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Abstract The pole-skipping phenomenon is a special prop-
erty of the retarded Green’s function of black hole perturba-
tions. We turn to its analog in acoustic black holes, which
may relate to experiments. The frequencies of these special
points are located at negative integer (imaginary) Matsub-
ara frequencies ω = −i2πTn, which are consistent with the
imaginary frequencies of quasinormal modes (QNMs). This
implies that the lower-half plane pole-skipping phenomena
have the same physical meaning as the imaginary part of
QNMs, which represents the dissipation of perturbation of
acoustic black holes and is related to the instability time scale
of perturbation.

1 Introduction

The retarded Green’s function is not unique at a special point
in complex momentum space (ω, k) and this phenomenon is
known as “pole-skipping” [1–3]. The retarded Green’s func-
tion is given by

GR(ω, k)T 00T 00 = b(ω, k)

a(ω, k)
. (1.1)

The location of the special points makes the coefficient
a(ω�, k�) = b(ω�, k�) = 0. Then, the retarded Green’s func-
tion becomes GR(ω�, k�) = 0/0. So if we find the intersec-
tion of zeros and poles in the retarded Green’s functions,
we can obtain these special points. We can use the sim-
pler method, the AdS/CFT duality, to solve special points
from the bulk field equation [4–7]. On the bulk side, the non-
uniqueness of the incoming mode at the horizon corresponds
to the nonuniqueness of the Green’s function on the bound-
ary.

The upper-half ω-plane special point contains the infor-
mation of quantum chaos. We can extract the Lyapunov
exponent λ and the butterfly velocity vB from it. Although
the special points located at the lower-half ω-plane are not
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related to the information of quantum chaos, the retarded
Green’s functions are also not unique at these special points.
The general pole-skipping points in the lower-half ω-plane
are located at negative integer (imaginary) Matsubara fre-
quencies wn = −in (n = 1, 2 . . . ), where w = ω

2πT .
These special points have been found in BTZ black hole
[6], Schwarzschild-AdS spacetime [7], 2D CFT [8], a holo-
graphic system with the chiral anomaly [9], a holographic
system at finite chemical potential [10], hyperbolic space
[11,12], the large q limit of SYK chain [13], anisotropic
plasma [14], Lifshitz, and Rindler geometries [15]. However,
the physical interpretation of the pole-skipping phenomenon
remains elusive. Further investigations of the pole-skipping
phenomenon in a different scenario and its possible connec-
tions to the experiments are of significant interest.

Analogue black holes provide new windows of looking
at problems between astrophysical phenomena with tabletop
experiments. Using hydrodynamical flows as analogous sys-
tems to mimic a few properties of black hole physics has been
proposed in [16]. Sound waves in a moving fluid could, in
principle, analogize light waves in curved spacetime. “Acous-
tic (sonic) black hole” (ABH) shows that sound waves cannot
escape from the acoustic horizon. The horizon, ergo-sphere,
and Hawking radiation of (3 + 1)-dimensional static and
rotating acoustic black holes have been studied in [17]. Some
authors construct a general acoustic regular black hole that
gives rise to a non-vanishing partition function that coincides
with that of a conformally related black hole [18]. Acoustic
black holes for relativistic fluids can also be derived from
the Abelian Higgs model [19–21]. The acoustic black holes
might be created in high-energy physical processes [22]. In
Ref. [23], the authors analyze the horizon structure of the
acoustic charged black hole in curved spacetime. ABH pro-
vides a concrete laboratory model for curved space quantum
field theory that we can experiment. The analogue model
reflects important features of general relativity and gravity.

Perturbations of classical gravitational backgrounds
involving black holes naturally lead to quasinormal modes
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(QNMs) which are eigenmodes of dissipative systems. The
eigenfrequencies ωQNM have both a real and an imaginary
part, with the real part denotes the amplitude and the imag-
inary part denotes the mode’s damping time, which is asso-
ciated with the decay timescale of the perturbation [24–26].

In [15], we obtain the “pole-skipping” points in Rindler
geometry and reveal their universality for different spacetime
backgrounds. There should be universal observations; one
can only use near horizon analysis to obtain “pole-skipping”
points, not depending on the UV property of the Green’s
function. So we study the pole-skipping phenomenon in ana-
logue black holes under various conditions. The frequencies
of these special points are located at negative integer (imag-
inary) Matsubara frequencies, similar to what was obtained
in [4–7]. We combine the pole-skipping phenomenon with
acoustic black holes to explore the possible realization of
pole-skipping in tabletop experiments and its universality.
We calculate pole-skipping points in three different acous-
tic black holes to compare the data under different back-
grounds. We consider the backgrounds of embedding (2+1)-
dimensional acoustic black holes into Minkowski spacetime
in Sect. 2, Schwarzschild spacetime in Sect. 3, and AdS-
Schwarzschild spacetime in Sect. 4, respectively. The acous-
tic black hole pole-skipping in flat spacetime may be mea-
sured experimentally. However, the embedding of acoustic
black holes in other curved spacetime has its own theoretical
significance, which can show the universality of this phe-
nomenon. We show that the frequencies of the lower-half
plane of pole-skipping points in all cases of the acoustic black
hole are consistent with the imaginary part of the frequencies
of QNMs in Sect. 5, which implies that they may have the
similar physical meaning as it was discussed in gravitational
black holes [15].

2 (2+ 1)-Dimensional acoustic black holes in
Minkowski spacetime

We can derive the acoustic black hole metric from the
fluid continuity equation in a uniform fluid medium [16,17]
and nonlinear Schrödinger Equation (NSE) [27]. Now we
show how to obtain the metric from NSE. The Nonlinear
Schrödinger Equation is given as [28,29]

∂z E = i

2k
∇2E − i

kn2

n0
E |E |2, (2.1)

where z is the propagation direction, k is the wave num-
ber, n0 is the linear refractive index, and E is the slowly
varying envelope of the electromagnetic field. Substituting
the complex scalar field in terms of its amplitude and phase
E = ρ1/2eiφ into the Eq. (2.1), the hydrodynamic continuity

and Euler equation become [27,30]

∂tρ + ∇ · (ρv) = 0, (2.2)

∂tψ + 1

2
v2 + c2n2

n3
0

ρ − c2

2k2n2
0

∇2ρ1/2

ρ1/2 = 0, (2.3)

where the optical intensity ρ corresponds to fluid density, and
v = c

kn0
∇φ ≡ ∇ψ is the fluid velocity. The dynamics takes

place in the transverse plane (x, y) of the laser beam so that
the propagation coordinate z plays the role of an effective
time variable t = n0

c z. By setting ρ = ρ0 + ερ1 +O(ε2) and
ψ = ψ0 +εψ1 +O(ε2), Eqs. (2.2) and (2.3) can be rewritten
as [27]

∂tρ1 + ∇ · (ρ∇ψ1 + ρ1v0) = 0, (2.4)

∂tψ1 + ∇ψ1 · v0 = c2

4k2n2
0

[
∇ ·

(∇ρ1

ρ0

)
− ρ1

ρ0
∇ ·

(∇ρ0

ρ0

)]

− c2n2

n3
0

ρ1, (2.5)

When the quantum pressure is negligible, Eqs. (2.4) and (2.5)
can be reduced to a single second-order equation for the phase
perturbations

− ∂t

(
ρ0

c2
s
(∂tψ1 + v0 · ∇ψ1)

)
+ ∇

·
(

ρ0∇ψ1 − ρ0v0

c2
s

(∂tψ1 + v0 · ∇ψ1)

)
= 0. (2.6)

The metric become

gμν =
(

ρ0

cs

)2 (−(c2
s − v2

0) −vT0
v0 I

)
, (2.7)

where I is the two-dimensional identity matrix. The line ele-
ment on the plane is

ds2 =
(

ρ0

cs

)2[
− (c2

s − v2
0)dt2 − 2v0dtdx + dxdx

]
, (2.8)

where c2
s is the local velocity of sound. We assume that the

background flow is a spherically symmetric, stationary, and
convergent flow, then we can define a new time [16]

τ = t +
∫

v0dr

c2
s − v2

0

. (2.9)

The metric becomes

ds2 =
(

ρ0

cs

)2[
− (c2

s − v2
0)dτ 2 + c2

s

c2
s − v2

0

dr2 + r2(dθ2

+ sin2θdφ2)

]
. (2.10)
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The notation of cs is the speed of sound in the fluid medium,
v0 is the fluid velocity, and ρ0 is the fluid density. For simplic-
ity, we assume that cs and ρ0 are two constants. If we assume
that at some value of r = rh , we have the background fluid
smoothly exceeding the velocity of sound

v0 = −cs + α(r − rh) + O((r − rh)
2). (2.11)

The above metric takes just the form it has for a Schwarzschild
metric near the horizon. We choose θ = π

2 for a spatially
two-dimensional fluid model. We then rewrite the (2 + 1)-
dimensional acoustic black hole metric (2.10) in the follow-
ing form

ds2 = − f (r)dτ 2 + cs
f (r)

dr2 + r2dφ2, (2.12)

where f (r) = 2csα(r − rh), and α is a parameter associ-
ated with the velocity of the fluid. rh is the location of an
acoustic event horizon. T = f ′(rh)

4π
√
cs

gives the Hawking tem-
perature. In order to obtain the pole-skipping points, we use
the Eddington–Finkelstein (EF) coordinates. By substituting

the tortoise coordinate dr∗ =
√
cs

f (r)dr and v = τ +r∗ into the
metric (2.12), we obtain

ds2 = − f (r)dv2 + 2
√
csdvdr + r2dφ2, (2.13)

We consider the propagation of a scalar wave of the form
ψ = e−iωv+ikφψ(r) and substitute it into the Klein–Gordon
equation

∂μ(
√−ggμν∂νψ) = 0. (2.14)

The equation becomes

ψ ′′(r) + f (r) + r f ′(r) − 2iωr
√
cs

r f (r)
ψ ′(r)

− k2√cs + iωr
√
cs

r2 f (r)
ψ(r) = 0. (2.15)

We use approximation f (r) ∼ f ′(rh)(r − rh) and expand
the field equation near horizon r = rh

ψ ′′(r) + (1 − iw)
ψ ′(r)
r − rh

+2πT k2 + iwrh
2r2

h

ψ(r)

r − rh
= 0, (2.16)

where w = ω
2πT , and k = k

2πT . For a generic (w, k), the
equation has a regular singularity at r = rh . One can solve it
by a power series expansion around r = rh

ψ(r) = (r − rh)
χ

∞∑
n=0

ψn(r − rh)
n . (2.17)

At the lowest order, we can obtain the indicial equation χ(χ−
iw) = 0. The two solutions yield

χ1 = 0, χ2 = iw. (2.18)

One solution corresponds to the incoming mode and the other
the outgoing mode. If we choose iw = 1 and the appropriate
value of k, make the singularity in front of ψ ′(r) and ψ(r)
terms vanishing, we call it a “pole-skipping” point. The regu-
lar singularity at r = rh becomes a regular point at this special

point. We take the coefficients (1 − iw) and 2πT k2+iwrh
2r2

h
to

be vanishing. We then obtain the location of the special point
in the ψ(r) field equation

w∗ = −i, k2∗ = − rh
2πT

. (2.19)

From Eq. (2.19), two solutions become

χ1 = 0, χ2 = 1. (2.20)

We extend the pole-skipping phenomenon at higher Matsub-
ara frequencies ωn = −i2πTn by using the method given
in [6]. We insert (2.17) into (2.15) and expand the equation
of motion in powers of (r − rh). Then, a series of perturbed
equations in the order of (r − rh) can be written as

S =
∞∑
n=0

Sn(r − rh)
n = S0 + S1(r − rh) + S2(r − rh)

2

+ . . . . (2.21)

We write down the first few equations Sn = 0

0 = M11(ω, k2)ψ0 + (2πT − iω)ψ1,

0 = M21(ω, k2)ψ0 + M22(ω, k2)ψ1 + (4πT − iω)ψ2,

0 = M31(ω, k2)ψ0 + M32(ω, k2)ψ1 + M33(ω, k2)ψ2

+ (6πT − iω)ψ3. (2.22)

To obtain an incoming solution, we should solve a set of
linear equations of the form

M(n)(ω, k2) · ψ

≡

⎛
⎜⎜⎝

M11 (2πT − iω) 0 0 . . .

M21 M22 (4πT − iω) 0 . . .

M31 M32 M33 (6πT − iω) . . .

. . . . . . . . . . . . . . .

⎞
⎟⎟⎠

⎛
⎜⎜⎝

ψ0

ψ1

ψ2

. . .

⎞
⎟⎟⎠ = 0. (2.23)

The locations of special points (ω∗n, k∗n) can be eas-
ily extracted from the determinant of the (n × n) matrix
M(n)(ω, k2) constructed by the first n equations. The first
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Fig. 1 The pole-skipping points in acoustic black holes embedded in
Minkowski spacetime

three order pole-skipping points are shown in Fig. 1, where
we have chosen r0 = 1, α = 1, and cs = 1/

√
3.

In Refs. [2,6,31,32], the authors confirm these analytical
results by comparing them to numerical computations of the
Greens function poles (the QNMs of the spacetime). These
numerics show the dispersion relation passes through the
pole-skipping points. The spectrum of quasinormal modes
(QNMs) is holographically dual to the poles in the retarded
Green’s function.

We want to see if the relation between the pole-skipping
points and the hydrodynamic dispersion relation works for
acoustic black holes. The QNMs of Unruh’s acoustic black
hole are given by [33]

ωQNM = − i

2

(n − 1)(n + 3)α

n + 1
. (2.24)

where α represents the velocity of the fluid. We compare
the frequencies of pole-skipping points with those of QNMs.
The ratio of frequencies is a constant ω∗/ωQNM ≈ 2

√
cs .

We can normalize ωQNM as ω̃QNM → 2
√
cs ωQNM . So

that ω∗/ω̃QNM ≈ 1. Under such normalization, we can see
that the pole-skipping points are closely related to the QNMs
(Fig. 2). This, in turn, implies that the lower-half plane pole-
skipping points are also related to the damping of black hole
QNMs.

3 (2+ 1)-Dimensional acoustic black holes embedded in
Schwarzschild spacetime

Next, we will consider the acoustic metric in curved space-
time. In this section, we consider that (2 + 1)-dimensional
acoustic black hole metric embedded in Schwarzschild
spacetime obtained from general relativistic fluids. For a per-

Fig. 2 Red and black dots correspond to the pole-skipping points and
quasinormal modes, respectively. We fit the QNMs (black dots) with a
thin black line to make the comparison more obvious. The frequencies
of pole-skipping points are close to those of QNMs (cs=1/4)

fect relativistic fluid, the energy-momentum tensor is given
by

Tμν = (p + ρ)uμuν − pgμν, (3.1)

where gμν is the metric tensor. The equations of motion are
contained in

∇μT
μν = 0, (3.2)

which expresses the laws of conservation of energy and
momentum for the physical system to which the tensor Tμν

pertains. The law of conservation of numbers of particles can
be derived by the particle flux 4-vector nμ. The vector nμ is
proportional to the 4-velocity uμ, so that [34]

nμ = nuμ, (3.3)

where n is a scalar which is the proper number density of
particles. The equation of continuity is obtained by the 4-
divergence of the flux vector simply equating to zero [34,35]

∇μ(nuμ) = 1√−gGR
∂μ

(√
−gGRnuμ

)
= 0, (3.4)

where uμuμ = gGR
μν uμuν = −1. The equation describing

the propagation of the linearized field ψ is given in [35–38]

∂μ

{
n

w

√
−gGR

[
gμν
GR −

(
1 −

(
n

w

∂w

∂n

)−1)
uμuν

]}
∂νψ = 0,

(3.5)

where w is enthalpy. By taking c2
s = ( n

w
∂w
∂n )−1|s/n , the form

of metric can be recast as [35–37]

ds2 =
[
gGR
μν + (1 − c2

s )uμuν

]
dxμdxν . (3.6)

From the perspective of general relativistic fluid mechanics
in the (2 + 1)-dimensional Schwarzschild background, the
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Fig. 3 The pole-skipping points in acoustic black holes from general
relativistic fluids near acoustic horizon rh , where rh = 6

metric (3.6) becomes

ds2 =
(

2

3
− f0

)
dt2 − 9 f0r + 2rh − 6r

6 f0r − 9 f 2
0 r

dr2 + r2dφ2.

(3.7)

The radius of the acoustic horizon is rh = 6M , where M is
the mass of the black hole. We define f (r) = 2

3 − f0 and
f0 = 1− 2M

r . The Hawking temperature can be calculated as
T = 1

4
√

3rh
. The Eq. (3.5) near the acoustic horizon r = rh

by using f (r) ∼ f ′(rh)(r − rh) is

ψ ′′(r) + (1 − iw)
ψ ′(r)
r − rh

− 2πT k2 + iwrh
2r2

h

ψ(r)

r − rh
= 0.

(3.8)

We obtain the first order special point by taking the terms

(1 − iw) and 2πT k2+iwrh
2r2

h
to be vanishing and obtain

w∗ = −i, k2∗ = − rh
2πT

. (3.9)

We can work out the first four order pole-skipping points,
as shown in Fig. 3. Note that ω∗ again takes the same value
as the previous section. This reveals that the value of ω∗ is
universal, not only for gravitational black holes but also for
acoustic black holes.

4 (2+ 1)-Dimensional acoustic black holes embedded in
AdS-Schwarzschild spacetime

In this section, we consider a (2 + 1)-dimensional acoustic
black hole metric embedded in AdS-Schwarzschild space-
time obtained from the Gross–Pitaevskii equation in this sec-
tion. Compared with the cases of acoustic black holes in flat
and Schwarzschild spacetime, it is interesting to consider the

conditions that there are two horizons in this system. So we
can find two kinds of pole-skipping points in this section.
The Gross–Pitaevskii theory in curved spacetime is given by
[39,40]

S =
∫

d4x
√−g

(
|∂μϕ|2 + m2|ϕ|2 − b

2
|ϕ|4

)
, (4.1)

where ϕ is a complex scalar order parameter. The (2 + 1)-
dimensional spacetime metric of AdS-Schwarzschild black
holes is given by [41]

ds2
GR = r2

L2

(
−

(
1 − r2

0

r2

)
dt2 + dφ2

)

+ L2

r2(1 − r2
0
r2 )

dr2, (4.2)

where r0 is the radius of the black hole horizon. We will
take AdS radius L to be 1 later. We write down (2 + 1)-
dimensional acoustic black hole metric (2.10) embedded in
AdS-Schwarzschild spacetime (4.2) as follows [19,38]

ds2 = (gGR
μν � gABH

μν )dxμdxν

= Gt t dt2 + Grr dr2 + Gφφdφ2, (4.3)

where

Gt t = −1

3
f ABH (r) fGR(r),

Grr = 1

f ABH (r) fGR(r)
, Gφφ = r4,

f ABH (r) = 1 − r2
h

r2 , fGR(r) = r2

(
1 − r2

0

r2

)
. (4.4)

The acoustic horizon rh is located at
√

3r0, which is required
to be larger than the event horizon r0 of the black hole. The
Hawking temperature is given by

T = 1

4π
√Grr

(
−

√
gABH
tt

−gGR
tt

g′GR
tt +

√
−gGR

tt

gABH
tt

g′ABH
tt

)∣∣∣∣
r=rh

= r2
h − r2

0

6πr0
. (4.5)

Using the Eddington–Finkelstein (EF) coordinate, the metric
can be written as

ds2 = −1

3
F(r)dv2 + 2√

3
dvdr + r4dφ2, (4.6)

where F(r) = f ABH (r) fGR(r). The relativistic wave equa-
tion is given as [19]

∂μ(
√−GGμν∂νψ) = 0. (4.7)
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We substitute the perturbation of scalar wave ψ = e−iωv+ikφ

ψ(r) into (4.7) and obtain

ψ ′′(r) + 2F(r) + r F ′(r) − 2
√

3iωr

r F(r)
ψ ′(r)

− k2 + 2
√

3iωr3

r4F(r)
ψ(r) = 0. (4.8)

• Case 1: near acoustic horizon rh We use the approx-
imation F(r) ∼ F ′(rh)(r − rh) near the acoustic black
hole horizon r = rh

ψ ′′(r) + (1 − iw)
ψ ′(r)
r − rh

− πT k2 + √
3iwr3

h√
3r4

h

ψ(r)

r − rh
= 0.

(4.9)

We take the value of coefficients (1 − iw) and
πT k2+√

3iwr3
h√

3r4
h

to be 0 and eliminate the singularity in front

of ψ ′(r) and ψ(r) terms. Then, we find the location of
the special point

w∗ = −i, k2∗ = −
√

3 r3
h

πT
. (4.10)

We expand the field equation near horizon rh = √
3r0.

Now we repeat the process we have shown in Sect. 2 and
calculate the special points (ωn, kn). The first three order
pole-skipping points are in Fig. 4.

• Case 2: near event horizon r0 If we consider the pole-
skipping points near the event horizon, Eq. (3.5) near the

Fig. 4 The pole-skipping points in acoustic black holes from Gross–
Pitaeskii equation embedded in curved spacetime near acoustic horizon
rh = √

3r0 (r0 = 1)

Fig. 5 The pole-skipping points in acoustic black holes from Gross–
Pitaeskii equation embedded in curved spacetime near event horizon r0
(r0 = 1)

event horizon r = r0 by using f (r) ∼ f ′(r0)(r − r0) is

ψ ′′(r) + (1 − iw)
ψ ′(r)
r − r0

− πT k2 + √
3iwr3

0√
3r4

0

ψ(r)

r − r0
= 0.

(4.11)

The first order special point is located at

w∗ = −i, k2∗ = −
√

3 r3
0

πT
. (4.12)

The location of the first three order pole-skipping points is
shown in Fig. 5. These locations are also the poles of Green’s
function that correspond to the hydrodynamic dispersion
relation for momentum diffusion. The k2 of the first order
pole-skipping point near acoustic horizon to that near the
event horizon is k2∗h/k2∗0 = r3

h/r
3
0 . The data at these two hori-

zons are only numerically different with which depend on rh
and r0. Combining with the first order pole-skipping points
obtained above, we conclude that the frequency w∗ is always
located at −i . The square of momentum k2∗ depends on the
exponential power of the spatial metric value in the direction
of momentum. For example, if the value of spatial metric dφ2

is rm , then the square of momentum k2∗ ∼ rm−1
h,0 /T , where

rh,0 is the acoustic and event horizon, respectively.

5 Discussion and conclusion

We have shown the consistency between pole-skipping points
and QNMs for Unruh’s acoustic black hole. Now we further
conjecture that QNMs are consistent with the pole-skipping
phenomenon in all cases of acoustic black holes. The analytic
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WKB approximations for QNMs are given as [42–44]

ωQNM = Ωcl − i(n + 1/2)|λ|, (5.1)

where n is the overtone number, Ωc is the angular velocity at
the unstable null geodesic, and l is the angular momentum of
the perturbation. The notation λ denotes the Lyapunov expo-
nent. The real part of the complex QNM frequencies is found
to be an integer multiple of the orbital angular frequency at
the photon ring; the imaginary part is related to the Lyapunov
exponent determining the unstable null orbits at the photon
ring radius [45]. If we take the value of the maximal chaotic
Lyapunov exponent as 2πT near the black hole horizon, the
imaginary part of QNMs becomes −i(n + 1/2)2πT . The
coefficient of 1/2 plays the same role as 1/2 of the ground
state in quantum mechanics. When we drop off this constant
1/2, the result is consistent with the frequencies of pole-
skipping points (−in2πT ) for acoustic black holes. So we
can interpret the lower-half plane pole-skipping points in the
acoustic black hole as some kind of dissipation of fluid per-
turbation.

In summary, we show that the pole-skipping phenomenon
also exists in acoustic black holes. For acoustic black holes
in Minkowski space, the existence of the pole-skipping indi-
cates that it might be verified in the experiments. For acoustic
black holes embedded in Schwarzschild black hole and AdS-
Schwarzschild black hole, the existence of the pole-skipping
implies its universality. For all cases, the frequencies ω of
these special points are the same as those black holes in grav-
ity, which are located at negative integer (imaginary) Mat-
subara frequencies wn = −in (n = 1, 2 . . . ). We conclude
that the phenomenon of pole-skipping still exists in acoustic
black holes, which are consistent with those in gravity.

We cannot obtain poles-skipping points by solving Green’s
function directly without the boundary condition. Neverthe-
less, we have obtained the “pole-skipping” points by solving
the bulk equations of motion near the horizon in Rindler
geometry [15]. The procedure developed in [15] also applies
to the acoustic black holes. For example, we calculate “pole-
skipping” points in Eq. (2.19) near the acoustic horizon in
Sect. 2. Two incoming waves (2.18) at these “pole-skipping”
points correspond to the nonuniqueness of the Green’s func-
tion on the boundary. Combining with the previous conclu-
sion in Rindler geometry, we conclude that the pole-skipping
phenomenon does not depend on the UV property of the
Green’s function.

We have shown that the frequencies of lower-half plane
pole-skipping points in an acoustic black hole are the same as
the imaginary frequencies of QNMs. This conclusion is con-
sistent with our results in gravitational black holes [15]. This
implies that the lower-half plane pole-skipping phenomenon
has the same physical meaning as the imaginary of QNMs,
which represents the dissipation of perturbation of acous-

tic black holes and is related to the decay timescale of the
perturbation.
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A Details of near-horizon expansions

In this appendix, we show the details of the near-horizon
expansions of the equations of motion.

A.1 Acoustic black holes in Minkowski spacetime

We can calculate a Taylor series solution to the equation of
field ψ(r) (2.15) when the matrix equation (2.23) is satisfied.
The first few elements of this matrix are shown below

M11 = − 1

2r2
h

[k2 + iωrh],

M21 = − iω

4r2
h

,

M22 = 1

4r2
h

[−k2 + 12πTrh − 5iωrh + r2
h f ′′(rh)],

M31 = 0,

M32 = 1

12r2
h

[16πT − 6iω + 5rh f
′′(rh) + r2

0 f (3)(rh)],

M33 = 1

6r2
h

[−k2 + 40πTrh − 9iωrh + 3r2
h f ′′(rh)],

M41 = 0,

M42 = 1

48r2
h

[9 f ′′(rh) + 7rh f
(3)(rh) + r2

h f (4)(rh)],

M43 = 1

24r2
h

[72πT − 15iω + 21rh f
′′(rh) + 4r2

h f (3)(rh)],
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M44 = 1

8r2
h

[84rhπT − 13rhiω + 6r2
h f ′′(rh) − k2]. (A.1)

A.2 Acoustic black holes embedded in Schwarzschild
spacetime

We can calculate a Taylor series solution to the equation of
field ψ(r) (3.5) when the matrix equation (2.23) is satisfied.
The first few elements of this matrix are

M11 = − 1

2r2
h

[k2 + rhiω],

M21 = − iω

4r2
h

,

M22 = 1

4r2
h

[−k2 + 12πTrh − 5irHω + r2
h f ′′(rh)],

M31 = 0,

M32 = 1

12r2
h

[16πT − 6iω + 5rh f
′′(rh) + r2

h f (3)(rh)],

M33 = − 1

6r2
h

[k2 + 9rhiω − 40rhπT − 3r2
h f ′′(rh)],

M41 = 0,

M42 = 1

48r2
h

[9 f ′′(rh) + 7rh f
(3)(rh) + r2

h f (4)(rh)],

M43 = 1

24r2
h

[72πT − 15iω + 21rh f
′′(rh) + 4r2

h f (3)(rh)],

M44 = 1

8r2
h

[84rhπT − 13rhiω + 6r2
h f ′′(rh) − k2]. (A.2)

A.3 Acoustic black holes embedded in AdS-Schwarzschild
spacetime

We can calculate a Taylor series solution to the equation of
field ψ(r) (4.8) when the matrix equation (2.23) is satisfied.
The first few elements of this matrix are (rH is acoustic/event
horizon)

M11 = − 1

6r4
H

[√
3k2 + 6iωr3

H

]
,

M21 = − 3iω

2r2
H

,

M22 = 1

12r4
H

[
−√

3k2 + 6r3
H (12πT − 5iω)

+√
3r4

H F ′′(rH )
]
,

M31 = − iω

r3
H

,

M32 = 1

36r4
H

[
288πTr2

H − 108iωr2
H + 10

√
3r3

H F ′′(rH )

+√
3r4

H F (3)(rH )
]
,

M33 = 1

18r4
H

[
−√

3k2 + 240πTr3
H − 54iωr3

H

+3
√

3r4
H F ′′(rH )

]
,

M41 = −3iω/2,

M42 = 1

144r4
H

[
720πT − 252iω + 54

√
3rH F ′′(rH )

+14
√

3r2
H F (3)(rH ) + √

3r3
H f (4)(rH )

]
,

M43 = 1

72r4
H

[
2r2

H {648πT − 135iω + 21
√

3rH F ′′(rH )

+2
√

3r2
H F (3)(rH )}

]
,

M44 = 1

24r4
H

[
6r3

H {84πT − 13iω

+√
3rH F ′′(rH )} − √

3k2
]
. (A.3)
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