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Abstract Hairy black holes in the gravitational decoupling
setup are studied from the perspective of conformal anoma-
lies. Fluctuations of decoupled sources can be computed by
measuring the way the trace anomaly-to-holographic Weyl
anomaly ratio differs from the unit. Therefore the gravita-
tional decoupling parameter governing three hairy black hole
metrics is then bounded to a range wherein one can reliably
emulate AdS/CFT with gravitational decoupled solutions, in
the tensor vacuum regime.

1 Introduction

Gravitational decoupling methods comprise established suc-
cessful protocols used to generate analytical solutions of
the Einstein’s effective field equations [1–6]. The gravita-
tional decoupling and some extensions were studied in Refs.
[4,7–15] and have been applied to kernel solutions of gen-
eral relativity to construct new physically realistic solutions
that describe stellar distributions, including anisotropic ones
[16–32]. References [33–35] derived accurate physical con-
straints on the parameters in gravitational decoupled solu-
tions, using the WMAP, eLISA and LIGO. The gravitational
decoupling procedure iteratively constructs, upon a given
isotropic source of gravitational field, anisotropic compact
sources of gravity, that are weakly coupled. One starts with
a perfect fluid, then coupling it to more elaborated stress-
energy-momentum tensors that underlie realistic compact
configurations [36–56].

Any action related to a classical conformal theory is invari-
ant under Weyl transformations. Since the variation of the
action with respect to the background metric is proportional
to the stress–energy–momentum tensor, then the variation
of the action with respect to a conformal rescaling is pro-
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portional to the trace of the stress-energy-momentum ten-
sor, which vanishes for conformally invariant theories. How-
ever, upon quantization, conformal invariance under Weyl
rescalings may be broken and conformal anomalies set in
[57]. In this case, the trace of the stress-energy-momentum
tensor may achieve a non-null expectation value and, thus,
a conformal anomaly regards a trace anomaly [58–63]. In
the context of the gravitational decoupling procedure, com-
paring the holographic Weyl anomaly to the trace anomaly
of the energy-momentum tensor from 4D field theory leads
to a quantity that can probe and measure the source of the
gravitational decoupling [64]. Hence, the calculation of the
trace anomaly-to-holographic Weyl anomaly ratio makes one
capable to place the gravitational decoupling, in the context
of three possible metrics describing hairy black holes, as a
reliable AdS/CFT realization.

This paper is organized as follows: Sect. 2 is dedicated to
reviewing the gravitational decoupling procedure, obtaining
three different metrics for gravitational decoupled hairy black
holes. In Sect. 3, the trace anomalies are computed for these
three solutions, from the point of view of CFT, and compared
to the respective values predicted by the AdS/CFT duality.
Section 5 is dedicated to conclusions.

2 Gravitational decoupling and hairy black holes

The gravitational decoupling procedure can be straightfor-
wardly introduced when kernel solutions of Einstein’s effec-
tive field equations can be used to decouple any intricate
stress–energy–momentum tensor into manageable pieces
[2,5], including the case of hairy black holes [3]. When one
regards Einstein’s field equations,

Gμν := Rμν − 1

2
Rgμν = κ2 T̊μν, (1)
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where the stress-energy-momentum tensor, satisfying the
conservation equation ∇μ T̊μν = 0, can be split as

T̊μν = Tμν + αΘμν, (2)

for Tμν being a general-relativistic solution and Θμν encod-
ing additional sources in the gravitational sector, for α being
an arbitrary decoupling parameter that is not perturbative, in
general. One considers static, spherically symmetric, stellar
distributions described by the metric

ds2 = eν(r)dt2 − eλ(r)dr2 − r2d�2, (3)

where d�2 denotes the solid angle element. The Einstein’s
field equations (1) are equivalently written as

κ2
(
T 0

0 + Θ 0
0

)
= 1

r2 − e−λ

(
1

r2 − λ′

r

)
, (4a)

κ2
(
T 1

1 + Θ 1
1

)
= 1

r2 − e−λ

(
1

r2 + ν′

r

)
, (4b)

κ2
(
T 2

2 + Θ 2
2

)
=−e−λ

4

(
2ν′′ + ν′2 − λ′ν′ + 2

ν′ − λ′

r

)

(4c)

where the prime denotes the derivative with respect to the
variable r . Equations (4a–4c) regard the effective density,
and the effective radial and tangential pressures, respectively
given by [2,5]

ρ̊ = ρ + αΘ 0
0 , (5a)

p̊r = p − αΘ 1
1 , (5b)

p̊t = p − αΘ 2
2 , (5c)

with anisotropy

Δ = p̊t − p̊r . (6)

A solution to Einstein’s field equations (1) for the single
kernel source Tμν was considered [3,5],

ds2 = eξ(r)dt2 − eμ(r)dr2 − r2d�2, (7)

where

e−μ(r) ≡ 1 − κ2

r

∫ r

0
x2 T 0

0 (x) dx = 1 − 2m(r)

r
(8)

is the Misner–Sharp–Hernandez function. The additional
source Θμν drives the gravitational decoupling of the ker-
nel metric (7), implemented by the mappings

ξ(r) �→ ν(r) = ξ(r) + αg(r) (9a)

e−μ(r) �→ e−λ(r) = e−μ(r) + α f (r), (9b)

where f (r) [g(r)] is the geometric deformation for the radial
[temporal] metric component. Eqs. (9a, 9b) split the Ein-
stein’s field equations (4a)–(4c) into two distinct arrays. The
first one encodes the Einstein’s field equations forTμν , solved

by the kernel metric (7). The second one is associated to Θμν

and reads

κ2 Θ 0
0 = −α

(
f

r2 + f ′

r

)
,

(10a)

κ2 Θ 1
1 + α

e−μ g′

r
= −α f

(
1

r2 + ν′

r

)

(10b)

κ2Θ 2
2 +α f

(
2ν′′+ν′2+ 2ν′

r

)
= −α

f ′

4

(
ν′+ 2

r

)
+V

(10c)

where [1]

V (r) = αe−μ

(
2g′′ + g′2 + 2 g′

r
+ 2ξ′ g′ − μ′g′

)
(11)

The tensor-vacuum, defined for Θμν �= 0 and Tμν = 0, leads
to hairy black hole solutions [65]. Equations (4a)–(4b) then
yield a negative radial pressure,

p̊r = −ρ̊. (12)

and, together to the Schwarzschild solution, it implies that

α f (r) =
(

1 − 2M

r

) (
eα g(r) − 1

)
, (13)

so that the line element (3) becomes

ds2 =
(

1 − 2M

r

)
eαg(r)dt2−

(
1 − 2M

r

)−1

e−α g(r)dr2

−r2 d�2. (14)

In the radial range r ≥ 2M , the tensor-vacuum is given by
expressing Θ 0

0 by the most general linear combination of
the radial and tangential components of the stress-energy-
momentum tensor, as

Θ 0
0 = a Θ 1

1 + bΘ 2
2 , (15)

with a, b ∈ R denoting the coefficients of the linear combi-
nation. Equations (10a)–(10c) then yield

b r (r − 2M) h′′ + 2 [(a + b − 1) r − 2 (a − 1) M] h′

+2 (a − 1) h = 2 (a − 1), (16)

for h(r) = eα g(r). A trivial deformation corresponding to the
standard Schwarzschild solution can be yielded when a = 1.
The solution of Eq. (16) can be written as

eα g(r) = 1 + 1

r − 2M

[
�0 + r

(
�

r

)n]
, (17)

where �0 = α� is a primary hair charge, whereas

n = 2 (a − 1) /b, (18)

with n > 1 for asymptotic flatness.
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In the tensor-vacuum background, this line element is pro-
duced by the effective density, the radial, and tangential pres-
sures, respectively,

ρ̊ = Θ 0
0 = α

(n − 1) �n

κ2 rn+2 , (19a)

p̊r = −Θ 1
1 = −ρ̊, (19b)

p̊t = −Θ 2
2 = n

2
ρ̊. (19c)

On the other hand, the dominant energy conditions,

ρ̊ ≥ | p̊r |, ρ̊ ≥ | p̊t |, (20)

yield n ≤ 2 [2,3,5]. Besides, the strong energy conditions,

ρ̊ + p̊r + 2 p̊t ≥ 0, (21a)

ρ̊ + p̊r ≥ 0, (21b)

ρ̊ + p̊t ≥ 0, (21c)

make Eq. (12) to read

− Θ 0
0 ≤ Θ 2

2 ≤ 0. (22)

Therefore, together with Eqs. (10a) and (10c), Eq. (22) can
be written as

G1(r) := h′′(r − 2M) + 2h′ ≥ 0, (23a)

G2(r) := h′′r(r − 2M) + 4h′M − 2h + 2 ≥ 0. (23b)

The mapping

h(r) �→ h(r) − �0

r − 2M
(24)

leaves G1(r) and G2(r) invariant. Solutions with a proper
horizon at r ∼ 2M , which also behave approximately like
the Schwarzschild metric for r � 2M , yield G1(r) = 0.
Hence, solving Eq. (23a) implies that

h(r) = c1 − α
� − r e−r/M

r − 2M
. (25)

Also, Eq. (25) is also constrained to (23b). Replacing (25) in
(14) implies the metric

eν = e−λ = 1 − 2M
r

+ α e−r/(M−α �/2), (26)

to represent a hairy black hole, where M = M + α �/2.
Now, the strong energy conditions are consistent with � ≥

2M/e2, whose extremal case � = 2M/e2 leads to

eν = e−λ = 1 − 2M

r
+ α

(
e−r/M − 2M

e2 r

)
. (27)

which has the horizon at rHOR = 2M . The dominant energy
conditions,

ρ̊ ≥ | p̊r |, (28a)

ρ̊ ≥ | p̊t |, (28b)

in terms of (5a) and (5c) are respectively equivalent to

− r(r − 2M)h′′ − 4(r − M)h′ − 2h + 2 ≥ 0, (29a)

r (r − 2M) h′′ + 4 M h′ − 2 h + 2 ≥ 0. (29b)

Solving (29a) for r ∼ 2M and r � M yields [65]

h(r) = 1 − 1

r − 2M

(
α � + α M e−r/M − Q2

r

)
, (30)

where the charge Q = Q(α) encompasses also tidal charges
generated by additional gravitational sectors. Equation (30)
also has to satisfy (29b), which reads

4 Q2

r2 ≥ α

M
(r + 2M) e−r/M . (31)

Using (30) into the line element (14), yields

eν = e−λ = 1 − 2M + α �

r
+ Q2

r2 − α M e−r/M

r
, (32)

such that

ρ̊ = Θ 0
0 = − p̊r = Q2

κ2 r4 − α e−r/M

κ2 r2 (33)

The metric (32) also represents hairy black holes, where Q
and �0 = α � comprise charges generating primary hair.

The horizon radii rHOR are given by solutions of

α � = rHOR − 2M + Q2

rHOR
− α M e−rHOR/M , (34)

which allows us to write the metric functions (32) as

eν = e−λ = 1 − rHOR

r

(
1 + Q2

r2
HOR

− α M

rHOR
e−rHOR/M

)

+Q2

r2 − α M

r
e−r/M . (35)

To find analytical solutions to rHOR, appropriate values
of the parameters α, Q, and � must be chosen. However,
since the dominant energy conditions demand rHOR ≥ 2 M ,
the choice of these values cannot be arbitrary. Evaluating the
effective density (33) at the event horizon, and making use
of Eq. (34) imply that

Q2 ≥ 4αM2

e2 , � ≥ M

e2 . (36)

The physical interpretation of Q encompasses the case of an
electric charge, but not only restricted to it, but also encod-
ing the possibility of hidden gauge charges, tidal charge, and
eventually, Kaluza–Klein stringy effects [34], or any other
source. In the case where Q represents an electric charge, the
electrovacuum generated by the Reissner–Nordström solu-
tion additionally accommodates a tensor-vacuum that is pro-
portional to α in Eq. (33). One must emphasize that the
Reissner–Nordström metric has an event horizon

rRN = M +
√
M2 − Q2 < 2 M, (37)
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and also an inner Cauchy horizon,

rC ≡ M −
√
M2 − Q2 < rHOR. (38)

The solution (32) can thus yield three ramifications wherein
the event horizon rHOR has straightforward analytical for-
mulæ and the dominant energy conditions are satisfied. Sim-
ilarly to the Reissner–Nordström solution, the three cases to
be studied have an inner Cauchy horizon rC < rhor.

If the event horizon is made proportional to the mass, as
rhor = k M , as long as k ≥ 2, to satisfy the dominant energy
conditions, the metric components are given by

eν = e−λ = 1 − 2M
r

+ Q2

r2 − αrhor
kr

e−kr/rhor , (39)

where the Reissner–Nordström-like event horizon reads

rhor = M̃ +
√
M̃2 − Q̃2, (40)

where M̃ = M/β and Q̃2 = Q2/β with

β = 1 − α
e−k

k
. (41)

Therefore the metric components (39) describe a black hole
solution arising from nonlinear electrodynamics, with event
horizon

rHOR = rRN

β
≥ rRN, (42)

as β ≤ 1. The nonlinear electrodynamics is obtained when
one identifies

Θμν = −L(F)gμν − LF F
ρ

μ Fρν, (43)

where

F = 1

4
Fρσ F

ρσ , LF = ∂L
∂F

. (44)

When static, spherically symmetric, stellar distributions
described by the metric (3) are regarded, the field strength
reads

Fμν(r) =
(
δ0
μδ1

ν − δ1
μδ0

ν

)
E(r), (45)

where the electric field is given by

E(r) = Q

r2 − α e
− kr

rHOR

4rHORQ
(kr + 2rHOR). (46)

Introducing the field

P = L2
FFρσ F

ρσ , (47)

the underlying nonlinear electrodynamics can be thus placed
into the P-dual framework [1,66], described by the
Lagrangian

L(P)=−4π P− αk(−2P)
1
4

4
√

πQ rhor
exp

[
k
√
Q

2
√

π(−2P)
1
4 rhor

]
,

(48)

where

G(P) = − k
√
Q

2
√

πrhor(−2P)
1
4

. (49)

One can read off the relation Q2 ∼ α, yielding the
Schwarzschild standard solution whenever α → 0. When Q
represents an electric charge, one can state that the Reissner–
Nordström electrovacuum is permeated by a tensor-vacuum
governed by (48).

As concrete examples, one can saturate the inequali-

ties (36), and (35) become, defining M = M
(

1 + α
2 e2

)
,

eν(I) = e−λ(I) = 1 − 2M
r

+ Q2

r2 −
√

α Q

2 r
e1−2

√
α r/e Q,(50)

which can be interpreted as a nonlinear electrodynamics cou-
pled with gravity, similarly to the content in the last para-
graph [3]. The event horizons are placed at rhor = 2M , and
rhor = e√

α
Q.

In the second case, the relation

Q2 = α � M
(

2 + α e−α �/M
)

, (51)

leads to

eν(II) = e−λ(II) = 1 − 2M + α �

r
+ 2 α � M

r2

−α M

r2 e−r/M
(
r − α � e

r−α �
M

)
. (52)

The event horizon is now at rhor = α � ≥ 2M . As α � ∼
M , Eq. (52) can be also realized as a solution in nonlinear
electrodynamics coupled with gravity.

Finally, when

Q2 = α M (2M + α �) e− (2M+α �)
M , (53)

the metric components eν(III) = e−λ(III) read

eν(III) = 1 − αM

r2 e−r/M
[
r − (2M + α�) e

r−(2M+α�)
M

]

−2M + α �

r
. (54)

The event horizon is at rhor = 2M + α � = 2M ≥ 2M .

3 Weyl and trace anomalies of gravitational decoupled
hairy black holes

The holographic Weyl anomaly is reminiscent of the reg-
ularization process applied to the gravitational part of the
action under conformal transformations [59]. In general, the
anomaly can be expressed by

A ∝ E(d) + I(d), (55)
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where E(d) is the d-dimensional Euler density, and I(d)

denotes a conformal invariant.1 In four dimensions the Euler
density takes the form

E(4) = 1

64

(
K − 4RμνRμν + R2

)
. (56)

Up to a multiplicative constant, the holographic Weyl
anomaly becomes

〈T 〉CFT ∼
(
RμνRμν − 1

3
R2

)
. (57)

On the other hand, the trace anomaly is a function of the
matter content on a curved background together with its geo-
metric aspects [67]

〈T 〉4D ∼ (
K − RμνRμν − �R

)
. (58)

This anomaly quantifies the deviation from conformal invari-
ance, i. e., the vanishing of this particular quantity indicates
that the associated dual theory preserves conformal symme-
try.

Trace anomalies from the field theory side can be com-
pared to the one found in the CFT using the coefficient [64]

Γ =
∣∣∣∣1 − 〈T 〉4D

〈T 〉CFT

∣∣∣∣ , (59)

where the definitions given in Eqs. (57, 58) have been applied.
The quantity K = Rμνρσ Rμνρσ denotes the Kretschmann
scalar K . This result holds in the context of asymptotic AdS
backgrounds [59] and here we discuss the possibility of emu-
lating this result to the gravitational decoupling of hairy black
holes.

The coefficient (59) can quantify how AdS/CFT is reliable
in the context where the metrics (50, 52, 54) of gravitational
decoupled hairy black holes are taken into account. It mea-
sures the trace anomalies associated with them and how the
additional sources backreact, in the gravitational decoupling
setup. The coefficient Γ can formally run from 0 to infin-
ity, and AdS/CFT can underlie this setup for values that are
close to unit [64,68]. In fact, for the Schwarzschild case,
〈T 〉4D ∝ K and 〈T 〉CFT = 0 yielding Γ → ∞, what compro-
mises AdS/CFT in the general-relativistic case [64].

On braneworld scenarios, one seeks for spacetimes where
Γ � 1, where the quantum conformal field theory on the
brane and the classical gravity on the bulk descriptions are
dual and equivalent [64,69]. The case when Γ = 1 was
obtained evaluating the coefficient (59) for a braneworld
black hole solution [64]. One expects other solutions to be
more intricate, as in the case of gravitational decoupled hairy
black holes (50, 52, 54).

1 For d = 4 this invariant is unique, being given by the contraction of
the Weyl tensor to itself [59].

Fig. 1 Plot of limr→2M Γ(I) as a function of the decoupling parameter
α

Notice that for large values of r , all three coefficients have
near unit values,

lim
r→∞ Γ (I) ≈ 1, (60)

lim
r→∞ Γ (II) ≈ 1, (61)

lim
r→∞ Γ (III) ≈ 1. (62)

This is interesting and relevant, as such behavior is different
of the Schwarzschild kernel metric used to derive these solu-
tions using the gravitational decoupling method. Next, the
limiting expressions for r → 2M are analyzed in Figs. 1, 2
and 3, which display Γ |r→2M as a function of α. Since α is not
a perturbation parameter, at least technically it can assume
any value. Thus the coefficient ΓCFT can be determined in the
α → ∞ limit,

lim
α→∞
r→2M

Γ(I) = 0.923 − O
(

1

α

)
, (63)

lim
α→∞
r→2M

Γ(II) = 1 + O
(

1

α

)
, (64)

lim
α→∞
r→2M

Γ(III) = 0. (65)

Considering these limits along with the plots in Figs. 1, 2 and
3, one can safely state that Γ ≤ 1 at the regions of interest,
namely, for the concomitant limits r → ∞ and r → 2M .

In Figs. 1 and 2 one can clearly see a bump, where the
value of Γ is minimum. These values are Γ(I) ≈ 0.367, when
α ≈ 0.988, as Γ(II) ≈ 0, for α ≈ 0.202. In fact, the tiny range
0.2015 < α < 0.2032 yields Γ(II) < 3 × 10−5.

As the limiting values of Γ for r → ∞ do not depend on
the parameter α, we can use the values mentioned above on
the metrics to conclude that, if the AdS/CFT correspondence
holds for these particular solutions obtained via gravitational
decoupling, then the best agreement between classical grav-
ity and the associated field theory is then implemented.

123



175 Page 6 of 8 Eur. Phys. J. C (2022) 82 :175

Fig. 2 Plot of limr→2M Γ(II) as a function of the decoupling parameter
α

Fig. 3 Plot of limr→2M Γ(III) as a function of the decoupling parameter
α

4 Relation to AdS/CFT correspondence

Having these results, it is important to point out how the
solutions can be used in the context of AdS/CFT correspon-
dence, given the compliance between gravity and the asso-
ciated boundary theory from the computation of Γ . For this
connection to be established, one recalls Einstein’s equations
in its full form

Rμν − 1

2
Rgμν = 
4gμν + Tμν, (66)

where 
4 is the cosmological constant in 4-dimensions, and
Tμν is the energy momentum tensor describing all other
fields except the cosmological constant one. In Sect. 2 the
solutions studied were derived requiring that Tμν = 0 and
�μν �= 0. From the explicit expressions of the solutions,
c.f. Eqs. (50, 52, 54), one can check that the limit r �→ ∞
leads to the Minkowski spacetime. However, the MGD has a
strong connection to brane-world scenarios [70], which can
be employed to establish the connection.

In the brane-world setup, the stress-energy-momentum
tensor associated to the brane has the most general form [71]

Tμν = Tμν + Eμν + γ −1Sμν + Lμν + Pμν, (67)

where γ denotes the brane tension. The first term is the ordi-
nary energy-momentum tensor from Einstein’s equations,
as already pointed out Tμν = 0. The third term contains
corrections of second order on the energy-momentum ten-
sor Tμν , such that Sμν ∝ O (

T 2
μν

)
, and therefore vanishes

as well. The remaining terms in Eq. (67) carry non-local
effects and also affect the energy-momentum tensor depend-
ing on the geometric procedure one uses to embed the brane
in the bulk. Specifically, Lμν accounts for the embedding,
and is associated with the bending of the brane concerning
the codimension-1 bulk. Pμν contains possible stringy effects
living in the bulk. Eμν describes a Weyl fluid in the bulk and
is responsible for non-local effects and anisotropies. Explicit
expressions for these terms can be found in [71,72].

Notice that this description is valid on a context where the
solutions describe a brane, which is embedded in a higher
dimensional space-time, and therefore the quantities appear-
ing on (67) are related to the higher dimensional bulk. It is
important to remark that the bulk is governed by its own
Einstein’s equations, such as Eq. (66) in one extra dimen-
sion, where other matter fields can be defined, and it has its
own cosmological constant. The cosmological constants in
the bulk and on the brane are related to each other by fine
tuning with the brane tension γ , [73]


4 = κ2
5

2

(

5 + 1

6
κ2

5 γ 2
)

, (68)

where κ5 = 8πG5 and G5 is the Newton constant in five
dimensions, which is related to the 4 dimensional Newton
constant by the Planck length �p as G5 = �pG4. The brane
tension cannot be arbitrarily defined and has a predicted lower
bound for its valueγ ≥ 2.8131×10−6 [33]. To prevent matter
fields living in the bulk to interact with matter fields in the
brane one has to fine tune the cosmological constant in Eq.
(68) such that 
4 = 0 [10]. Given the lower bound on the
brane tension, one finds immediately that


5 = −1

6
κ2

5 γ 2, (69)

Implying that the bulk where the brane is located is an
AdS space-time. Considering the overall setup described in
Sect. 2, one can therefore identify Tμν = α�μν , therefore

α�μν = Eμν + Lμν + Pμν. (70)

From this connection, the AdS/CFT conjecture can be
applied to the described metrics following the prescription of
[74]. Reference [1] established the way how the general grav-
itational decoupling can be led to the membrane paradigm of
AdS/CFT.

123



Eur. Phys. J. C (2022) 82 :175 Page 7 of 8 175

5 Conclusions

The gravitational decoupling of hairy black holes was uti-
lized and inspected with the apparatus provided by trace and
Weyl anomalies. The gravitational decoupling was shown to
be a trustworthy model, in the context of AdS/CFT. Since
the value of the Γ coefficient, for the gravitational decou-
pling case, was shown to be near the unit, it means that
the gravitational decoupling solutions may occupy a priv-
ileged place and can play a prominent role in emulating
AdS/CFT on gravitational decoupled solutions. The α → ∞
limit in Eqs. (63–65) can be seen as a regime where the
stress-energy-momentum tensor (2) has only the additional
source contribution, in the gravitational sector, being the
general-relativistic source negligible. This characterizes, in
fact, the tensor vacuum regime. The coefficient (59) quanti-
fies the excitation of gravitationally decoupled matter fields
and estimates the signatures of gravitational waves beyond
the general-relativistic setup, measuring fluctuations of the
decoupled source. Hence, the anomaly coefficient (59) brings
useful information about placing gravitational decoupled
hairy black holes in the AdS/CFT framework, implementing
a method to quantify trace anomalies in this context, besides
also quantifying backreaction of gravitationally decoupled
additional sources, driven by the parameter α.
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