when it’s applicable. Next, methods for numeri-
cal evaluations of functional determinants are discussed and
applied to popular Standard Model extensions. The results
are then summarized in the discussion.

2 Phase transitions and perturbative methods

When studying phase transitions the main goal, from the the-
ory side, is to calculate various observables of interest. And
there are typically two kinds of observables: equilibrium and
non-equilibrium observables. Or in the language of thermal
field theory, imaginary and real-time observables.

Equilibrium calculations, in this context, rely on the effec-
tive potential, while non-equilibrium methods are based on
semi-classical approximations and kinetic theory [58–60].
Both equilibrium and non-equilibrium processes have sev-
eral important scales associated with them.

In the case of bubble nucleation, there are two tempera-
ture scales of particular importance. The first is the critical
temperature, Tc, defined as the temperature when two phases
coincide in energy. The second is the percolation tempera-
ture, Tp, which is the temperature where roughly two-thirds
of the Universe are in the broken phase.

Calculations at the critical temperature involves equilib-
rium physics and can be described by the effective potential.
To improve convergence, and avoid large logarithms, it is
useful to work with a dimensionally reduced theory in three
dimensions. All temperature dependence is here contained
in effective couplings [2–4,43,44,61,62]. Quantities like the
latent heat, speed of sound, entropy density, and heat capacity
are straightforward to calculate in the effective-field-theory
framework.

The situation isn’t as clear at the percolation temperature
– owing to the non-perturbative nature of bubble nucleation.
The bubble nucleation rate is schematically [63,64]

� = A e−S3 [1 + O (h̄)] , (2.1)

where S3 is the dimensionally reduced action evaluated on the
bounce, and A is the exponential pre-factor. The temperature
dependence is here left implicit.

Connected to bubble nucleation is the inverse time-
duration of the phase transition evaluated at the percolation
temperature:
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βp ≈ −H(T )T
d

dT
log �(T )

∣
∣
∣
∣
T=Tp

, (2.2)

with H(T ) being the Hubble parameter. It is further assumed
that βp � H(Tp). The percolation temperature is approxi-
mately given by [10,22]

S3(Tp) ≈ 131 + log

(

A

T 4
p

)

− 4 log

(
Tp

100 Gev

)

−4 log

(
βp

100Hp

)

+ 3 log vw, (2.3)

where vw is the bubble-wall velocity. Once the percolation
temperature is known, it’s possible to calculate, amongst
other, the latent heat and phase-transition’s duration. These
observables can then be fed into gravitational-wave simu-
lations. The type of gravitational wave tends to separated
into those coming from bubble collision, sound waves, and
magneto-hydrodynamic turbulence [23–26,65]

Since the goal is to have accurate predictions of various
observables at the percolation temperature, it is necessary to
have robust calculations of the exponential pre-factor and the
bounce action S3.

2.1 The effective potential

The effective potential is a generalization of the classical
potential that incorporates thermal and quantum corrections.
To make things lucid, start off at zero temperature. The effec-
tive potential is of the form

Veff(φ) = V0(φ) + V1(φ) + V2(φ) + · · · . (2.4)

Here V0 is the tree-level potential, V1 is the 1-loop potential,
and so forth. While the perturbative expansion is often orga-
nized in powers of loops, this is not always the case. To be
sure, there are situations when V1(φ) is on-par with V0(φ). A
famous example is the Coleman-Weinberg model where the
scalar quartic coupling, λ, is related to the vector-coupling
via λ ∼ g4 [66]. Because V0(φ) ∼ λφ4 and V1(φ) ∼ g4φ4,
both terms are of the same order in the power-counting g. As
such, I will apply a more apt notation:

Veff(φ) = VLO(φ) + xVNLO(φ) + x2VNNLO(φ) + · · · ,

(2.5)

where the leading-order result can contain terms from higher
loops. Factors of x are only inserted to show the relative
size of terms. For example, in the Standard Model the usual
power-counting is x ∼ y2

t ∼ g2 ∼ g′2 ∼ λ.

The situation is similar at finite temperature. Once again
the effective potential can be organized as

Veff(φ, T ) = VLO(φ, T ) + xVNLO(φ, T )

+ x2VNNLO(φ, T ) + · · · , (2.6)

with the crux that each term can depend on the temperature.
This expansion, while consistent, tends to converge slowly

at large temperatures. There are several reasons for this.
One contributing factor is that, for example, scalar self-
energies are of the same order as tree-level masses. This
is because these self-energies scale as g2T 2 for some cou-
pling g. Another problem comes from large logarithms of the

form log
(
T 2

μ2

)

and log
(
m2

μ2

)

; μ is here the renormalization-

group scale and m is an arbitrary mass, for example the field-
dependent Higgs mass. If there is an hierarchy between T and
m there’s no choice of μ that makes both logarithms small.
This is a familiar problem. And the solution is to integrate
out the high-energy modes with energy E ∼ T . This gives
an effective field theory describing low-energy modes with a
typical energy E ∼ m. The effective, dimensionally reduced,
theory is a regular quantum field theory in three Euclidean
dimensions [43,44,61,62].

Even when using a dimensionally reduced theory, it should
be noted that non-perturbative effects are important when the
theory contains non-abelian vector bosons [67]. However,
these effects first appear at four loops, and are beyond the
scope of this paper.

As an example of dimensional reduction, consider a real-
scalar field with potential

V (φ) = 1

2
m2

4dφ
2 + 1

4
λ4dφ

4. (2.7)

Couplings and masses in the three-dimensional theory are
different from the original four-dimensional ones. Taking the
above potential, the leading-order result is [68]

m2
3d = m2

4d + 1

4
λ4dT

2, λ3d = Tλ4d . (2.8)

The relations are similar at higher orders, but also involve
logarithms depending on the matching-scale and tempera-
ture. Because this effective theory lives in three dimensions,
the perturbative expansion is organized differently. For exam-
ple, in four dimensions the one-loop effective potential scales
as λ2

4d , while in three dimensions it scales as λ
3/2
3d .

For the rest of this paper, I assume a dimensionally reduced
theory. This means that all temperature dependence is left
implicit in couplings. I also assume that all temporal vector-
bosons are integrated out. That is to say, I work at the super-
soft scale [43,44,61,62].

Once the effective potential is known, other thermody-
namical quantities are easy to find. For example, let’s assume
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two phases (minima ofVeff(φ, T )) with energiesV(1)
eff (T ) and

V(2)
eff (T ) respectively. The critical temperature is defined by

�V(T )|T=Tc =
[

V(1)
eff (T ) − V(2)

eff (T )
]

T=Tc
= 0. (2.9)

Because the temperature dependence is hidden in effective
couplings, it’s in practice easier to solve for one of the
leading-order-potential parameters. Say the critical massm2

c .
Other important quantities are the difference in entropy

(density) s(T ) = − d
dT �V(T ) and the trace anomaly

�(T ) = [T s(T )/4 + �V(T )].
Note that all quantities derived from the effective potential,

including minima of Veff(φ, T ), should be calculated order-
by-order for a given power-counting [6,69].

From now on I will leave the temperature dependence
implicit for all quantities.

2.1.1 A loop-induced barrier

First-order phase transitions come in all shapes and sizes; the
hallmark of a first-order transition is an energy barrier sepa-
rating the two minima. For some potentials a barrier exists at
tree-level, for others not so much. Amongst the possibilities,
the loop-induced case is a bit subtle.

To see why, consider a Standard-Model-like potential

V (φ) = 1

2
m2φ2 + 1

4
λφ4. (2.10)

This potential has no barrier at tree-level and describes
a second-order transition. Here the transition occurs when
m2 = 0. Yet a barrier can be induced by loops. To see this,
consider a U(1) gauge theory with vector-boson mass mA =
eφ. Integrating out the vector-bosons gives [70]

V (φ) = 1

2
m2φ2 − 1

6π
e3φ3 + 1

4
λφ4.

As noted in [70], the phase-transition occurs when all three
terms are of comparable size: φ ∼ e3

λ
, & m2 ∼ e6

λ
. Also,

the perturbative expansion is only consistent when λ ∼ e3.
So focus on that case. The above potential, together with
higher-order corrections, can be used as a starting point for
looking at phase transition. It should however be stressed
that everything hinges on the power-counting used for λ; in
general it’s not proper to put loop terms on the same order as
tree-level ones.1 This last point has important consequences
for bubble nucleation.

The above discussion, crucially, assumes that we work in a
super-soft theory. This means that all temporal-vector bosons

1 The procedure can be streamlined by integrating out the vector bosons
and working with an effective theory without vector bosons. See for
example [53,71–73].

are integrated out. For this to work the Debye mass, m2
D ∼

e2, must be larger than the transverse mass m2
A = e2φ2.

This seems problematic because φ ∼ 1. However, paying
closer attention to factors of π indicates that φ ∼ e3

λ
π−1 ∼

π−1.Thus m2
Dm

−2
A ∼ π2 � 1, and it’s proper to integrate

out temporal-vector bosons. These considerations can also
be checked numerically for given couplings.

2.2 The bubble-nucleation rate

While the effective potential captures equilibrium dynamics,
a non-equilibrium approach is needed to describe the dynam-
ics of bubble nucleation. The methods used mirror tunnel-
ing calculations in four-dimensional quantum field theory. A
quantum field theoretical description of tunneling was first
given by Coleman and collaborators [39,40,74]. These meth-
ods were subsequently – building on Langer’s work [41,42] –
extended to finite temperature by Linde and Affleck [63,64].
The result is closely related to Kramer’s escape problem (see
[75] for a field-theory version). As before, I assume a dimen-
sionally reduced theory.

The nucleation rate per unit volume is given by

� = A e−S3 ,

A = ωc

2π

(
S3

2π

)3/2
[

Det
(−∇2 + V ′′

FV

)

Det′
(−∇2 + V ′′

B

)

]1/2

(1 + O (x)) .

(2.11)

Here V ′′
FV and V ′′

B is shorthand for V ′′(φ) evaluated in the
false-vacuum and bounce respectively; ∇2 = ∂μ∂μ; and ω2

c
denote the magnitude of the only negative eigenvalue of the
fluctuation operator

(−∇2 + V ′′
B

)

. In addition to the above
formula, there’re determinants for each field that interacts
with the Higgs. These determinants are identical to the ones
above but with V ′′ replaced by said field’s mass. As before
x is used to signify suppression according to a particular
power-counting.

Equation 2.11 is a semi-classical result, based on a saddle-
point approximation around the bounce solution. The bounce
is a O(3) symmetric solution to the classical equations of
motion. In particular, the bounce satisfies2

∂2φ(r) + 2

r
∂φ(r) = V ′(φ), (2.12)

∂φ(r) |r=0 = 0, (2.13)

lim
r→∞ φ(r) = φFV . (2.14)

See also [76–78] for an alternative formulation of the bounce.

2 To not clutter the pages, I use the notation ∂ ≡ ∂
∂r and V ′(φ) ≡

∂
∂φ

V (φ), where r is the radius r = |
x |.
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Physically the bounce starts close to the true-vacuum,
crosses the barrier, and settles in the false-vacuum as r → ∞.
For multiple scalar fields the generalization is

∂2φi (r) + 2

r
∂φi (r) = ∂

∂φi
V, (2.15)

∂φi (r) |r=0 = 0, (2.16)

lim
r→∞ φi (r) = φi,FV . (2.17)

Analytic bounce solutions are rare, nevertheless, the asymp-
totic behaviour of the bounce is often known. Take for exam-
ple a potential

V (φ) = 1

2
m2φ2 − 1

4
λφ4 + c6

32
φ6. (2.18)

The false-vacuum state is φFV = 0. Then for large r the
bounce solution behaves as φ(r) ∼ e−mr

r .
The S3 exponent in Eq. 2.11 is the action evaluated on the

bounce solution; for a real, scalar field this action is

S3 =
∫

d3x

[
1

2
∂μφ∂μφ + V (φ)

]

. (2.19)

Note that if the false-vacuum has a non-zero potential energy
an additional term must be included in S3.

For practical purposes I use the AnyBubble [79] package
to determine the bounce.

The exponential pre-factor can be factorized into a dynam-
ical and a statistical contribution.3 At leading order these are

Adyn = ωc

2π
, (2.20)

Astat =
(
S3

2π

)3/2
[

Det
(−∇2 + V ′′

FV

)

Det′
(−∇2 + V ′′

B

)

]1/2

. (2.21)

The prime on the determinant signifies that no zero-modes
should be included.

The statistical pre-factor is really [41,42]

Astat = 2

V Im

∫ Dψe−S[φ+ψ]
∫ Dψe−S[φFV +ψ] , (2.22)

where V is the spatial volume; φ is the bounce solution, and
φFV is the false-vacuum solution. In other words, the statis-
tical pre-factor is the usual tunneling pre-factor evaluated in
three dimensions. Moreover, the dynamical pre-factor is only
an approximation. Indeed, the result Adyn = ωc

2π
holds only in

the absence of damping.4 Instead for large damping η � ωc

3 It is not known if this factorization holds at higher orders.
4 At high temperatures the fields follow classical equations of motion
with the addition of damping and thermal noise. That is, the fields follow
a generalization of the 1-D Langevin equation: mẍ = −ηẋ + ξ(t).

it’s expected that Adyn ∼ η−1 [34,58–60,80,81]. While the
dynamical pre-factor is important, the statistical pre-factor
tends to give the dominant contribution. For simplicity I will
assume Adyn = ωc

2π
from now on.

3 The derivative expansion

Calculating functional determinants in a bounce background
is daunting; leaving the determinants aside, even the bounce
has to, more often than not, be found numerically. With ana-
lytical results being rare [82–86], going amain at the prob-
lem is not desirable. Being stymied by computational dif-
ficulties, one can either resort to numerical computations
or analytical approximations. In this paper I compare these
two approaches. The numerical framework is presented in
Sect. 4, while this section focuses on the derivative expan-
sion [48,50,87–89].

Again, I use the notation ∂ ≡ ∂
∂r and V ′(φ) ≡ ∂

∂φ
V (φ),

where r is the radius r = |
x |.
The derivative, or gradient, expansion presupposes that

the bounce varies slowly compared to the mass. And the
determinants are expanded in inverse powers of said mass.5

Naturally this expansion is only valid if the mass is “heavy”
for the relevant field values.

Let’s refine this statement. Recall the bounce equation:

∂2φ + 2

r
∂φ = V ′(φ). (3.1)

In addition, because this is a three-dimensional theory the
quartic coupling has mass-dimension 1. Assume that this
coupling, λ, is positive. Then, if we take λ as the characteristic
scale of V we deduce (∂φ)2 ∼ λ. Likewise, if the field in
question is a vector-boson, the mass scales as m2

A ∼ g2.
Hence the derivative expansion is only justified if λ

g2 is a

small number. Note that while both λ and g2 have dimensions
of mass in three dimensions, their ratio is a dimensionless
number.

Before looking at the derivative expansion in depth, I want
to separate out the concept of a badly convergent derivative
expansion and a badly convergent perturbative expansion.
In the current context, the former means that the derivative
expansion doesn’t adequately reproduce the given functional
determinant; while the latter indicates that higher-order cor-
rections to the leading-order bounce action aren’t under per-
turbative control. The derivative expansion can work well
while, at the same time, the perturbative expansion isn’t. And

5 The actual expansion parameter, for a particle with a field-dependent

mass mA(φ), is (mA(φ))−6 [∂m2
A(φ)

]2
in three dimensions. The exact

expansion parameter depends on the quantity and the number of space-
time dimensions.
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the other way around. Accordingly, this section only looks at
how well the derivative expansion captures the given deter-
minant. For a discussion about the aptness of the perturbative
expansion of the nucleation rate as a whole, see Sect. 6.3.

3.1 A loop-induced barrier

Let’s now consider the derivative expansion for radiative bar-
riers. Take the Standard Model with a small quartic cou-
pling λ ∼ g3. Where g is the SU(2)L gauge-coupling. As
seen in Sect. 2.1.1, this choice of λ should give a loop-
induced barrier. And a derivative expansion is applicable
since λ

g2 ∼ g � 1. The hypercharge coupling is, for sim-
plicity, not included.

There is actually something deeper going on. Because
the tree-level Higgs potential doesn’t contain a barrier, or
a bounce, on its own, a barrier is only generated by vector-
bosons loops.

To see how, recall from Sect. 2.1.1 that the tree-level poten-
tial is of order V0(φ) ∼ λ ∼ g3. The leading term from
the derivative expansion, which is just the 1-loop effective
potential, is of order m3

W ∼ g3 ∼ V0(φ). Therefore, we
must incorporate the vector-contribution already at leading
order.

We can take this even further. Assuming mW = 1
2gφ, the

two leading terms in the derivative expansion are6

δSvectors
eff = − 1

16π

∫

d3xg3φ3 − 11

32π

∫

d3x
g (∂φ)2

φ
.

(3.2)

Note that the term scales as ∼ g4; this is also the scaling
of the two-loop effective potential V2 ∼ g2m2

A ∼ g4. More-
over, Goldstone and Higgs functional determinants scale as
λ3/2 ∼ g9/2. Taking these observations as a whole shows
that the effective action evaluated on the bounce solution is

Seff = g3SLO + g4SNLO + g9/2SNNLO + · · · . (3.3)

This is quite remarkable. For a loop-induced barrier
it’s possible to calculate NLO corrections solely using the
derivative expansion. And as long as the bounce solution
is known, the NLO term is straightforward to calculate.
Furthermore, the NLO term is expected to greatly reduces
the renormalization-scale dependence of the nucleation rate
[1,91].

Further still, the N3LO contribution comes from three-
loop diagrams; meaning that the derivative expansion can be
used yet again. If SNNLO is known, the next order can once

6 This result includes summing over polarizations and taking into
account all 3 gauge bosons. See [48,88,90] for details on the derivative
expansion.

again by incorporated through usual effective-potential com-
putations. Barring some sub-leading terms from the deriva-
tive expansion. Equivalently, vector-bosons can be integrated
out, which was formalized in [53].

Before moving on, note that only some terms in the
derivative expansion should be brought to leading order. For
instance, it is tempting to use the double-derivative term
in Eq. 3.2 to find the leading-order bounce. Yet this is not
allowed if we follow a strict perturbative expansion. Instead,
this term should be included as a perturbation.

Next, note that the expansion formally breaks down for
vector-bosons when φ → 0. This complication appears at

third order with a term ∼ ∫ d3x (∂φ)4

gφ5 . However, for practical
purposes the expansion should only be used when g � 1, so

this complication of orderO
(

1
g

)

doesn’t’ change the numer-

ical results, too, much.

3.2 The problem with scalar determinants

While the derivative expansion is applicable for vector-boson
determinants, the same is not true for Higgs and Goldstone
determinants. Indeed, the Higgs mass scales as H ∼ λ; the

expansion parameter is (∂H)2

H3 ∼ λ
λ

∼ 1 [72,73]. The deriva-
tive expansion is not under perturbative control and cannot
be trusted.7

This becomes apparent if we include the first two terms
in the derivative expansion:

δSHiggs
eff = − 1

12π

∫

d3xH3/2

+ 1

384π

∫

d3x

[

V ′′′
LO(φ)

]2
(∂φ)2

H3/2 . (3.4)

Unfortunately, H = V ′′
LO(φ). So as the bounce moves

from the true minimum to the false one it passes through two
points where V ′′

LO(φ) = 0: the derivative expansion does not
converge.

A possible solution is to solve the problem exactly close
to V ′′

LO(φ) = 0. The idea is to use the Green’s function rep-
resentation of the Higgs determinant [88]

δSHiggs
eff =

∫

d3x
∫

dm mGH (x, x),

wherem2 is the mass appearing in the leading-order potential.
And GH (x, x ′) is the Higgs Green’s function satisfying

(

−∇2 + V ′′
LO [φ(x)]

)

GH (x, x ′) = δ(3)(x − x ′).

7 This conclusion is modified in the thin-wall limit. For in that case
∂H ∼ 0. So the derivative expansion is expected to work well.
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Therefore, it is at least feasible to use derivative expansion
away from V ′′

LO [φ(rc)] = 0. While close to V ′′
LO(φ) = 0, say

at r = rc, approximate V ′′
LO [φ(r + rc)] ≈ V ′′′

LO [φ(rc)] r .
The Green’s function could then be found exactly and would
need to be matched to the derivative expansion akin to the
usual WKB matching.

Even if this is done, the procedure is needlessly compli-
cated. Truly, this approach is eclipsed by the simpler, quicker,
and more robust method based on the Gelfand–Yaglom the-
orem that’s discussed in Sect. 4.

To summarize, using the derivative expansion for the
Higgs determinant beyond leading order is doubly-dyed with
problems: There’s no perturbative control and higher-order
terms diverge. A more realistic approach is to use the leading-
order, finite, term from the derivative expansion and accept
that this result cannot be systematically improved upon. This
is sometimes – with caveats – a decent approximation as I
will show when comparing to numerical results in Sect. 6.

3.3 Higher-order corrections

Let’s now leave the λ ∼ g3 scaling behind, and consider
a generic model where both scalars and vector-bosons con-
tribute at NLO. The question is whether there is any chance
of calculating the two-loop NNLO contribution. It should be
mentioned that there might be some corrections due to real-
time dynamics at higher orders. I here neglect such effects.

What we are really after is an order-by-order determina-
tion of the effective-action. To make this explicit, first define
the effective action as

e−Seff[φ] =
∫

1PI
D�e−S[φ+�], (3.5)

Seff[φ] = SLO[φ] + xSNLO[φ] + · · · (3.6)

where powers of x denote suppression according to some
power-counting.

The bounce is a solution of

δSeff[φ]
δφ(x)

= 0,

with appropriate boundary conditions. The leading-order
bounce solution satisfies

δSLO[φLO]
δφ(x)

≡ δSLO[φ]
δφ(x)

∣
∣
∣
∣
φ=φLO

= 0. (3.7)

At higher-orders the effective action is

Seff [φLO + xφNLO + · · · ] = SLO [φLO] + xSNLO [φLO]

(3.8)

x2
{

−1

2

∫

d3x
∫

d3y
δ2SLO [φLO]

δφ(x)δφ(y)
φNLO(x)φNLO(y)

+SNNLO [φLO]} + · · · (3.9)

The NLO contribution, SNLO [φLO], is nothing but the func-
tional determinants that we have been discussing so far;
SNNLO [φLO] is the sub-leading effective action coming from
higher-loop diagrams. As mentioned, both SNNLO [φLO] and
φNLO(x) are rather difficult to calculate. For example, the
NLO correction to the leading-order bounce solution satis-
fies

δSNLO[φLO]
δφ(x)

= −
∫

d3y
δ2SLO [φLO]

δφ(x)δφ(y)
φNLO(x), (3.10)

= −
(

−∇2 + V ′′
LO [φLO(x)]

)

φNLO(x),

(3.11)

which can be compared to the effective-potential result

φNLO = − V ′
NLO(φLO)

V ′′
LO(φLO)

.

While Eq. 3.10 can’t be solved exactly, some properties
of φNLO(x) can be deduced. For example, φNLO(x) only
depends on the radius. This can formally be shown using
Green’s functions. See Appendix A for the details.

4 Numerical evaluations of functional determinants

In this section I review how to calculate functional determi-
nants numerically. I will show how the generalized Gelfand–
Yaglom theorem, or Forman’s theorem, can be used to calcu-
late functional determinants for a variety of models, includ-
ing singlet and triplet extensions. As before ∂ stands for the
derivative with respect to radius. All the methods in this sec-
tion are known, but I here review the essentials.

4.1 The Gelfand–Yaglom theorem

Functional determinants can be calculated numerically, and
at times analytically, using the Gelfand–Yaglom theorem
[55–57,92–94]. This theorem has been applied to tunneling
problems in both four [72,82,89,92,94–97], three [49,50],
and two dimension [98]. While the Gelfand–Yaglom theo-
rem is mainly used for numerical purposes, some analytical
results exist in the thin-wall limit [83,84,99,100].

The standard Gelfand–Yaglom theorem applies to differ-
ential equations of the form

Mψλ(x) = (−∂2 + W [x])ψλ(x) = λψλ(x), (4.1)

with boundary conditions ψλ(0) = 0, ∂ψλ(0) = 1. For our
purposes W [x] can be thought of as a field-dependent mass
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depending on the bounce. Furthermore, ψλ(x) is a normal-
ized eigenvector and W [x] becomes constant for large radii.

The quantity of interest is

DetM = Det
(

−∂2 + W
)

≡
∏

i

λi .

For two different “potentials”, say W (1) and W (2) , the
Gelfand–Yaglom theorem states

Det
(−∂2 + W (1)

)

Det
(−∂2 + W (2)

) = ψ
(1)
0 (∞)

ψ
(2)
0 (∞)

, (4.2)

with the assumption that λ = 0 is not an eigenvalue of either
operator.

In this paper I use a generalization of this theorem that
works for matrix operators [54,56,57,93]. From now on I’ll
also refer to this generalization as the Gelfand–Yaglom the-
orem. Since this theorem will be used extensively, it’s worth
reviewing how it works. So let’s prove the theorem by using
Coleman’s argument [94].

Consider an eigenvalue equation Li jψ j = λψi . Here and
henceforth I will leave the λ dependence of ψi implicit. As
an example, for nucleation-rate calculations L is often of the
form Li j = δi j

(−∂2 − 2/r∂ + l(l + 1)/r2
)+ Vi j (r).

Now for the proof. First, write the boundary conditions as
[56,57,93]

Mab�b(0) + Nab�b(∞) = 0, (4.3)

�a(r) = (ψ(r), ∂ψ(r))a , (4.4)

where M and N are 2n × 2n constant matrices and a, b =
1, . . . 2n. Equation 4.3 can be made more lucid by construct-
ing the fundamental solutions: Li j y j;a = λyi;a . If L is an
n × n matrix there are 2n fundamental solutions, yi;a ; these
can be organized as (a = 1, . . . 2n)

y1;1(0) = y2;2(0) = · · · = yn,n(0) = ∂y1,n+1(0)

= ∂y2,n+2(0) = · · · = ∂yn,2n(0) = 1, (4.5)

and all other components vanish at r = 0. The idea is that
the fundamental solutions form a basis, and any solution to
the eigenvalue equation can be written

�a(r) = Yab(r)�b(0), (4.6)

Yab = (y∗;b, ∂y∗;b
)

a . (4.7)

So Eq. 4.3 is equivalent to

(M + NY (∞))ab �b(0) = 0. (4.8)

This equation must have a non-trivial solution if λ is an eigen-
value, which implies Det [M + NY (∞)] = 0.

Consider now two operators L(1) and L(2) with associated
fundamental-solution matrices Y (1) and Y (2). The claim is
that

Det
(L(1) − λ

)

Det
(L(2) − λ

) =
Det
[

M + NY (1)
λ (∞)

]

Det
[

M + NY (2)
λ (∞)

] . (4.9)

Coleman observed that the left-hand side vanishes if λ

is an eigenvalue of L(1), and has a pole if λ is an eigen-
value of L(2); which follows from the definition of the
functional determinant. The same is true for the right-

hand side. Yes, as discussed both Det
[

M + NY (1)
λ (∞)

]

and

Det
[

M + NY (2)
λ (∞)

]

vanish if λ is an eigenvalue. Both

sides go to 1 when λ goes to infinity along any axis besides
the real one (assuming that Vi j (r) is well-behaved). So both
sides have the same poles, zeroes, and asymptotic behaviour.
They are the same. Setting λ = 0 gives the desired ratio of
functional determinants.

As an illustration, consider again the one-dimensional
Gelfand–Yaglom theorem. Take the equation Mψλ =
(−∂2 + W )ψλ = λψλ with boundary conditions ψλ(0) =
0, ∂ψλ(0) = 1, and ψλ(∞) = 0. In this case

M =
(

1 0
0 0

)

, N =
(

0 0
1 0

)

. (4.10)

Since ∂ψλ(0) = 1 we can directly identify ψλ(r) =
yλ

2 (r). Putting everything together gives (there is technically
a pre-factor that cancels in the ratio of two determinants)

Det [M + NY (∞)] = y0
2 (∞) = ψ0(∞). (4.11)

There is a problem if λ = 0 is an eigenvalue since the
determinant vanishes. In most cases the determinant’s zero
eigenvalue is removed by going to collective coordinates,
and the determinant is finite. This procedure is discussed in
Sect. 5.2.

4.2 The Gelfand–Yaglom theorem in three dimensions

Determinants in the bounce background live in three-
dimensions and concerns a spherically symmetric operator.
In such a case the solutions can be expanded in spherical har-
monics. The determinant of a spherically symmetric operator
can then be written [50,72,89,96,101]

DetM =
∞
∏

l=0

[

Ml
]2l+1

. (4.12)
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Typical operators are of the form

Ml = −∂2 − 2/r∂ + l(l + 1)

r2 + W (r),

for some function W (r). For instance, the Higgs and
Goldstone determinants involve W (r) = V ′′ [φ(r)] and
W (r) = φ−1(r)V ′ [φ(r)] respectively. With φ(r) being the
relevant bounce solution. For the tunneling calculation, the
false-vacuum operator (L(2) in Eq. 4.9), is

Ml
FV = −∂2 − 2/r∂ + l(l + 1)

r2 + W (∞). (4.13)

Which for the Standard-Model means φ(∞) = 0.
As boundary conditions for the Gelfand–Yaglom theorem

I take ψ l(r) ∼ rl when r → 0. These boundary conditions
are not of the form given in Eq. 4.3, but can be brought to
that form by redefining ψ l(r) = ψ̃ l(r)rl . In practice one

works with the function Tl(r) ≡ ψ l (r)
ψ l
FV (r)

. Hence the above

redefinition is unnecessary.
While it is possible to solve

(

−∂2 − 2/r∂ + l(l + 1)

r2 + W (r)

)

ψ l(r) = 0 (4.14)

for each partial-wave l, for numerical purposes it is neces-
sary to stop at some large angular cut-off L . The idea is that

Eq. 4.14 can be solved analytically for large l – up to O
(

1
l3

)

terms. The sum from l = L to l = ∞ can then be done up
to O ( 1

l

)

corrections. See Appendix B for the details.

5 Treatment of zero-modes

The Gelfand–Yaglom procedure is problematic when there’s
a zero eigenvalue since the determinant vanishes. As a
rule this zero-mode is removed already in the saddle-point-
approximation step by going to collective coordinates. This
procedure gives a pre-factor and a determinant with the
zero-eigenvalue removed. Take the translational modes. The
zero mode is here proportional to ∂φ; going to collective
coordinates in this case gives the spatial volume times a

factor
(

S3
2π

)3/2
[40,82,97]. It turns out that the collective-

coordinate pre-factor, in this case
(

S3
2π

)3/2
, always cancels

when calculating the determinant with the zero-eigenvalue
removed. I will start off by showing how this works for the
Goldstone determinant, before moving on to more compli-
cated cases such as Goldstone–Vector boson mixing and mul-
tiple scalar-field tunneling.

In this entire section I will change the range from r ∈
[0,∞] to r ∈ [0, R], with the assumption that R → ∞ at
the end.

5.1 Zero-modes for a single field

Assume a Goldstone determinant without vector-boson mix-
ing. The zero-eigenvalue of the Goldstone determinant comes
from the broken U(1) symmetry, and the corresponding
eigenfunction is proportional to φ(x). Going to collective
coordinates gives

� ∼ Vol (U(1))

(∫

d3xφ(x)φ(x)

2π

)1/2

[

Det
(−∇2 + GFV

)

Det′
(−∇2 + G

)

]1/2

. (5.1)

Where Vol (U(1)) = 2π and G = 1
φ(x)V

′ [φ(x)]. Let’s
expand the determinant in partial waves as usual

Det′
(

−∇2 + G
)

=
∞
∏

l=0

[

Det′
(

−∇2
l + G

)]2l+1
, (5.2)

∇2
l = ∂2 + 2/r∂ − l(l + 1)

r2 . (5.3)

The zero-mode occurs for l = 0. Indeed, a naive appli-
cation of the Gelfand–Yaglom theorem would require us to
solve

(

−∂2 − 2

r
∂ + 1

φ(r)
V ′ [φ(r)]

)

ψ(r) = 0,

ψ(0) = 1, ∂ψ(0) = 0. (5.4)

Yet from the bounce equation it follows that ψ(x) =
φ(x)/φ(0) is a normalizable zero-eigenvector. So the deter-
minant is zero.

There are several ways to remove the zero eigenvalue [92,
93,95,102].8 Here I use the method of [92].

The idea is to deform the zero-eigenvalue to λ0 = ε (not
to be confused with the dimensional-regularization ε)

Dεψε(x) ≡
(

−∂2 − 2

r
∂ + 1

φ(r)
V ′ [φ(r)]

)

ψε(r)

+ εψε(r) = 0, ∂ψε(0) = 0. (5.5)

Where for general ε the above equation does not have normal-
ized eigenfunction. Specifically, ψε(r) grows exponentially

8 The modified boundary-value method [93,102] is quite transparent
and powerful, however, there are some subtleties that appears for tun-
neling problems. So I advice taking care if this is the method of choice.
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for large r , that is, the zero eigenvalue only appears for ε = 0.
Then the determinant without the zero eigenvalue is

Det′
(

−∇2
0 + G

)

= lim
ε→0

Det
(−∇2

0 + G + ε
)

ε
. (5.6)

If we use the inner product, 〈 f g〉 ≡ ∫ d3x f (x)g�(x), one
finds

0 = 〈φDεψε
〉 = 4π

[

r2(∂φψε − φ∂ψε)
]R

0
+ ε

〈

φψε
〉

.

(5.7)

Using the boundary conditions shows that9

ψε(R) = ε 〈φψε〉
−8πR2∂φ(R)

. (5.8)

Finally, plugging everything into the Gelfand–Yaglom theo-
rem gives

lim
ε→0

Det
(−∇2

0 + G + ε
)

ε
= lim

ε→0

ψε(R)

ε

= 〈φφ〉
−8πR2∂φ(R)φ(0)

, (5.9)

where I used that limε→0 ψε(x) = φ(x)/φ(0). Or, after nor-
malizing with the false-vacuum solution

Det
(

−∇2
0 + GFV

)−1
lim
ε→0

Det
(−∇2

0 + G + ε
)

ε

= 〈φφ〉
−8πR2∂φ(R)φ(0)ψFV (R)

. (5.10)

This expression is finite when taking R → ∞, and 〈φφ〉 can-
cels the corresponding term coming from going to collective
coordinates.

5.2 Zero-modes for multiple-field determinants

Consider now a multi-field zero-mode. A good example is
the two-Scalar determinant in Eq. B.9 when l = 1:

− ∂2ψ1 − 2/r∂ψ1 + 2

r2 ψ1 + V11ψ1 + V12ψ2 = 0, (5.11)

− ∂2ψ2 − 2/r∂ψ2 + 2

r2 ψ2 + V22ψ2 + V12ψ1 = 0. (5.12)

Or shortened Mψ = 0. Again, a normalizable zero-mode is
ψ1 = ∂φ, ψ2 = ∂σ . This eigenfunction satisfies Eq. 5.11
because of the bounce equation B.3. During the saddle-point
approximation, the zero-eigenvalue was removed by going

9 The extra factor of 2 comes from that φ(R) ∼ e−aφ R and ψε(R) ∼
eaφ R + O(ε).

to collective coordinates, and we should really calculate the
functional determinant without the zero-eigenvalue.

The idea is the same as for the single-field case. First, the
functional determinant is

DetM = y1;3(R)y2;4(R) − y2;3(R)y1;4(R), (5.13)

where the fundamental solutions are defined in Eq. 4.5. Also,
the boundary conditions imply

∂φ(x) = ∂2φ(0)y1;3(x) + ∂2σ(0)y1;4(x), (5.14)

∂σ(x) = ∂2φ(0)y2;3(x) + ∂2σ(0)y2;4.(x). (5.15)

Note that the fundamental solutions, by themselves, don’t
vanish as R → ∞. In fact, if V11(∞) = aφ , V22(∞) = aσ ,
and V12(∞) = 0, the solutions behave as (R � 1)

y1;3(R) = c1;3eaφ R/R + d1;3e−aφ R/R, (5.16)

y1;4(R) = c1;4eaφ R/R + d1;4e−aφ R/R. (5.17)

So Eq. 5.14 means that c1;3∂2φ(0) + c1;4∂2σ(0) = 0
and d1;3∂2φ(0) + d1;4∂2σ(0) = −aφφ∞, where ∂φ(R) ∼
−aφφ∞e−aφ R/R. These, and similar, relations can be used
to simplify and rewrite the final result in a number of ways.

The determinant in Eq. 5.13 vanishes because of the zero-
mode. So deform the zero-eigenvalue to λ0 = ε, and consider
instead the operator

− ∂2ψε
1 − 2/r∂ψε

1 + 2

r2 ψε
1 +V11ψ

ε
1 + V12ψ

ε
2 + εψε

1 =0,

(5.18)

− ∂2ψε
2 − 2/r∂ψε

2 + 2

r2 ψε
2 +V22ψ

ε
2 + V12ψ

ε
1 + εψε

2 =0,

(5.19)

or condensed as Dε
i jψ

ε
j = 0.

The determinant with the zero-eigenvalue removed is

Det′M = lim
ε→0

DetDε

ε

= lim
ε→0

yε
1;3(R)yε

2;4(R) − yε
2;3(R)yε

1;4(R)

ε
. (5.20)

Call the normalizable eigenfunction � ≡ (∂φ, ∂σ )t and
define the inner-product as 〈 f g〉 ≡ ∑

i

∫

d3x fi (x)g�
i (x).

Using 0 = 〈�Dε yε
3

〉 = 〈�Dε yε
4

〉

gives

8πR2
[

∂2φ(R)yε
1;3(R) + ∂2σ(R)yε

2;3(R)
]

= −ε
〈

�yε
3

〉

,

(5.21)

8πR2
[

∂2φ(R)yε
1;4(R) + ∂2σ(R)yε

2;4(R)
]

= −ε
〈

�yε
4

〉

.

(5.22)
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This, together with limε→0
[

∂2φ(0)
〈

�yε
3

〉+ ∂2σ(0)
〈

�yε
4

〉]

= 〈��〉, gives

Det′M = lim
ε→0

yε
1;3(R)yε

2;4(R) − yε
2;3(R)yε

1;4(R)

ε

= 〈��〉 y2;4(R)

−8πR2∂2φ(R)∂2φ(0)
. (5.23)

The above result is finite when normalizing with the false-
vacuum solution, and the 〈��〉 factor again cancel the
collective-coordinate factor. To be specific, if φ(R) =
φ∞e−aφ R/R, then the false-vacuum solution behaves as
yFV1;3 (R) ∼ 3

2aφ
eaφ R/R. Thus

lim
R→∞ R2∂2φ(R)yFV1;3 (R) = 3aφφ∞

2
. (5.24)

The y2;R(R) ∼ eaσ R term is likewise finite when normalizing
with the false-vacuum solution.

In short, to evaluate the determinant with the zero-
eigenvalue removed simply requires knowing the asymptotic
behaviour of one fundamental solution.

For completeness, 〈��〉 = 3S3, where S3 is the leading-
order bounce action.

The above result can be directly applied to theories where
two scalar fields tunnel. Yet there are scenarios with three
[103,104], or more, tunneling scalar fields. Not to mention
models with additional mixing between fields, for example
two-Higgs doublet models, singlet extensions, and triplet
extensions. See Appendix D for the generalization of Eq. 5.23
to an arbitrary number of scalar fields.

5.3 Vector–Goldstone mixing

In Fermi gauge the Standard-Model-Goldstone–Vector
matrix for l = 0 is [82]

M =
(

1
ξ

(

−∂2 − 2/r∂ + 2
r2

)

+ g2φ2 g∂φ − gφ∂

2g∂φ + gφ∂ + 2
r gφ −∂2 − 2/r∂ + φ−1V ′(φ)

)

In the absence of mixing we saw in Sect. 5.1 that the Gold-
stone determinant had a zero mode; something similar hap-
pens here.

I will now use the result from the previous subsection but
with different boundary conditions. Indeed, ψ1 = ψ2 ∼ r0

implies ∂ψ1(0) = ∂ψ2(0) = 0. And the functional determi-
nant is

DetM = y1;1(R)y2;2(R) − y1;2(R)y2;1(R), (5.25)

with, yet again, the fundamental solutions defined according
to 4.5. In the case at hand ψ1 = 0, ψ2 = φ(x)/φ(0) is a

normalized zero-eigenvector. Though, Eq. 5.25 is problem-
atic because the y1 fundamental solution does not exist. A
way around this is to introduce a radial cut-off at r = δ and
take the δ → 0 limit in the end. We don’t actually have to
find the y1 solution; it is enough to note that

lim
δ→0

y1;1(r)
yFV1;1 (r)

= 1. (5.26)

Going through the same steps as in the previous section,
defining � = (0, φ)t and leaving the δ dependence implicit
gives

8πR2
[

∂φ(R)yε
2;1(R) − φ(R)∂yε

2;1(R)
]

= −ε
〈

�yε
1

〉

,

(5.27)

8πR2
[

∂φ(R)yε
2;2(R) − φ(R)∂yε

2;2(R)
]

= −ε
〈

�yε
2

〉

.

(5.28)

Dividing by the false-vacuum, and using y2;2(x) =
φ(x)/φ(0), we find

Det′M
DetMFV

= lim
δ→0

1

−8πR2∂φ(R)yFV2;2 (R)
〈�y2〉 y1;1(R)

yFV1;1 (R)

(5.29)

= 1

−8πR2∂φ(R)φ(0)yFV2;2 (R)
〈φφ〉 . (5.30)

This is the same result as in Eq. 5.10 – the Goldstone–Vector
determinant is just the usual Goldstone determinant without
mixing.

Note that these results only holds assuming φ(R) ∼ e−aφ R

R
for some positive “mass” aφ .

In summary, for l = 0 the mixed Vector–Goldstone deter-
minant (not including ghosts or transverse vectors) is just the
Goldstone determinant. And for large l the mixed Vector–
Goldstone determinant separates into the pure Goldstone
determinant times the pure-vector-determinant cubed. These
results also hold in four dimensions.

6 Specific models

I now turn to performing quantitative comparisons of the
derivative expansion with the Gelfand–Yaglom approach.
Both methods are first applied to the Standard Model with
and without higher-order operators. Next, the methods are
compared for a model with a two-step phase transition. The
results in this section can directly be applied to realistic mod-
els, as shown in the next section.

As discussed in Sect. 3, for scalars one should only use
the leading-order term in the derivative expansion. As such,
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I use a different number of terms depending on whether the
determinant concerns a Higgs/Goldstone field, or a vector
field. For scalars I use the leading term [88]

S(1)
deriv = − 1

12π

∫

d3xM3, (6.1)

and for (transverse) vectors

S(1)
deriv

= − 1

12π

∫

d3xM3 + 1

384π

∫

d3x(∂i M
2)(∂i M

2)M−3,

(6.2)

where M is the field-dependent mass. The above expressions
also need to be normalized by the false-vacuum contribution.

For vector-bosons I use g to denote the generic (dimen-
sionally reduced) vector-boson coupling; in the Standard
Model g is the weak-coupling constant up to a factor of 2.
Note that Eq. 6.2 is the contribution from a single transverse
vector determinant.

In this entire section I take φ to denote the bounce solu-
tion. So when I write out the potentials all other fields are
set to zero. To be specific, a model with a Higgs doublet
� = 1/

√
2(φ1 + iφ2, φ3 + φ + iφ4)

t is taken to have the
same potential as a complex singlet � = 1/

√
2(φ1+φ+iφ2).

However, depending on the field content the functional deter-
minants are different.

6.1 Loop-induced potential

First the loop-induced barrier case, which was discussed in
Sects. 2.1.1 and 3.1.

The loop-induced potential is [43,61,70]

V (φ) = 1

2
m2φ2 − 1

2
ηφ3 + λ

8
φ4, (6.3)

where in three dimensions [φ] = 1
2 , [η] = 3

2 , [λ] = 1.
Note that this potential is identical to the Standard-Model one
when vector-bosons (and temporal vectors) are integrated
out: η ∼ g3.

To condense the results it’s convenient to rewrite every-
thing in a dimensionless form. Here I use the same notation
as [50,52,89,92,105], and redefine

x → m−1x, φ → m2η−1φ. (6.4)

The action is

S3=β

∫

d3x

[
1

2
(∂μφ)2 + 1

2
φ2 − 1

2
φ3 + α

8
φ4
]

≡β S̃3(α),

(6.5)

α = m2λη−2, β = m3η−2. (6.6)

Beware that α and β have nothing to do with the strength and
the characteristic time-scale of the phase transition; they are
simply dimensionless parameters describing the potential. I
stick to theα andβ notation here simply because it’s prevalent
in the literature. Also, for vector-bosons with a coupling g

the dimensionless parameter is g2 = m2

η2 g
2.

The α → 1 limit corresponds to the critical point – when
the two minima have the same energy – and α → 0 cor-
responds to a second-order phase transition. That is to say,
α = 0 corresponds to m2 = 0. As we shall see, perturbative
corrections are comparable in size to S̃3(α). This means that
the expansion is only reliable when β � 1. This observation,

together with β2 = α3
(

η2

λ3

)

∼ α3
(
g6

λ3

)

, implies yet again

that perturbation theory only works when g2 � λ.
Moving on, the dimensionless form of the action greatly

simplifies numerical calculations; not only can the leading
order-bounce action be parametrized by two parameters, it
turns out that functional determinants only depend on α.

In the new variables the nucleation rate is

� × m−4 = |ω̃c(α)|
2π

e−β S̃3(α)−S(1)(α). (6.7)

There is also a multiplicative factor
√

β for each distinct
zero mode – three for the Higgs, and one, or more, for the
Goldstone field. So for a complex scalar the rate in Eq. 6.7
should be multiplied by β2. The dimensionless negative-
energy eigenvalue (−ω̃2

c ) is related to the dimensionful one
via ω2

c = m2ω̃2
c . And S(1)(α) can be separated according to

the field in question.
To be specific, (−1)ω̃2

c is the only negative eigenvalue of
the Higgs-fluctuation operator, that is

[

−∂2 − 2/r∂ + 1 − 3φ + 3

2
αφ2

]

�(r) = −ω̃2
c (α)�(r),

(6.8)

where �(r) is a normalizable eigenfunction.
Once S(1)(α) and S̃3(α) are known, the nucleation tem-

perature can be evaluated for any temperature (implicit in
m2, η, λ).

For parameter scans it is useful to approximate both the
tree-level bounce and the functional determinants by func-
tions of the form10

f (α) = A + Bα + Cα2 + D/(1 − α)

+ E/(1 − α)2 + F/(1 − α)3. (6.9)

10 This parametrization is slightly different from that of [52]. Here I
choose the form of f (α) to give a simultaneous good fit for the bounce
action and the determinants.

123



Eur. Phys. J. C (2022) 82 :173 Page 13 of 28 173

Table 1 Result for the dimensionless leading-order action and the func-
tional determinants

Function A B C D E F

S̃3(α) 7.24 5.68 0 10.4 1.25 0

S(1)
H (α) 0.213 4.86 −9.56 3.97 0.505 0

S(1)
G (α) 0.895 1.08 −1.84 1.51 0.469 0.0329

Using the Gelfand–Yaglom method I find that the tree-level
bounce, Higgs determinant, and Goldstone determinants are
given according to Table 1. The parametrizations given in
this table are accurate to 1%. Also, the result in Table 1 agree
with a thin-wall-limit analysis:F3 = 0, E3 = 32π

81 , D3 =
272π

81 , FH = 0, and FG = 8
243 .

Mark that the result in Table 1 is the contribution from
a single Goldstone boson. Thus, if φ is a complex scalar
field there should be an additional Vol[U (1)] = 2π factor
multiplying the nucleation rate. And if φ is a SU(2) dou-
blet, S(1)

G (α) should be multiplied by three, and the nucle-
ation probability should be multiplied by Vol[SU(2)] = 2π2.
While for SU(2)×U(1) → U(1) breaking the volume factor
is π2 [106].

The magnitude of the negative eigenvalue can be approx-
imated

ω̃2
c = (1 − α)
(

2.39 − 0.854α + 2.42α2 − 9.67α3 + 5.85α4
)

. (6.10)

This approximation holds to 1% and agrees with the result
of [50].

All in all, the above results make it easy to study any model
whose dimensionally reduced potential is of the form given
in Eq. 6.3.

Next let’s compare the Gelfand–Yaglom method with the
derivative expansion. As discussed in Sect. 3, this expansion
is not convergent, but can nonetheless be used as a proxy.
Take the Higgs boson, in this case the leading-order result is

S(1)
Deriv = − 1

12π

∫

d3x
[

(V ′′[φ(x)])3/2 − V ′′[0]3/2
]

.

(6.11)

The above integral contains spurious imaginary parts, so we
should really take the real value. Furthermore, it is not clear
how to deal with zero modes. In particular, the Jacobian

from going to collective coordinates is
(

S̃3
2π

)3/2
. When using

the derivative expansion we are faced with the dilemma of
whether this factor should be included or not. Since this fac-
tor always cancels when using the Gelfand–Yaglom theorem
(see Sect. 5.1), we might guess that it should be included.

But this is contrary to what Fig. 1a shows. With the
(

S̃3
2π

)3/2

factor included the error can reach 30% for some α values.
While without the error is 0–5%. This suggests that the zero-
mode factor shouldn’t be included. Yet for other models the
behaviour can be the opposite as we’ll see in the coming
sections.

The situation is more sombre for the Goldstone determi-
nant as shown in Fig. 1c. Indeed, for the Goldstone deter-
minant the derivative expansion can be off by 20 % when

the collective-coordinate factor,
(∫

d3xφ(x)2

2π

)1/2
, is included.

While without the aforementioned factor the error is less, and
derivative expansion is at worst only off by ∼ 15%.

Nevertheless, it should be stressed that 15% error is quite
good. Really, we had no reason to trust the derivative expan-
sion in the first place. But we should be wary of that the
error can be vastly different depending on which determi-
nant is evaluated. In the end looking at Figs. 1b, d shows that
derivative expansion is reasonable regardless if we include
the zero-mode factors or not.

Note that the derivative expansion works well for the loop-
induced barrier because the bounce spends the majority of
the time in a region where V ′′(φ) is negative. Besides, the
derivative expansion works well in the thin-wall limit (α →
1) because the characteristic size of the bounce is large.

In the Standard-Model the potential in Eq. 6.3 arises when
the Higgs quartic is small.11 So let’s consider such a scenario.
As such, assume that the η term in Eq. 6.3 is generated by
vector-boson loops. If this is the case, the Higgs and Gold-
stone determinants constitute but a NNLO correction to the
exponent; the derivative expansion from the vectors gives the
NLO piece.12

To be specific, consider the Standard Model where we
ignore the g′ coupling. That is, an SU(2) theory. In that case
the NLO correction to the leading-order action is (see [43,
44,88] for the two-loop term)

SNLO(α, g, β) = − 11

32π

∫

d3xg
(∂φ(x))2

φ(x)

+ β−1 1

1024π2

∫

d3xg4φ2(x)

×
{

51 log

(

μ2
3

m2φ2(x)g2

)

− 126 log(3/2) + 33

}

,

(6.12)

where g2 = m2

η2 g
2 and the tree-level vector-boson mass

is assumed to be mW = 1
2gφ; μ3 is the renormalization-

group scale in the dimensionally reduced theory. The first-

11 A small Higgs quartic doesn’t necessarily mean that the Higgs is
light. See [107] for an example.
12 These double-derivative terms were also considered in for example
[48,88,90,108].
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Fig. 1 Comparison of the
derivative expansion with the
Gelfand–Yaglom method.
Figures a, b concerns the Higgs
determinant. Figure a compares

δ1 ≡
∣
∣
∣
∣

S(1)
GY −S(1)

Deriv

S(1)
GY

∣
∣
∣
∣

with

δ2 ≡
∣
∣
∣
∣

S(1)
GY −S(1)

Deriv−Zero-mode

S(1)
GY

∣
∣
∣
∣
, and

Fig. b shows (1 − α)3S(1)
H (α) for

the different methods. Figures c,
d are defined analogously as
Figs. a, b, but looks instead at
the Goldstone determinant. The
zero-mode factor for the Higgs

determinant is (−1) 3
2 log S̃3

2π
,

and (−1) 1
2 log

∫

d3xφ2(x)
2π

for the
Goldstone determinant

(a) (b)

(c) (d)

term comes from the derivative expansion; the second from
the two-loop effective potential. In using this expression we
have to assume that λ � g2. The derivative expansion for
the Goldstone–Vector determinant is here apt because the
momenta in the Feynman diagrams are of ordermW � (∂φ).

One might be bothered by that the first term diverges when
φ → 0. However, for large r the bounce behaves as φ(r) ∼
e−r/r , and the integral is convergent.

After finding the bounce numerically the required terms
can be approximated to 1%

∫

d3x
(∂φ(x))2

φ(x)
≈ 55.1

+ 18.5α − 19.4α2 + 53.1/(1 − α) + 5.59/(1 − α)2,
∫

d3xφ2(x) ≈ 29.2 + 24.3α + 24.3α2 + 3.56/(1 − α)

+ 20.2/(1 − α)2 + 4.96/(1 − α)3,
∫

d3xφ2(x) log φ2(x) ≈ 14.6 + 21.4α + 41.0α2

− 31.1/(1 − α) + 18.8/(1 − α)2 + 6.88/(1 − α)3.

As before the leading terms, in the α → 1 limit, can be

found from a thin-wall analysis: 16π
9 and 152π

9 for the (∂φ)2

φ

term; 128π
81 and 512π

81 for the φ2 one; finally 128π
81 log 4 for the

φ2 log φ2 integral.
The power-counting shows that the S(1) terms in Table 1

are NNLO corrections. Using these results, it’s easy to evalu-
ate the effective action up to NNLO precision for any parame-
ter. However, note that the derivative expansion, and the result

for SNLO(α, g, β), are only valid when α

g2 = λ
g2 � 1. Note

that as long as λ
g2 � 1 holds at α = 1, the ratio α

g2 � 1

everywhere. This last property is quite handy and makes
the loop-induced case particularly well-behaved. Compar-
ing with effective-potential results, the derivative expansion
is likely applicable till λ

g2 ∼ 0.1 [108–110].

6.2 Standard Model EFT potential

Since the Standard Model does not exhibit a first-order phase
transition on its own, new physics is required. A model-
independent way of parametrizing this is through effective
operators. To this end, I consider a potential of the form
(hereafter referred to as the SM-EFT potential)

V (φ) = 1

2
m2φ2 − λ

4
φ4 + c6

32
φ6. (6.13)

Note that, for reasons that’ll become apparent, I have nor-
malized the c6 term differently from the literature [5,6,107,
111–113]. I also assume that all parameters appearing in the
potential are positive.

Again, the action can be written in a dimensionless form
via the redefinitions

x → m−1x, φ → m√
λ

φ, (6.14)

giving a leading-order action

S3 = β

∫

d3x

[
1

2
(∂μφ)2 + 1

2
φ2 − 1

4
φ4 + α

32
φ6
]
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Table 2 Result for the dimensionless leading-order action and func-
tional determinants. The S̃3(α) parametrization holds for 1 ≥ α ≥ 0.
While the S(1)

H (α) and S(1)
G (α) parametrizations are divided into two α

ranges. The number not in the parenthesis applies for 0 ≤ α ≤ 0.8; and
the number in the parenthesis applies for 1 ≥ α ≥ 0.8

Function A B C D E

S̃3(α) 1.76 −0.142 12.6 4.19 0

S(1)
H (α) −2.65 (+5.30) 5.32 (−28.8) 0.533 (8.14) 1.25 (0.119) −0.845 (−0.765)

S(1)
G (α) −0.289 (−0.839) −0.155 (−1.70) −0.5441 (0.304) 0.424 (0.296) 0.106 (0.113)

≡ β S̃3(α), (6.15)

α = c6β
2, β = mλ−1. (6.16)

The normalization of the potential is chosen so that α = 1
corresponds to the critical temperature: When the broken and
symmetric phase has the same energy. This is also refereed to
as the thin-wall limit in this context. Since this is an effective
theory, c6 is usually thought of as arising from new physics.
This is often parametrized as c6 ∼ T 2�−2, where � is the
new-physics scale and T is the temperature. The factor of T 2

appears because we are working in a dimensionally reduced
theory [6].

Just as for the loop-induced potential, the nucleation rate
can be written

� × m−4 = ω̃c(α)

2π
e−β S̃3(α)−S(1)(α), (6.17)

where ω2
c = m2ω̃2

c , and a multiplicative factor of
√

β should
be included for each zero-mode.

The bounce action and the functional derivatives can be
parametrized by functions of the form

f (α) = A + Bα + C(1 − α)−1

+ D(1 − α)−2 + E(1 − α)−3. (6.18)

For the SM-EFT potential the determinants can’t be approxi-
mated by a single function for the entire range. So it’s neces-
sary to split up the α range. The results for the Goldstone and
Higgs determinants are summarized Table 2; the first number
corresponds to 0 ≤ α ≤ 0.8, and the one in the parenthesis
to 1 ≥ α ≥ 0.8. In addition, the result in Table 2 agree with
a thin-wall analysis: D3 = 4π

3 , E3 = 0, EH = − 7
9 . and

EG = 1
9 .

The magnitude of the dimensionless negative eigenvalue
can be approximated

ω̃2
c =

⎧

⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(1 − α)
(

9.31α4 − 33.4α3

+46.0α2 − 30.7α + 8.81
)

0.6 ≤ α ≤ 1

(1 − α)
(

65.6α4 − 167α3

+163α2 − 75.5α + 15.2
)

0.6 ≥ α ≥ 0

(6.19)

This approximation is accurate up to 1%.
Now for the comparison of the derivative expansion with

the Gelfand–Yaglom result. First, I make the comparison for
each determinant individually. That is, disregarding any mix-
ing. Afterwards, I take into account the Vector–Goldstone
mixing.

Let’s start with the Higgs and Goldstone determinants.
Fig. 2 shows the comparison of the Gelfand–Yaglom method
with the derivative expansion. First notice that the deriva-
tive expansion behaves worse in this model compared to the
loop-induced potential. What’s more, it seems that including
the zero-mode gives a better agreement than leaving it out;
contrary to the previous case. It should be stressed that the
large errors around α ≈ 0.3–0.4 in Fig. 2 are a bit misleading.
The big jump comes from that the S(1)

GY curve gets close to
zero. Overall, Fig. 2b, d show that the derivative expansion
is quite decent.

Next the vector bosons. The dimensionless vector-boson
coupling is g2 = g2

λ
where I assume that the vector-boson

mass is mA = gφ. As before, g is equivalent to the weak
coupling constant up to a factor of 2. A priori we would
expect that the derivative expansion performs poorly if g ∼ 1
since the expansion parameter is α

g2 . And this is indeed

what Fig. 3a, b shows. What’s worse, the phase-transition is
stronger for a smaller new-physics scale � (bigger c6 and λ)
[6,107,111–113]; implying that g2 gets smaller for smaller
�. This means that the derivative expansion gets successively
worse for small � values. Conversely, the derivative expan-
sion gets better for larger �, that is, a larger g2. This can be
seen in Fig. 3c, d, for which g = 3. The derivative expansion
performs better still for g = 5 as shown in Fig. 3e, f.

All things considered, the derivative expansion is rather
accurate for all g values used.

Now for the mixed determinant. Figure 4 shows the mixed
determinant compared with treating the determinant as diag-
onal, that is, the comparison of S(1)

GV (α) with S(1)
G (α) +

2S(1)
V (α). To be specific, with S(1)

GV (α) I include the full con-
tribution of Goldstones, all Vector polarizations, and ghosts.
But I don’t include more than one Goldstone–Vector con-
tribution. That is, I don’t sum over the representation. Also
S(1)
V (α) denotes the transverse-vector determinant.
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Fig. 2 Comparison of the
derivative expansion with the
Gelfand–Yaglom method.
Figures a, b concerns the Higgs
determinant. Figure a compares

δ1 ≡
∣
∣
∣
∣

S(1)
GY −S(1)

Deriv

S(1)
GY

∣
∣
∣
∣

with

δ2 ≡
∣
∣
∣
∣

S(1)
GY −S(1)

Deriv−0−Mode

S(1)
GY

∣
∣
∣
∣
, and

Fig. b shows (1 − α)3 S(1)
H (α).

Figures c, d are defined
analogously as Figs. a, b but
looks at the Goldstone
determinant

(a) (b)

(c) (d)
Fig. 3 Comparison of the
derivative expansion with the
Gelfand–Yaglom method for the
vector determinant. Figures a, b
assumes g = 1 . Figure a shows

δ1 ≡
∣
∣
∣
∣

S(1)
GY −S(1)

Deriv

S(1)
GY

∣
∣
∣
∣
, and Fig. b

shows (1 − α)3 S(1)
V (α). Figures

(c) and (d) are defined
analogously as Figs. a, b but
with g = 3; and Figs. e, f
assume g = 5

(a) (b)

(e) (f)

(c) (d)
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A priori we would expect that S(1)
GV (α) should approach

S(1)
G (α)+ 2S(1)

V (α) for large g. Reason being that the deriva-
tive expansion should be more-and-more apt the larger g gets.
Specifically we expect corrections to S(1)

GV (α) = S(1)
G (α) +

2S(1)
V (α) to be of order g, while S(1)

GV (α) and S(1)
V (α) are of

order g3. And this is indeed what Fig. 4 shows. In particu-
lar note that the error is significant for g = 1 as shown in
Fig. 4a. While Fig. 4c, e show that the error rapidly decrease
for larger g.

By the by, both Figs. 3 and 4 shows that the vector contri-
bution grows as ∼ g3, which is expected from the derivative
expansion.

6.3 Possible issues with the SM-EFT potential

The previous sections discussed models with a tree-level bar-
rier and a loop-induced barrier, however, there is some over-
lap between these two cases. And sometimes it’s necessary
to consider an amalgamation of the two. To see why, con-
sider again the SM-EFT potential. For realistic parameters
one finds β = mλ−1 ∼ 3 − 5 while g ∼ 1 − 5. With β and
g being defined in Sect. 6.2. This means that vector-boson
determinant can overpower the leading-order bounce deter-
minant, and perturbativity is lost.

Let’s see how. Define c6 = c�
6 + x6 so that λ ∼ x6.13

From Eq. 6.15 we see that, close to the critical temperature,
α = c6β

2 ∼ 1; other power-counting parameters scales as

β ∼ 1
√

c�
6

≈ 4 & λ ∼ m ∼ x6 & g2 ∼ 1

x6
. (6.20)

This is a problem. Not only is β to first approximation a
constant, but the vector-boson determinant surges for small
λ.14 Rapidly. In fact, from the derivative expansion (this is
also the case for Gelfand–Yaglom method) we expect the
vector determinant to grow as log det V ∼ g3 ∼ (x6)

−3/2.
Worse yet, as the temperature decrease and α gets smaller,
so does β – but not g. This means that perturbation theory
is doomed to break down for small λ, or equivalently, when
the scale of new physics becomes large. This breakdown is
hinted at in Figure 9 of [6].

It should be stressed that the perturbative problems are
not due to a breakdown of the derivative expansion. Quite
the opposite. As shown in Figs. 3 and 4, the expansion works
better for large g (small λ). Rather, the problem is that the

13 Evaluating the (4-d) parameters at tree-level gives: λ4d = m2
H

2v2
H

−
3
8 c

4d
6 v2

h [6,107,111–113]. Where vH ≈ 246 Gev. The dimensionally
reduced parameters are to first-order (the minus-sign comes from my
convention) λ = −λ4dT and c6 = T 2c4d

6 . See [6] for the details.
14 Technically the 3-D λ never vanishes even though the 4-D λ does.
However, for practical purposes this is irrelevant.

assumed scaling λ ∼ g2 is incorrect. The same problems also
appear for the effective potential with small quartics [69].

This hints at that it’s possible to eliminate these issues
by choosing a different power-counting. That is, to count
λ ∼ g3. Because with such a power-counting the vector
determinants should be expanded in powers of λ

g2 – giving a
loop-induced barrier.

So, does the loop-induced potential have the same pertur-
bative problems for small λ? No. Consider the parameters
for the loop-induced potential discussed in Sect. 6.1:

α ∼ m2λη−2 ∼ 1, (6.21)

β2 = α3
(

η2

λ3

)

∼ g6

λ3 , (6.22)

g2 = m2

η2 g2 = α
g2

λ
∼ g2

λ
, (6.23)

where I assumed η ∼ g3 as expected from the derivative
expansion.

Now, the NLO contribution from vector bosons scales as
g4β−1. Comparing this with the leading-order-bounce action

∼ β, gives a relative factor g4

β2 ∼ λ
g2 ∼ g. Actually, at N

loops, the vector-boson contribution scales as g3
(
g
β

)N−1 ∼
g−3(g)N−1. So higher loops are suppressed by powers of g.

Also, remarkable it’s possible – actually encouraged –
to include the two-loop effective potential as a sub-leading
contribution. Only the pure-vector contribution mind you.
Doing so would greatly reduce theoretical uncertainties for
the nucleation rate.

Let’s turn back to the SM-EFT case. As mentioned, pertur-
bative problems pop-up for small λs. The expansion can be
improved by changing the power-counting to λ ∼ g3 – jus-
tifying a derivative expansion of the vector bosons. In short,
the new leading-order potential is

V (φ) = 1

2
m2φ2 − 1

2
ηφ3 − λ

4
φ4 + c6

32
φ6, η ∼ g3.

(6.24)

The inclusion of the φ3 term at leading order cures the
perturbative problems and gives a well-behaved expansion
around the leading-order bounce action. Note that the inclu-
sion of such a term can easily give an order one corrections
to the gravitational wave spectrum. This is especially preva-
lent for small λ values. An example of these considerations
applied to the effective potential (physics at the critical tem-
perature) can be found in [107].

All things considered, you are admonished to be wary
when studying a model with a φ6 term. In practice, use the
derivative expansion to gauge the convergence of perturba-
tion theory. And if λ is small, use the derivative expansion of
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Fig. 4 Comparison of the full
Goldstone–Vector determinant
with the pure Goldstone and
Vector contributions. The
Gelfand–Yaglom method is used
for all determinants. The figures
assumes that the vector-boson
mass is mA = gφ. Figure a, b

has g = g2

λ
= 1; Fig. a shows
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∣
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∣
, and Fig.

b compares (1 − α)3S(1)
GV (α)

with
(1 − α)3

[

S(1)
G (α) + 2S(1)

V (α)
]

.

Figures c, d are defined
analogously but with g = 3.
Likewise, Figs. e, f use g = 5

(a) (b)

(e) (f)

(c) (d)

the vector bosons (not scalars) to include a φ3 term at tree-
level. The expansion is then well-behaved, and corrections
to the leading-order-bounce action are equivalent to those
discussed in Sect. 6.1.

6.4 Two-scalar determinant

Both the loop-induced and SM-EFT potentials involve just
a single bounce. But the methods discussed so far works for
more complicated models to be sure. To that end consider
the potential

V (φ, σ ) = −1

2
m2

φφ2 − 1

2
m2

σ σ 2 + 1

8
λφφ4

+ 1

8
λσ σ 4 + 1

4
λφσ φ2σ 2. (6.25)

This potential appears, mayhap with additional terms, in
Two-Higgs-doublet models [114,115], singlet extensions [2–
4,116–119], and triplet extensions [120–122]. Note that in
some of these models the scalar-determinant includes other

fields than just φ and σ . To keep the discussion simple I will
assume that the φ and σ fields are the only fields that talk
to each other; that is, I will not consider other Goldstone
bosons or other scalars. This is a choice out of convenience,
not necessity.

The above potential can be written in a dimensionless form
through the redefinitions

x → m−1
φ x, φ → mφ

√

λφ

φ, σ → mφ
√

λφ

σ (6.26)

This gives

S3 = β

∫

d3x

[
1

2
(∂φ)2 + 1

2
(∂σ )2 − 1

2
φ2

−1

2
α1σ

2 + 1

8
φ4 + 1

8
α2σ

4 + 1

4
α3φ

2σ 2
]

(6.27)

β = mφλ−1
φ , α1 = m2

σ

m2
φ

, α2 = λσ

λφ

, α3 = λφσ

λφ

.

(6.28)
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Fig. 5 Comparison of the
derivative expansion with the
Gelfand–Yaglom method for the
scalar determinant. Figure a
assumes α2 = 0.4; Fig. b
α2 = 0.6; Fig. c α2 = 1.0; and
Fig. d α2 = 2.0. The α1 scales
are different because the range is
restricted to α2

1 ≤ α2. The zero

mode factor is (−1) 3
2 log S̃3(α)

2π
,

where S3 = β S̃3(α)

(a) (b)

(c) (d)

This means that the determinants depend on three param-
eters: α1, α2, and α3. To make matters interesting I here focus
on a two-step phase transition. An easy way to make this hap-
pen is to take all parameters as positive, choose α3 = 2α2

α1
and

α1 ≤ α2
2. This choice of α3 ensures that one of the scalars has

a mass equal to 1. In addition, the scalar potential is redefined
so that the action evaluated on the false-vacuum solution is
zero.

The scalar determinant can be found numerically by using
the methods discussed in Sects. B.1 and 5.2. Next, the leading
term in the derivative expansion is

S(1)
H = − 1

12π

∑

i=1,2

∫

d3x
[

A3/2
i (x) − A3/2

i,FV

]

, (6.29)

where A1 and A2 are defined in Sect. B.1.
Below I focus on the first-order phase transition from φ =

0 to φ = finite. Figure 5 shows the scalar determinant for
various value of α2. The range of α1 is different for each
figure because α2

1 ≤ α2.
From Fig. 5 we see that the error when including the zero-

mode factor is comparable to not including it. And it does
seem like the derivative expansion reproduces the general
behaviour of the Gelfand–Yaglom method. Barring some
quantitative differences. It should nonetheless be stressed
that the uncertainty from using the derivative-expansion, with
regards to gravitational waves, is quite small.

Finally, let’s look at if perturbation theory is well-behaved.
As before the vector-boson determinants are controlled by

g2 = g2

λφ
. And the leading-order action scales as β ∼ mσ

λσ
. So

if λφ ∼ g2, we require mσ

λσ
� 1 for a well-behaved expan-

sion. Note that, just as for the SM-EFT case, the perturbative
expansion is questionable when α1 → 0.

Note however that the potential in Eq. 6.25 is minimal.
And the potential is often augmented by additional terms
that might modify these conclusions.

7 Discussion

In this paper I have calculated higher-order corrections to the
nucleation rate for a variety of models. Doing so I have com-
pared a numerical implementation of the Gelfand–Yaglom
theorem with the derivative expansion. This comparison
shows that the derivative expansion is decent for some mod-
els; for others not so much.

For example, it seems that the derivative expansion
works quite well for the loop-induced potential discussed
in Sect. 6.1. The results also show that using the zero-mode
factor in conjunction with the derivative expansion gives a
worse fit than without. This is contrary to the tree-level bar-
rier potential discussed in Sect. 6.2; in this model including
the zero-mode factor gave a better fit. While for the two-
scalar-field model discussed in Sect. 6.4, adding the zero-
mode factor doesn’t change the results one way or another.

This suggests that there isn’t any clear-cut way of using
the derivative expansion in the presence of zero-modes. As
such it is advisable to avoid using the derivative expansion
save when it’s strictly necessary, which is to say, only when
it’s forced by the chosen power-counting.
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It should however be stressed that while using the deriva-
tive expansion introduces some uncertainties, these don’t
necessary affect observables, or gravitational wave predic-
tions, too much. Seeing as the leading-order action should
dominate the functional determinants. Nonetheless, for accu-
rate predictions, such uncertainties are not desirable. So, I
would venture that using the Gelfand–Yaglom method is just
as easy as using the derivative expansion, and, with the added
benefit of not having to worry about whether to include zero-
mode factors or not.

Not to say that the derivative expansion should be aban-
doned. In reality, as discussed in Sect. 3, the derivative expan-
sion can be essential. This is evidenced by the discussion in
Sect. 6.3. In this section I argued that the derivative expansion
can ameliorate a badly converging perturbative expansion of
the rate. Specifically in models with large vector-boson deter-
minants.

In short, when calculating the bubble-nucleation rate, one
should be cautious of higher-order corrections; large correc-
tions, for example estimated using the derivative expansion,
can point to a flawed power-counting. In these cases the solu-
tion is to change the power-counting and apply perturbation
theory accordingly.

In addition, the results show that leading-order calcula-
tions for bubble nucleation are insufficient. To actually assess
the convergence, higher-order corrections are a must.

Furthermore, the three dimensional models studied in this
paper maps to a wide variety of four dimensional models.
As such, the parametrization of higher-order determinants
in this paper can directly be applied to studying beyond the
Standard Model physics.

As for future prospects, it would be interesting to use the
results of this paper to study the uncertainty of gravitational-
wave calculations in detail. That is, to make in-depth studies
of popular models; like Two-Higgs doublet models, singlet
extensions, and real-triplet extensions. Such studies would
undoubtedly further pin down uncertainties for the gravita-
tional wave spectrum, and push the current understanding
forward.
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Appendix A: Corrections to the bounce

I here want to calculate corrections to the bounce using
Green’s functions. The starting point is

δSNLO[φLO]
δφ(x)

= 1

2
GH (x, x)V ′′′

LO [φLO(x)] , (A.1)

(−∂2 + V ′′
LO [φLO(x)])GH (x, y) = δ(3)(x − y). (A.2)

This follows from

SNLO = 1

2
Tr log

[

−∇2 + V ′′′
LO

]

. (A.3)

So inverting Eq. 3.10 gives15

φNLO(x) = −1

2

∫

d3yGH (x, y)GH (y, y)V ′′′
LO [φLO(y)] .

(A.4)

Second, owing to spherical symmetry, the Higgs Green’s
function can be expanded in spherical harmonics. The radial
Green’s function then satisfies
(

−∂2 − 2/r∂ + l(l + 1)/r2 + V ′′
LO [φLO(r)]

)

GH
l (r, r ′)

= −δ(r − r ′)/r2. (A.5)

And the total Green’s function is [123]

GH (x, x ′) = 1

4π

∞
∑

l=0

(2l + 1)C (1/2)
l (cos α)GH

l (r, r ′),

(A.6)

where cos α = 
x · 
x ′
|
x || 
x ′| , and C (1/2)

l (x) are Gegenbauer polyno-

mials.
Now, take a look at the different pieces in Eq. A.4:

GH (y, y) involves the same space-time point and does not
depend on any angles; V ′′′

LO [φLO(y)] only depends on |
y|;
GH (x, y) only depends on the relative angle between 
x and

y. Thus φNLO(x) only depends on |
x | as promised.

15 Technically one of the Green’s functions should have the boundary
condition that ∂r G(x, x ′) = 0 when |
x | = 0. As it happens this detail
is irrelevant for the present discussion.
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Everything has so far been exact, and in principal both
φNLO(x) and GH (x, y) can be found numerically. Neverthe-
less, let’s quit being circumspect. Assume that SNLO [φLO]
is known. Whether it be by numerical evaluation or some
other approximation does not matter. The next correction is
of order h̄2. Let’s be pragmatic and replace SNNLO [φLO] with
the leading-order term from the derivative expansion – the
effective potential. The derivative expansion does not con-
verge, but we can still use the first term as a rough estimate.
This has the added benefit of reducing the renormalization-
scales dependence [1,91].

Second, use the derivative expansion to findφNLO(x). That
is, treat V ′′

LO [φLO(x)] as a constant when finding the Green’s
function. This gives [45]

GH (x − y) = 1

4π |x − y| exp (−κ|x − y|) , (A.7)

κ ≡
√

V ′′
LO [φLO(x)]. (A.8)

We also have to ensure that φNLO(r) → 0 as r → ∞. This
condition is quite simple to enforce. It turns out that if we
choose the counter-terms such that φFV

NLO = 0, then φNLO(r)
automatically vanishes for larger.

Finally we need to evaluate

∫

d3y
δSNLO[φLO]

δφ(y)
GH (x − y). (A.9)

To do this let’s again use the Derivative expansion. To
make the results lucid, consider the Higgs contribution. This
gives16

SH
NLO[φLO]
δφ(x)

= − 1

8π

√

V ′′
LO [φLO(x)]V ′′′

LO [φLO(x)] . (A.10)

Putting everything together, and performing the angular
integration, one finds

φNLO(x) = V ′′′
LO(0)

8π

√

V ′′
LO(0)

+ 1

16π

∫

dρ
ρ

r
V ′′′

LO[φLO(ρ)]

×
(

e−√
V ′′

LO[φLO(ρ)]|r−ρ| − e−√
V ′′

LO[φLO(ρ)]|r+ρ|) ,

r = |
x |. (A.11)

Given the tree-level bounce solution, the above integral is
easy to evaluate numerically. Note that φNLO(x) is in general
complex valued. The same holds when evaluating the Higgs

16 In the derivative expansion the leading-order term is SH
NLO[φLO] =

− 1
12π

∫

d3x
(

V ′′
LO [φLO(x)]

)3/2.

determinant with the derivative expansion. Hence, if compar-
ing φNLO(x) with φLO(x) the real part should presumably be
used.

In summary, it is in principle to get a handle on two-loop
corrections to the nucleation rate by using Eq. 3.8 together
with a derivative expansion for SNNLO[φ] and φNLO(x).
Though, keep in mind that this is just a rough estimate.

A Appendix B: Angular-momentum cutoff

Let’s look at this large l behaviour. Following [92,124,125],
the equation is first rewritten by defining ψ l = e−x/2�l(x),
where r = ex . This gives

d2

dx2 �l(x) = Q(x)�l(x), Q(x) =
(

l
2 + W (x)e2x

)

,

l ≡ l + 1

2
.

Using the WKB approximation [126,127] and imposing
the boundary conditions gives

log
�l(∞)

�l
FV (∞)

= 1

2l

∫ ∞

0
drr [W (r) − W (∞)] + O

(
1

l
3

)

.

To find the full determinant we need to perform the sum

∞
∑

l=L

(2l + 1)

(l + 1
2 )

.

This sum is divergent. If we were using an angular cut-off to
regularize the theory, this divergence would be cancelled by
counter-terms from the leading-order Lagrangian. An angu-
lar cut-off would here restrict l ∈ [0, L]. There are a number
of other ways to regularize the sum. With zeta-function reg-
ularization the sum turns into [101]

[ ∞
∑

l=L

(2l + 1)

(l + 1
2 )

]

→ −2L .

Or equivalently

∞
∑

l=0

(2l + 1) log
det Ml

det Ml
FV

=
∞
∑

l=0

(2l + 1)

×
[

log
�l (∞)

�l
FV (∞)

− 1

2(l + 1/2)

∫ ∞
0

drr [W (r) − W (∞)]

]

.

(B.1)
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As a side-note, it’s also possible to calculate everything in
dimensional regularization. In that case the WKB approxi-
mation gives (up to O(ε) terms)

[ ∞
∑

l=L

(2l + 1)

(l + 1
2 )

]

→
[ ∞
∑

l=L

2�(l − 2ε + 1)

�(l + 1)�(2 − 2ε)

]

= −2L + O(ε). (B.2)

B1: The Gelfand–Yaglom theorem for multiple fields

Functional determinants for the Standard Model, barring
Goldstone–Vector mixing, involve one-dimensional opera-
tors. For popular Standard-Model extensions, like adding
a real/complex singlet [2–4,116,117] or real-triplet exten-
sions [120–122], there is usually a mixing between different
fields. This necessitates calculating functional determinants
of matrix operators.

As an example, take a two-scalar theory with bounce equa-
tion

∂2φ(r) + 2

r
∂φ(r) = ∂φV (φ, σ ), (B.3)

∂2σ(r) + 2

r
∂σ(r) = ∂σV (φ, σ ), (B.4)

∂φ |r=0 = ∂σ |r=0 = 0, (B.5)

φ |r=∞ = φFV & σ |r=∞ = σ FV . (B.6)

Where φFV and σ FV denote the false-vacuum solutions.
The eigenvalue equation for the corresponding fluctuation
operator is (for specific partial-wave l)

− ∂2ψ l
1 − 2/r∂ψ l

1 + l(l + 1)

r2 ψ l
1 + V11ψ

l
1 + V12ψ

l
2=λψ l

1,

(B.7)

− ∂2ψ l
2 − 2/r∂ψ l

2 + l(l + 1)

r2 ψ l
2 + V22ψ

l
2 + V12ψ

l
1=λψ l

2.

(B.8)

Or written more compactly (taking i = 1, 2 → φ, σ )

Ll
i jψ

l
j = λψ l

i ,

Ll
i j = −δi j

(

∂2 + 2/r∂ − l(l + 1)/r2
)

+ Vi j . (B.9)

Also, Vi j = ∂i∂ j V, i ∈ {φ, σ }, where V is the leading-order
potential.

Now for the functional determinant. Call the correspond-
ing false-vacuum operator Ll

FV . To use Eq. 4.9, we impose
ψ l ∼ rl for both the bounce and false-vacuum determinant.
Then use the false-vacuum solutions at λ = 0 to define

T l
φ(r) = ψ l

φ(r)

ψ l
φ,FV (r)

& T l
σ (r) = ψ l

σ (r)

ψ l
σ,FV (r)

. (B.10)

Equation B.7 (for λ = 0) can then be rewritten17

Ml
i j T

l
j = 0. (B.11)

With boundary conditions T l
φ(0) = T l

σ (0) = 1 and ∂T l
φ(0) =

∂T l
σ (0) = 0. This corresponds to (see Eq. 4.3)

M =

⎛

⎜
⎜
⎝

0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 1

⎞

⎟
⎟
⎠

, N =

⎛

⎜
⎜
⎝

1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

⎞

⎟
⎟
⎠

.

And the functional determinant is

DetMl = Det
[

M + NYl(∞)
]

= yl1;1(∞)yl2;2(∞) − yl1;2(∞)yl2;1(∞), (B.12)

with the fundamental solutions defined in Eq. 4.5.
Mirroring the one-dimensional operator case, the ratio of

determinants can be calculated numerically for any l up to
some large angular cut-off L . The idea is, as before, to solve
the eigenvalue equation in powers of L−1. Though, the WKB
approach is tricky for the mixed-operator case.

To save ink I’ll use a trick. Consider how renormaliza-
tion comes in with an angular cut-off. Terms that diverge for
large l must be the same whether we use the effective poten-
tial (derivative expansion) or the Gelfand–Yaglom method.
But for the effective potential we treat all Vi j elements as
constants. Therefore, the contribution to the effective action
is for large l(the −2 comes from the definition of the effective
action)

(−2)δSleff,deriv = 1

2l

∫

drr A1(r) + 1

2l

∫

drr A2(r),

where A1 and A2 are the eigenvalues of Vi j , and as before
l = l + 1/2. The sum

L
∑

l=0

(2l + 1)δSleff,deriv

behaves as∼ L , and needs to be made finite by counter-terms.
Yet these counter-terms must cancel the same divergences
regardless if we use the effective potential or the Gelfand–
Yaglom method. Thus for large l it must be that

17 The operator Ml
i j depends on the false-vacuum solutions. In general

there are terms proportional to spherical Bessel functions.
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log
DetLl

DetLl
FV

= 1

2l

∫

drr A1(r) + 1

2l

∫

drr A2(r)

+O
(

1

l3

)

. (B.13)

This result is generic. I have also confirmed this large l
behaviour numerically for a variety of models.

In the present case

A1,2 = 1

2

(

Vφφ + Vσσ ±
√

(Vφφ − Vσσ )2 + 4V 2
φσ

)

.

All in all, the numerical method using the Gelfand–
Yaglom method is fast, accurate, and doesn’t suffer from
the same pathologies as the derivative expansion.

B2: Vector–Goldstone mixing

Fluctuations are much simpler around a constant background
Higgs field rather than around a spatially varying one. For
one, vector fields generally mix with Goldstone fields. The
mixing involves terms of the form

�G(x)φ(x)∂μAμ(x), �G(x)∂μ

φ(x)Aμ(x), ∂μ�G(x)Aμ(x)φ(x). (B.14)

Given a gauge-choice, the equations of motion can be sepa-
rated in partial waves using the ansatz [82,95–97]

Aμ(x) =
∞
∑

l=0
[

aS(r)nμ + aL(r)
r√

l(l + 1)
∂μ + aT (r)εμναxν∂α

]

Ylm(φ, θ), (B.15)

�G(x) = aG(r)Ylm(φ, θ), nμ = xμ

r
. (B.16)

The determinants then decouple for each partial wave l.
See [96,97] for the details, the relevant formulas are also
summarized in Appendix C. The transverse fluctuation, aT ,
is independent from the others. Hence the remaining deter-
minant is written in the (aS, aL , aG) basis. In Fermi gauges,
assuming a gauge-fixing term 1

2ξ

(

∂μAμ

)2 and a vector-
boson mass mA = eφ, the fluctuation matrix is

⎛

⎝

−∇2
l + 2

r2 + e2φ2 −2 L
r2 eφ′ − eφ∂

−2 L
r2 −∇2

l + e2φ2 −eφ L
r

eφ 2
r + 2eφ′ + eφ∂ −eφ L

r −∇2
l + G

⎞

⎠ (B.17)

+
(

1 − 1

ξ

)
⎛

⎝

∂2 + 2
r ∂ − 2

r2 − L
r

(

∂ − 1
r

)

0
L
r

( 2
r + ∂

) − L
r2 0

0 0 0

⎞

⎠ (B.18)

I here use the shorthand notation G(x) = 1
φ(x)V

′ [φ(x)].
While for Rξ gauges the fluctuation matrix is of the form

⎛

⎜
⎝

−∇2
l + 2

r2 + e2φ2 −2 L
r2 eφ′ − eφ∂

−2 L
r2 −∇2

l + e2φ2 −eφ L
r

eφ 2
r + 2eφ′ + eφ∂ −eφ L

r2 −∇2
l + G

⎞

⎟
⎠ (B.19)

+
(

1 − 1

ξ

)
⎛

⎝

∂2 + 2
r ∂ − 2

r2 − L
r

(

∂ − 1
r

)

0
L
r

( 2
r + ∂

) − L
r2 0

0 0 0

⎞

⎠ . (B.20)

+ 1

ξ

⎛

⎝

0 0 eφ′ + eφ∂

0 0 eφ L
r

−eφ∂ − eφ 2
r eφ L

r e2φ2.

⎞

⎠ (B.21)

where ∇2
l = ∂2 + 2

r ∂ − L2

r2 and L2 = l(l+1). For Rξ gauges
there is also a Ghost determinant associated to the operator

Lgh =
(

−∇2 + e2φ2 1

ξ

)

. (B.22)

For both of these gauge choices the transverse determinant
decouples. Also, the determinant is gauge invariant so-long
as φ is the leading-order bounce [96,128].

To evaluate the mixed determinant numerically it is felici-
tous to choose Rξ gauges with ξ = 1, because the fluctuation
matrix is then rather simple [82,97]

⎛

⎝

−∇2
l + 2

r2 + e2φ2 −2 L
r2 2eφ′

−2 L
r2 −∇2

l + e2φ2 0
2eφ′ 0 −∇2

l + G + e2φ2

⎞

⎠

(B.23)

Further, it is useful to make a change basis with the matrix

O = 1√
2l + 1

⎛

⎝

√
l −√

l + 1 0√
l + 1

√
l 0

0 0 1

⎞

⎠ (B.24)

The fluctuation determinant in the new basis is

Ml =

⎛

⎜
⎜
⎜
⎝

−∇− + e2φ2 0 2e
√

l
2l+1φ′

0 −∇+ + e2φ2 −2e
√

l+1
2l+1φ′

2e
√

l
2l+1φ′ −2e

√
l+1
2l+1φ′ −∇2

l + G + e2φ2

⎞

⎟
⎟
⎟
⎠

,

(B.25)

where ∇± = ∂2 + 2/r∂ − (l±1)(l+1±1)

r2 .
The Gelfand–Yaglom theorem described in Sect. 4 can

then be used to find the functional determinant for each partial
wave l. The case l = 0 requires special attention and is
discussed in Sect. 5.3.
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A couple of observations is in order. First, in the chosen
gauge the ghosts contribution is minus two times the trans-
verse contribution. Second, the arguments from Sect. B.1
implies that for large l

log
DetMl

DetMl
FV

= 1

2(l + 1
2 + 1)

∫

drre2φ(r)2

+ 1

2(l + 1
2 − 1)

∫

drre2φ(r)2 (B.26)

+ 1

2(l + 1
2 )

∫

drr
[

e2φ(r)2 + G(r)
]

+ O
(

1

l3

)

(B.27)

= 3

2(l + 1
2 )

∫

drre2φ(r)2 + 1

2(l + 1
2 )

∫

drrG(r)

+ O
(

1

l3

)

. (B.28)

That is, for large l the functional determinants separate
into three times the pure transverse result plus the pure
Goldstone result. For some models this holds exactly for
all l (besides l = 0) [82]. So if numerical resources are
limited, one can approximate the determinant of Ml as
[

Det(−∇2
l + e2φ2)

]3 × Det(−∇2
l + G). The error of this

approximation is on the percent level if l � 50 and e ∼ 1.

Appendix C: Vector–Goldstone mixing

To decouple the Vector–Goldstone determinants we need var-
ious combinations of derivatives acting on

Aμ(x) =
∞
∑

l=0

[

aS(r)nμ + aL(r)
r√

l(l + 1)
∂μ

+aT (r)εμναxν∂α

]

Ylm(φ, θ), (C.1)

G(x) = aG(r)Ylm(φ, θ), (C.2)

nμ = xμ

r
. (C.3)

The relevant identities are

∇2
l ≡ ∂2 + 2

r
∂ − L2

r2 , L2 = l(l + 1), (C.4)

∂μ∂μ (aSniYlm) = niYlm

(

∇2
l − 2

r2

)

aS + aS
2

r
∂i Ylm,

(C.5)

∂μ∂μ (aLr∂i Ylm) = r∂i Ylm∇2
l aL + 2

L2

r
niYlm, (C.6)

∂μ∂μ
(

aT εi jk x j∂kYlm
) = (∇2

l aT )εi jk xk∂kYl , (C.7)

∂i (aSniYlm) = a′
SYlm + aSYlm

2

r
, (C.8)

∂i (aLr∂i Ylm) = − L2

r
aLYlm, (C.9)

εi jk∂i
(

aT x j∂kYlm
) = 0, (C.10)

∂a∂i (aSniYlm) = naYlm

(

a′′
S + 2

r
a′
S − 2

r2 aS

)

+ ∂aYlm

(

a′
S + 2

r
aS

)

, (C.11)

∂a∂i (aLr∂i Ylm) = L2

r2 naaLYlm − L2

r
aL∂aYlm − L2

r
a′naY,

(C.12)

niaLr∂i Ylm = 0, (C.13)

∂μ∂μ (aGYlm) = Ylm∇2
l aG , (C.14)

∂i (aGYlm) = nia
′
GYlm + aG∂i Ylm . (C.15)

Appendix D: General zero-mode contribution

Consider an operator of the form

Ll
i j ≡ −(∂2 + 2/r∂ − l(l + 1)/r2)δi j + Vi j , (D.1)

Vi j = ∂2

∂φi∂φ j
V ( 
φ)

∣
∣
∣
∣ 
φ=
φFV

. (D.2)

where I assume n tunneling scalars: i = 1, . . . , n.
For l = 1 there’s a normalizable zero mode of the form


ψ(x) = ∂ 
φ(x). This means that Det L1 = 0. In terms of
fundamental solutions this is the statement (assuming the
boundary conditions 
ψ(0) = 
0)

Det (yn+1 . . . y2n) = 0, (D.3)

where yn+1 is a short-hand notation for yn+1 =
(y1;n+1, . . . , yn;n+1)

t . In addition, Eq. 4.6 implies that

∂ψi (x) =
n
∑

a=1

∂2ψa(0)yi;n+a(x). (D.4)

To remove the zero-eigenvalue I follow the procedure set
out in Sect. 5. First modify the eigenvalue equation for the
fundamental solutions to

Lε
i j y

ε
j;a ≡ [Li j + εδi j

]

yε
j;a = 0. (D.5)

Second, define the inner product 〈 f g〉 ≡ ∑

i

∫

d3x fi (x)
g�
i (x). Then we can use the relations 0 = 〈

∂φLε yε
n+1

〉 =
· · · = 〈∂φLε yε

2n

〉

to deduce

8πR2
n
∑

i=1

∂2φi (R)yi;n+1(R) = −ε
〈

∂φyε
n+1

〉

(D.6)

123
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... (D.7)

8πR2
n
∑

i=1

∂2φi (R)yi;2n(R) = −ε
〈

∂φyε
2n

〉

. (D.8)

Then using Det′L1 = limε→0
Det
(

yε
n+1 ... yε

2n

)

ε
, Eqs. D.4

and D.6, we find18

DetL′ = 〈∂φ∂φ〉 M11

−8πR2∂2φ1(R)∂2φ1(0)
, (D.9)

where M11 is the (1, 1) minor of the matrix (yn+1 . . . y2n),
to wit

M11 = Det

⎛

⎜
⎜
⎜
⎝

y2,n+2 y2,n+3 · · · y2,2n

y3,n+2 y3,n+3 · · · y3,n+2
...

...
. . .

...

yn,n+2 yn,n+2 · · · yn,2n

⎞

⎟
⎟
⎟
⎠

. (D.10)

Also note that 〈∂φ∂φ〉 = 3S3 where S3 is the leading-order
action evaluated on the bounce. The determinant in Eq. D.9
should, of-course, be normalized by the false-vacuum deter-
minant DetL1

FV =∏n
i=1 y

FV
i;n+i (R).

The two-field case given in Eq. 5.23 is a special case of
Eq. D.9. Similar formulas for Goldstone-boson zero-modes
can be derived for any n. However, this has to be done on a
case-by-case basis since the zero-eigenfunctions in general
doesn’t vanish exponentially as R → ∞. The above proce-
dure still works, but the formulas are more complicated.

Equation D.9 also holds when some of the compo-
nents vanish identically; for example a Two-Higgs dou-
blet model where the zero-mode is of the form ∂φ(x)i =
(

∂v1(x) ∂v2(x) 
O
)t

. The only requirement is that the

∂2φ1(x) field doesn’t identically vanish.
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