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Abstract In this investigation an holographic description
of the deconfined phase transition of scalar and tensor glue-
balls is presented within the so called hard-wall model. The
spectra of these bound states of gluons have been calculated
from the linearized Einstein equations for a graviton prop-
agating from a thermal AdS5 space to an AdS Black-Hole.
In this framework, the deconfined phase is reached via a two
steps mechanism. We propose that the transition between
the AdS thermal sector to the BH is described via a first
order phase transition, with discontinuous masses at the crit-
ical temperature, which has been determined by Herzog’s
method of regulating the free energy densities. Then, the
glueball masses diverge with increasing T in the BH phase
and thus lead to deconfined states à la Hagedorn.

1 Introduction

A successful strategy for applying the AdS/CFT correspon-
dence and holography [1,2] to hadron physics is the so-called
bottom-up approach. In this framework, one starts from some
non perturbative features of QCD and attempts to construct
its five-dimensional holographic dual. One implements dual-
ity in nearly conformal conditions defining QCD on the four
dimensional boundary and introducing a bulk space which is
a slice of AdS5 whose size is related to z0 ∼ 1/�QCD [3–7].
This is the so called hard-wall (HW) approximation. Later on,
in order to reproduce the Regge trajectories of the hadronic
spectrum, the so called soft-wall model was introduced [8,9].
Within the bottom-up strategy and in both, hard-wall and the
soft-wall approaches, glueballs arising from the correspon-
dence of fields in AdS5 have been studied [10–14]. However,
we have recently proposed the calculations of the spectrum
of the scalar and tensor glueballs under the assumption that
in this holographic approach, the dual operator to the glue-
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balls could be the graviton, the latter thus plays a significant
role to describe the lowest lying glueballs. We have stud-
ied the problem in hard and the graviton soft-wall models
and found an excellent description of the data with very few
parameters [15–18]. The main result of these investigations
is that we do not need to introduce additional fields into any
AdS5 to describe the glueballs, the gravitons indeed satisfy
the duality boundary conditions and are able to describe the
elementary scalar and tensor glueball spectra. Due to the
exploratory nature of the the present investigation, the HW
AdS/QCD model has been used to study the deconfinement
phase transition. Since we have proposed that the scalar and
tensor glueball spectrum is associated to the graviton of the
theory [15,18], it is therefore natural to generalize this associ-
ation to the graviton propagating in a black-hole (BH) space.
Thus, in the following we have studied the graviton spectrum
when a BH background is considered in order to describe the
mass dependence on the temperature of the environment and
compare the new result with the previous calculations. We
recall that much research has been carried out to determine
the deconfinement temperature and the behaviour of the glue-
ball and meson spectra after the phase transition [19–21].

In the present analysis, we found out that the deconfine-
ment phase is reached via a two steps mechanism. We propose
a strategy to describe the transition from the AdS thermal
phase, i.e. the low temperature region, to the BH sector, i.e.
the high temperature sector. In particular, the Hawking-Phase
phase transition is a first order phase transition at the temper-
ature obtained by Herzog [22]. These calculations have been
extended to the excited states.

2 Scalar and tensor glueballs at zero temperature

In this investigation, we consider the holographic description
of glueball states via the hard-wall model. Virtues and incon-
veniences of this model have been thoroughly discussed, e.g.,
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Table 1 Energy modes for the scalar glueball with Dirichlet (D) and Neumann (N) boundary conditions [15]

k 1 2 3 4 5 . . .

D scalar 5.136 8.417 11.620 14.796 17.960 . . .

N scalar 3.832 7.016 10.173 13.324 16.471 . . .

Table 2 Scalar glueball masses [MeV] from lattice calculations by MP [25], YC [26] and LTW [27] and the recent analysis SDTK [28]

J PC 0++ 2++ 0++ 2++ 0++ 0++

MP 1730 ± 94 2400 ± 122 2670 ± 222

YC 1719 ± 94 2390 ± 124

LTW 1475 ± 72 2150 ± 104 2755 ± 124 2880 ± 164 3370 ± 180 3990 ± 277

SDTK 1865 ± 25+10
−30

Fig. 1 Scalar and tensor glueball spectrum obtained within the hard-
wall model. The solid lines correspond to Dirichlet boundary conditions
(z0 = L−1

d = 250 MeV) and the dashed lines correspond to Neumann
boundary conditions (z0 = L−1

n = 290 MeV). The full circles represent
the scalar LQCD masses, the squares the large N limit scalar LQCD
masses and the triangles the tensor LQCD masses [15]

in Refs. [3,6,8,15]. Here we start from the gravity action:

I = 1

16πG5

∫
d5x

√−ḡ [R + 2�], (1)

where R is the Ricci curvature and � the corresponding cos-
mological constant. It can be easily shown that:

ds2 = L2

z2 (dt2 + dx2 + dz2) (2)

is a solution of the Einstein–Hilbert equations if � = −6/L2.
The equation of motion (EoM) for a graviton propagating in
the thermal AdS5 space can be obtained from the Einstein
equation for a perturbation in this space. By performing a
linear expansion

ḡab = gab + hab (3)

one obtains the graviton equations of motion [23,24]. We
report here the result presented in Ref. [15] for the scalar
component of the graviton obtained from the standard AdS5

metric, i.e., at T = 0:

d2φ(z)

dz2 − 3

z

dφ(z)

dz
+ M2φ(z) = 0, (4)

where M is the mass of the scalar gravitons. In the HW model,
the confinement is realized by restricting the maximum value
of z ≤ z0 at which one imposes either Dirichlet or Neu-
mann boundary conditions. The exact solution of the above
equation has been shown in Ref. [15] and the corresponding
modes, in units of 1/L , are shown in Table 1. As discussed in
Ref. [15], in the AdS5 space, the scalar and tensor graviton
equations are the same for the HW model.

Moreover, in Ref. [15], the energy scale has been deter-
mined by fitting the lattice data of scalar and tensor glue-
balls, shown in Table 2. Results are also displayed in Fig. 1.
Let us remind that in the hard-wall model the scale is given
by z0 = L , i.e. the confinement parameter. The fit leads to
z0 = Ld = 1/250 MeV−1, for the Dirichlet boundary con-
ditions, while for the Neumann ones z0 = LN = 1/290
MeV−1.

In closing this section, we compare the scalar and tensor
glueball spectra obtained from different holographic mod-
els. We report in Table 3 some numerical results. As one can
see, holographic approaches are powerful tools to explore
the glueball spectra. However, as discussed in, e.g. Refs.
[9,11,29], the standard Soft-Wall (SW) models, where scalar
fields dual to the glueball are considered, cannot describe
the overall spectrum, in particular they cannot reproduce the
ground and higher excited states at the same time. There-
fore, modifications, as those of Refs. [9,11,14,29,30], have
been developed. However, although the agreement with lat-
tice data has been improved, with respect to the SW model,
also in these cases, a global overall good descriptions of scalar
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and tensor glueballs for low and excited states has not been
reached. We mention the model of Ref. [31] which repro-
duces well the lowest modes if the first exotic state is skipped.
Among the modifications of the SW model we also recall the
recent GSW model of Ref. [15] capable of describing the
overall scalar and tensor glueball spectrum. Moreover, as
already stated, due to the exploratory nature of the present
work, we focus on the HW [7,32] model, which, despite its
simplicity, reproduces quite well the glueball spectra.

3 The glueball deconfinement phase transition

In this section the glueball deconfinement phase transition
mechanism, realised within the HW model, is described.
Within this approach, the first step, towards the deconfine-
ment, corresponds to a Hawking-Page [33] first order phase
transition between the AdS thermal space, see Eq. (2), at low
temperature and an asymptotically AdS geometry containing
a black hole

ds2 = L2

z2 ( f (z)dt2 + dx2 + f −1(z)dz2), (5)

at high temperature. Here f (z) = 1 − z4/z4
h , thus zh deter-

mines the Hawking’s temperature of the black hole solution
Th = 1/(π zh). The comparison between the free energy
densities of both phases leads to a critical temperature [22]:

Tc = 21/4

π z0
(6)

where again z0 is the infrared cut-off determining confine-
ment and the phase transition is characterized by the rela-
tion z4

0 = 2z4
h [22]. Thus as the temperature increases, the

AdS thermal becomes unstable and the black-hole becomes
stable. At Tc, the BH horizon forms inside the AdS cav-
ity, between the boundary and the infrared cut-off , at a
radius zh < z0. Here, from Eq. (6), the temperature can
be determined from z0. In the present analysis we consider
z0 obtained from the previous fit of the scalar and tensor
glueball spectra. Numerically, we obtain Tc = 95 MeV for
Dirichlet boundary conditions, and Tc = 110 MeV for Neu-
mann boundary conditions. In Table 4, some lattice data and
previous calculations of Tc are reported for comparisons. As
one can see, the above results are distant from those in Table
4. Nevertheless, if one evaluates Tc, from Eq. (6), by fixing z0

according to the average of lowest glueball mass, see Table
2, then a more realistic value could be found, i.e.: Tc ∼ 125
MeV for Dirichlet boundary conditions and Tc ∼ 165 MeV
for Neumann boundary conditions. However, by comparing
the above results with those in Table 4, one can realise that
apparently the HW model needs further improvements, since

data related to gluodynamics lead to higher critical temper-
atures. In the future we could consider other models, such
those of Refs. [11,14,15,18,29,34], to calculate Tc. Other
authors have used experimental values of the meson spec-
troscopy to fit the deconfinement temperature. In the hard-
wall model the result is also too low Tc ∼ 125 MeV, however
they obtain higher values for the soft wall model Tc > 160
MeV [19,20,22,35].

4 Scalar and tensor glueballs beyond the critical
temperature

In this section, we present the mode equations and solutions
for scalar and tensor glueball states dual to gravitons propa-
gating in both the thermal AdS5 and black-hole spaces. We
expect that beyond the critical temperature the BH horizon
forms inside the AdS cavity between the boundary and z0,
z0 > zh . We now have to construct the equations of motion
for the gravitons with the black hole metric, Eq. (5). To this
aim, use has been made of the procedure discussed above for
QCD3. Then the EoM for the scalar graviton reads

d2φ(z)

dz2 +
(

2

z
− 5z4

h − z4

z(z4
h − z4)

)
dφ(z)

dz

+
(

M2z4
h

z4
h − z4

+ 256z6z4
h

(z4
h − z4)(6z4

h − 2z4)2

)
φ(z) = 0. (7)

and for the scalar graviton becomes

d2φ(z)

dz2 +
(

2

z
− 5z4

h − z4

z(z4
h − z4)

)
dφ(z)

dz
+ M2z4

h

z4
h − z4

φ(z) = 0,

(8)

Furthermore, the tensor graviton EoM is the same as that
of an external scalar field in the BH space [23,24]. One should
notice that, at variance with the mode equations obtained in
the AdS5 sector [15], in this case the scalar graviton has a
different mode equation with respect to that for the tensor
graviton and external scalar field due to an additional poten-
tial term.

For the sake of simplicity, a constant λ is introduced in
front of the additional potential term in Eq. (7) so that: λ = 1
corresponds to the scalar graviton EoM and λ = 0 corre-
sponds to tensor graviton and external field EoM:

d2φ(z)

dz2 +
(

2

z
− 5z4

h − z4

z(z4
h − z4)

)
dφ(z)

dz

+
(

M2z4
h

z4
h − z4

+ λ
256z6z4

h

(z4
h − z4)(6z4

h − 2z4)2

)
φ(z) = 0. (9)
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Table 3 Scalar and tensor glueball masses [MeV] from holographic models. In the model related to the last line, corresponding to Ref. [31], the
first exotic mode has been skipped

J PC 0++ 2++ 0++ 2++ 0++ 0++

GSW [15] 1920 2371 2830 2830 3289 3740

SW1 [29] 2320 3460 2830 3270 3660

SW2 [29] 1840 4900 2610 3190 3690

HW [7] 1630 2410 2670 3510 3690

Ref [31] 1487 2168 2358 3075 3202

Table 4 Some theoretical
estimates of the critical
temperature Tc

References Tc [MeV] Features

[22] 122 Hard-wall with z0 = 1/323 MeV

[22] 191 Soft-wall

[36] 192+7
−4 Lattice with quark dynamics

[37] 150 ± 3 Lattice with quark dynamics

[38] 154 ± 9 Lattice with quark dynamics

[39] 169+12
−4 Lattice with quark dynamics

[40] 150–170 Lattice data with quark dynamic

[41] 250 Yang–Mills and large NC limit

[42] 264 ± 1 SU(3)

[43] 276+3
−2 SU(3)

[35] 250–270 Soft-wall and improved soft-wall

4.1 Solutions to the equation of motion in the BH
background

As one might expect, Eq. (9) requires a delicate numerical
analysis. In order to study the temperature dependence, a
useful change of variable w = z/zh leads to

d2φ(w)

dw2 +
(

2

w
− 5 − w4

w(1 − w4)

)
dφ(w)

dw

+
(

μ̃2

1 − w4 − λ
256w6

(1 − w4)(6 − 2w4)2

)
φ(w) = 0, (10)

where the quantity μ = Mzh is introduced. In order to find
the modes of this equation, one needs to integrate it from
w = 0 towards the horizon. It is therefore useful to study the
the behavior at w = z = 0:

φ(w) ∼ Aw4 + B (11)

where A, B are integration constants. For simplicity one can
set, without loosing generality, A = 1 and B = 0 fixing
thus the outgoing solution. The changing of the values of A
and B leads only to a modification of the shape of the mode
function keeping the energy modes fixed. This feature will be
explicitly shown later on after the resolution of the equation.

Further, the equation must be the integrated from the hori-
zon inward and then one needs to match the outward and

inward solutions and to determine the value of the energy
mode. In order to study the behaviour of the solution close
to the horizon, needed for the numerical integration, another
change of variable is useful: v = 1 −w4. Equation (10) now
becomes:

d2φ(v)

dv2 + 1

v

dφ(v)

dv
+ 1

16v(1 − v)
3/2

(
μ2 + λ

64(1 − v)

(2 − v)2

)

φ(v) = 0. (12)

where v → 0 at the horizon, i.e. w → 1. The regular solution
at v = 0 has the form of φ(v) = ∑∞

0 anvn . Substituting this
ansatz into the equation and keeping only terms up to order 3,
one obtains recurrence relations for ai , with i ≥ 1, the latter
functions of the independent a0 coefficient. For the three first
modes one has:

a1 = − (16λ + μ2)a0

16

a2 = (16λ − 3μ2)a0 − (32λ + 2μ2)a1

128

a3 = − (80λ + 15μ2)a0 + (64λ − 12μ2)a1 − (128λ + 8μ2)a2

1152
.

(13)

The approximate solution with the four first terms and
its derivative is used as initial condition for the numerical
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Fig. 2 The scalar glueball mode function as a function of w = z/zh .
The dashed curve corresponds to Dirichlet (d) boundary conditions with
mode value μd = 5.136 in the AdS thermal sector and for z0 = L = zh .
Dot-dashed line, same of the dashed one, but for the Neumann (n)
boundary conditions and μn = 3.832. The solid-dotted curve corre-
sponds to the black-hole AdS graviton solution. The solid part of the
latter curve is related to the outward solution and the dotted curve to the
inward one. At matching the mode value is μ = 5.487 and the intercept
with the black-hole radius occurs for a0 = −0.179

program at v close to zero. In Fig. 2 the AdS thermal solu-
tions for the Dirichlet and Neumann boundary conditions,
whose mode values are μd = 5.136 and μn = 3.832 respec-
tively, are shown for z0 = zh . Let us remark that this choice
is just an example. In addition, also the AdS Black-Hole
solution, obtained by matching the outward and inward solu-
tions for λ = 1 (corresponding to the scalar glueball), is
displayed. The matching numerically occurs for μ = 5.487
and a0 = −0.179. These two parameters, fixed the by match-
ing, determine uniquely the solution. For the moment being
we focus our attention on the scalar glueball. The tensor case
will be addressed later on. In order to proceed to the study
of the behaviour of the solution, beyond the phase transition,
it is important to discuss the A, B independence of the mass
modes. The B case is straight forward since the change of B
simply implies a displacement of φ. The numerical A depen-
dence is shown in Fig. 3 where the mode function is displayed
for A = 0.5, 1, 1.5, 2.0 for the same value of μ = 5.487. As
one can see, the matching is found for different values of
a0 = −0.091,−0.179,−0.271,−0.370. From the figure,
one should realise that the energy modes are determined by
the zero of the mode functions which is reached at the same
w for all values of A.

The next step is to study the energy mode values as a
function of the energy scale given by the HW model, i.e., z0 =
L . In this way we will obtain the temperature dependence of
the modes from the BH radius. To this aim, we introduce a
new variable u = z/z0. The differential equation becomes:

Fig. 3 The solution of the differential Eq. (10) for μ = 5.487 and
different values of A = 0.5 (dotted), 1 (solid), 1.5 (dashed), 2.0 (dot-
dashed) and B = 0. The mode functions keep the same mass mode value
but with different intercepts a0 = −0.091,−0.179, .0.276,−0.370

d2φ(u)

du2 +
(

2

u
− 5u4

h − u4

u(u4
h − u4)

)
dφ(u)

du

+
(

μ̃2u4
h

u4
h − u4

+ λ
256u6u4

h

(u4
h − u4)(6u4

h − 2u4)2

)
φ(u) = 0.

(14)

where now μ̃ = Mz0 and uh = zh/z0. One of the main
advantages of moving to the w and u variables is that Eqs.
(10,14) have no direct dependence on any dimensional exter-
nal parameter thus the solution, for the lowest mode, is unique
and can be simply obtained for z0 = zh , i.e. uh = 1.

On the other hand side, in order to obtain the intercept, a0,
at the BH radius, it is necessary, again, to change variable:
ω = u4

h − u4. When z ∼ zh then v ∼ ω and the solution
behaves like: φ(z) ∼ ∑n

0 ãn(z
4
0ω)n = ∑n

0 an(z
4
hv)n , there-

fore ãnz4n
0 = anz4n

h , thus

μ̃ = Mz0 = Mzh
z0

zh
= μ/uh = 5.487/uh, (15)

ã0 = a0
z4

0

z4
h

= a0/u
4
h = −0.179/u4

h . (16)

Changing from the w variable to the u variable one can obtain
the temperature dependence of the mode functions μ̃ as given
by Eq. (15).

4.2 Hard-wall phase transition à la Herzog [22]

Thanks to the above result, it is now possible to describe the
phase transition from the AdS thermal to the AdS BH. In Fig.
4 we plot the AdS BH scalar glueball mass as a function of
uh , which is basically the inverse of the temperature, and then
we extrapolate the AdS thermal mass at T = 0 (uh → ∞)

123



140 Page 6 of 10 Eur. Phys. J. C (2022) 82 :140

Fig. 4 The mass mode of the lowest scalar glueball state as a function
of uh . The left figure for the Dirichlet boundary conditions, while the
right one for the Neumann boundary conditions. Here it is highlighted

the behaviour before and after the adimensional Herzog’s critical tem-
perature, uh = 2−1/4. In the AdS thermal phase we assume constant
temperature dependence

Table 5 Energy modes for the scalar glueball in the BH phase at uh = 1

k 1 2 3 4 5 . . .

AdS BH scalar 5.487 8.081 10.552 13.050 15.511 . . .

toward uh → 0, assuming a very small temperature depen-
dence in the hard-wall model [20] stopping at Herzog’s value
uh = 2−1/4 [22]. As one can see, there is a mass difference
at the boundary which is relatively large: �μd = 1.389,
corresponding to 347 MeV for the Dirichlet condition and
�μn = 2.693, corresponding to 781 MeV, for the Neumann
one. Before closing this section, let us now study the excited
modes and how they behave at the phase transition. To this
aim, the higher modes have been calculated in the BH sec-
tor, which determines the high temperature dependence. The
first five modes are shown in Table 5 for uh = 1. Moreover,
the BH modes are compared with those obtained in the AdS
thermal sector, at the Herzog’s phase transition uh = 2−1/4,
in Table 6. The full dependence of the modes on uh is shown
in Fig. 5.

The results shown in Table 6 can be now converted
into physical glueball masses. In terms of energy units, as
already discussed, the fit of the glueball spectrum leads to
z−1

0 = L−1
d = 250 MeV and z−1

0 = L−1
n = 290 MeV,

see Table 7. One should notice that the mass differences at
the phase transition is smaller for the Dirichlet solutions w.r.t.
the Neumann ones. Moreover this quantity diminishes for the
excitations. In closing, the main approximation here assumed
is the constancy of the dependence of the modes with tem-
perature in the AdS thermal phase. In this scenario, there
seems to be a first order phase transition, beyond the Her-
zog’s temperature, Eq. (6), where the deconfinement mech-
anism manifests itself in this model by a high rise in the
masses of the states as the temperature increases, being the
masses proportional to the latter, see for example Eq. (15).
Furthermore, following Hagedorn [44], at some point the

energy of the deconfined gluons will be smaller than that of
the bound states, and there the transition to the quark gluon
plasma (QGP) will be reached. Thus in this model, the tran-
sition from hadronic matter (HM) to QGP seems to be a two
step process, a first order phase transition from hadronic mat-
ter to highly massive glueballs (hadrons in general) and then
a transition to QGP at higher temperatures. In some sense
we are reminded of the scenario described by Shuryak and
Zahed [45] where one expects some glueball enhancement
mechanisms to appear [46]. For the seek of clarity, the left
panel of Fig. 5 has been displayed again but showing directly
the energy modes as function of the temperature in units of
1/z0, i.e. T = 1/(πuh), see Fig. 6. The importance of this
figure lies in the AdS BH phase, which will repeat itself in all
other scenarios. The different excited states have divergent
linear trajectories, thus their masses separate more and more,
leaving space for other intermediate states, which could be
associated to colour bound states, which our colourless model
does not contain, in line with the two step phase transition
already mentioned.

4.3 Tensor glueballs

Finally, let us now discuss the tensor components. We recall
that the tensor glueball states and the scalar glueballs are
degenerate in this model in the AdS5. However, the mode
equation in the BH AdS background is different from that
of the scalar graviton equation, see Eqs. (8,7). In Table 8
we compare the masses of both the glueball components in
the BH AdS sector at the phase transition and, in Fig. 7, the
temperature dependence of the the tensor graviton spectrum
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Table 6 The energy modes for the scalar glueball AdS BH, at the phase transition uh = 2−1/4 and the AdS thermal modes at T = 0

k 1 2 3 4 5 . . .

AdS BH scalar 6.525 9.610 12.548 15.519 18.445 . . .

AdS thermal scalar D 5.136 8.417 11.620 14.796 17.960 . . .

AdS thermal scalar N 3.832 7.016 10.173 13.324 16.471 . . .

Table 7 The masses in MeV units of the scalar AdS BH glueballs, at the phase transition and the AdS thermal modes at T = 0 with scales
L−1
d = 250 MeV and L−1

n = 290 MeV

k 1 2 3 4 5 . . .

AdS BH scalar D 1631 2402 3137 3880 4611 . . .

AdS thermal scalar D 1284 2104 2905 3699 4490 . . .

AdS BH scalar N 1892 2787 3639 4500 5349 . . .

AdS thermal scalar N 1111 2034 2950 3863 4777 . . .

Fig. 5 The spectrum of the scalar glueballs, in both sides of the phase transition, for the Dirichlet condition (left panel) and the Neumann one
(right panel). We are assuming here that in the AdS thermal phase the masses of the particles almost remain constant

Fig. 6 Same of Fig. 5 but the modes are now functions of the temper-
ature in unit of the energy scale, i.e., T = 1/(πuh)

(dashed) and the scalar graviton spectrum (solid) are respec-
tively displayed. As one can see, the effect of the additional
term, proportional to λ in Eq. (9), is small. Moreover, the
scalar modes become lighter than the tensor ones as expected.
Therefore, we can conclude, that the deconfinement phase

transition mechanism for the tensor glueballs follows the one
already described for the scalar case. Before closing this sec-
tion, we can interpret the above results in view of the HW
model used. Indeed, as already stated in Sect. 4, the external
scalar field EoM in the BH background is the same of that of
the tensor component in the same space. Therefore, by com-
paring the spectra presented in this section with those of the
scalar graviton, e.g. see Fig. 7, we prove that the modes of
the scalar graviton have lower masses than those of the scalar
external field in the BH space. Such a feature is consistent
with the analysis of, e.g. Ref. [23].

5 Conclusions

In this investigation the scalar and tensor glueball spec-
tra have been calculated within the holographic Hard-Wall
model. In particular we have studied the equation of motion
for a graviton propagating first in a thermal AdS space and
then in a AdS Black-Hole in order to describe the glueball
masses as a function of the temperature. The scalar and tensor
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Table 8 The masses of the scalar and tensor AdS BH glueballs, at the phase transition with scales L−1
d = 250 MeV and L−1

n = 290 MeV

k 1 2 3 4 5 . . .

AdS BH scalar D 1631 2402 3137 3880 4611 . . .

AdS BH tensor D 1747 2467 3150 3897 4617 . . .

AdS BH scalar N 1892 2787 3639 4500 5349 . . .

AdS BH tensor N 2027 2862 3654 4521 5356 . . .

Fig. 7 The tensor glueball spectrum (dashed line) in the AdS BH sec-
tor, i.e., below the horizon, as a function of uh , compared with that of
scalar glueballs (solid lines)

components are degenerate in AdS at T = 0. However, when
the BH background is considered, such degeneracy is lost,
and the tensor glueballs become heavier. The energy scale
of the HW model has been fixed by fitting lattice data of the
glueball spectrum. Such a fit is quite good in particular when
Dirichlet boundary conditions are used. Starting from these
results, the mode energies of glueballs have been calculated
in both the AdS thermal and BH spaces. The outcomes of
these evaluations have been used to propose a mechanism to
describe the transition from the AdS thermal sector to the BH
one. If the masses do not depend strongly on the temperature
in the AdS thermal phase and at Herzog’s critical tempera-
ture a first order Hawking-Page phase transition, between the
low temperature AdS thermal phase and a high temperature
BH phase, takes place. Finally, the real transition to a purely
deconfined state is described by a sharp rise of the mass of
the glueballs beyond Tc.

The results of this investigation are quite dependent on the
behaviour of the modes in the AdS thermal phase, but not so
in the AdS BH phase, where the solutions of the EoM are
completely determined by the behaviour of the equations at
the horizon. We can conclude that deconfinement is realized
following Hagendorn’s mechanism [44], consisting in a rapid
rise of the mass of the hadron states until they become heavier
than a system of unconfined gluons, forcing the glueballs
to change from bound states to unbound free particles. The

resulting scenario is similar to that described by Shuryak and
Zahed [45] for a transition to an intermediate phase of heavy
colour bound states before the true deconfinement to QGP
takes over.

This investigation makes use of a specific model and it
should be carried out in more sophisticated models like the
soft-wall or/and the graviton soft-wall models. However, we
expect that a similar behaviour beyond the horizon will take
place there, with a rapid rising of the mode values in the AdS
BH phase. In order to determine the type of phase transition,
a temperature dependence study of the modes in the AdS
thermal phase should be also performed.
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6 Schrödinger solutions

It has been shown that Eq. (10) can be transformed into a
Schrödinger type equations by changing the function φ(z) =
β(z)χ(z) where βz = z2z2

h

√
zh−z

zh(z4
h−z4)

followed by a change
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of variable z = zh/(1 + ey) of the form

−χ ′′(y) = V (y) χ(y), (17)

where

V (y) = 1

4
+ e2y(15(1 + ey)8 − 30(1 + ey)4 − 1

4(1 + ey)2((1 + ey)4 − 1)2

− μ2e2y

(1 − ey)4 − 1
− λ

64(1 + ey)2e2y

(1 + ey)4 − 1)(3(1 + ey)4 − 1)2 ,

(18)

where y ∈ (−∞,∞) [23,24]. We have solved this differen-
tial equation numerically by starting from −∞ towards the
right, and from ∞ towards the left and matching the solu-
tions. In order to do so we need the behavior of the potential
which is

lim
y→−∞ V (y) →

(
5

4
− μ2

4
− 4λ

)
ey, (19)

lim
y→+∞ V (y) → 4. (20)

These limits tell us that the solution of the equation behaves
at the limits as

lim
y→−∞ χ(y) → −eδey , (21)

lim
y→+∞ χ(y) → γ e

− 2y√
γ . (22)

We fix δ = 5
4 − μ2

4 − 4λ and we vary μ = Mzh and γ

to find the match. For γ = 1.089 we get the match shown
in Fig. 8 exactly at μ = 5.51 to be compared to 5.487 for
the method above. It is clear that this technique for solving
the problem might be useful for the use of WKB methods
but one looses the physical insight compared to our way of
solving the problem, which establishes an direct comparison
between the modes and mode functions in the AdS thermal
phase and in the AdS BH phase.
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