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Abstract Recently the LHCb collaboration reported a new
exotic state T+

cc which possesses ccūd̄ flavor structure. Since
its mass is very close to the threshold of D0D∗+ (or D∗0D+)
and its width is very narrow, it is inclined to conjecture that
T+
cc is a molecular state of D0D∗+ (or D∗0D+). In this paper

we study the possible molecular structures of D(∗)D(∗) and
B(∗)B(∗) within the Bethe–Salpeter (B–S) framework. We
employ one boson exchange model to stand the interaction
kernels in the B–S equations. With reasonable input param-
eters we find the isospin eigenstate 1√

2
(D0D∗+ − D∗0D+)

(J P = 1+) constitutes a solution, which supports the ansatz
of T+

cc being a molecular state of D0D∗+ (or D∗0D+). With
the same parameters we also find that the isospin-1 state

1√
2
(D∗0D∗+ + D∗0D∗+) (J P = 0+) can exist. Moreover,

we also study the systems of B(∗)B(∗) and their counterparts
exist as possible molecular states. Consistency of theoretical
computations based on such states with the data of the future
experiments may consolidate the molecular structure of the
exotic state T+

cc .

1 Introduction

Recently the LHCb Collaboration reported a new exotic
state T+

cc in the D0D0π+ invariant mass spectrum. Appar-
ently T+

cc possesses a ccūd̄ flavor component. The differ-
ence between its mass and the mass threshold of D0D∗+ is
−273 ± 61 ± 5+11

−14 keV and its width is 410 ± 165 ± 43+18
−38

keV [1,2]. The new state attracts great interest because it
is the first double-charm tetraquark which was measured.
Since 2003 many exotic states [3–9] such as X (3872),
X (3940), Y (3940), Z(4430)±, Zcs(4000), Zcs(4220), Zb,
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Z ′
b, Pc(4312), Pc(4440), Pc(4457) have been measured. T+

cc
have been observed in experiments and the achievements
broaden our field of view about the flavor structure of exotic
states.

It is difficult to attribute so many exotic states into a bas-
ket determined by the traditional hadronic picture where a
meson contains a quark and anti-quark pair and a baryon is
composed of three valence quarks. Instead, it is suggested
that they should be multi-quark states which are predicted
by the SU (3) quark model [10]. During these years it turns
out to be a hot topic to discuss the structures of exotic states.
Those new states are often proposed to be molecular states,
compact tetraquarks, a mixing of both structures or dynami-
cal effect [11,12].

The mass of T+
cc is very close to the mass threshold of

D0D∗+ or (D+D∗0) so naturally many authors suggested
that T+

cc could be a loose D0D∗+ (D+D∗0) bound state [13–
18]. Some authors also consider it as a tetraquark [19,20].
Generally a compact tetraquark has a wide decay width
whereas a molecular state has a relatively narrow one. View-
ing the width of T+

cc we also tend to accept T+
cc as a D0D∗+

(D+D∗0) bound state. In this paper we study the possible
bound state of D0D+, D0D∗+ and D∗0D∗+ systems within
the Bethe-Salpeter (B–S) framework where the relativistic
corrections are automatically included.

In this work we will study the systems composed of two
charmed or bottomed mesons and the scenario has not been
explored in the B–S framework yet. In our early papers [21–
23] we deduced the B–S equations for the systems containing
one vector and one pseudoscalar, two pseudoscalars and two
vectors respectively. Following the approach in [21–23] we
investigate the systems with two charmed or bottomed con-
stituents such as T+

cc . Since the interaction kernels are not the
same as given in [21–23] and the objects under investigation
are new it needs to re-study the whole scenario.

If the interaction between two constituents is attractive
and large enough a bound state could be formed. In this
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work we employ the one-boson-exchange model to calculate
the interaction kernels where the effective vertices are taken
from the heavy meson chiral perturbation theory [24–29].
The exchanged particles are some light mesons such as π , ρ

and ω. We ignore the contribution from η exchange because
its mass is larger than π and there exists an additional sup-
pression factor 1√

3
at the effective vertex (see Appendix A).

In Ref. [24] the authors indicated that σ exchange makes a
secondary contribution, thus we also do not include it. With
the effective interactions we derive the kernel and establish
the corresponding B–S equation. The B–S equation is solved
in momentum space so the kernel we obtain by calculating
the corresponding Feynman diagrams can be used directly
rather than converting it into a potential form in coordinate
space.

With all the input parameters, these B–S equations are
solved numerically. In some cases there no solution which
satisfies the equation exists as long as the parameters are set
within a reasonable range, it implies the proposed bound state
should not emerge in the nature. On the contrary, a solution
of the B–S equation with reasonable parameters implies that
the corresponding bound state is formed. In that case, the
obtained B–S wave function can be used to calculate the
decay rate of the bound state.

After this introduction we deduce the B–S equations and
the corresponding kernels for the two meson systems with
different quantum numbers. Then in Sect. 3 we present our
numerical results of the binding energies along with explic-
itly displaying all input parameters. Section 4 is devoted to a
brief summary.

2 The Bethe–Salpeter formalism

Initially, people employed the B–S equation to explore the
bound states of two fermions. Later this approach was
extended to study the bound states made of one fermion
and one boson [30–32]. In Refs. [33–37] the B–S equation
was used to study the spectra of the meson-meson molecu-
lar states and then deal with their decays. The method was
extended to explore some other systems in our early papers
[21–23,38].

In Ref. [34,35] the B–S equation for a bound state made
of two pseudoscalars was deduced. Later we deduced the
B–S equations for a system composed of one pseudoscalar
and one vector or two vectors which are one particle and one
antiparticle [21–23].

In this work we are only concerned with the ground
states where the orbital angular momentum between two con-
stituent mesons is zero (i.e. l = 0). For a system whose con-
stituents are two pseudoscalars or one pseudoscalar and one
vector, its J P is 0+ or 1+. For the molecular states which

consist of two vector mesons their J P may be 0+, 1+ and
2+.

Obviously, these systems composed of two charmed (or
bottomed) hadrons (off-shell ) should belong to the same rep-
resentations of isospin. In this case, the total wave function
for the combined systems of D0 and D+ (D∗0 and D∗+) must
be symmetric under group O(3)× SUI (2)× SUS(2), where
SUI (2) and SUS(2) are isospin and spin groups respectively.
For the D0D+ system its total spin is 0 so its isospin should
be 1. Instead, for the D∗0D∗+ system its isospin is 0 as
J P = 1+, whereas it is 1 as J P = 0+ or J P = 2+. For the
D∗+D0 or D∗0D+ systems two isospin states are possible:
1√
2
(D∗+D0 + D∗0D+) (I = 0) and 1√

2
(D∗+D0 − D∗0D+)

(I = 1).

2.1 The B–S equation of 0+ which is composed of two
pseudoscalars

The B–S wave function for the bound state |S〉 of two pseu-
doscalar mesons can be defined as following:

〈0|T φ1(x1)φ2(x2)|S〉 = χ
S
(x1, x2), (1)

where φ1(x1) and φ2(x2) are the field operators of two
mesons, respectively, the relative coordinate x and the center
of mass coordinate X are

X = η1x1 + η2x2, x = x1 − x2, (2)

where ηi = mi/(m1 + m2) and mi (i = 1, 2) is the mass of
the i th constituent meson.

After some manipulations we obtain the B–S equation in
the momentum space

χ
S
(p) = 	1

∫
d4 p′

(2π)4 KS(p, p
′)χ

S
(p′)	2, (3)

where	i is the propagator of the i th meson and	1 = i
p2

1−m2
1
,

	2 = i
p2

2−m2
2
.

The relative momenta and the total momentum of the
bound state in the equations are defined as

p = η2 p1 − η1 p2, p′ = η2 p
′
1 − η1 p

′
2,

P = p1 + p2 = p′
1 + p′

2, (4)

where P denotes the total momentum of the bound state.
D0 and D+ can constitute two possible bound states:

1√
2
(D0D+ + D+D0) with I = 1 and 1√

2
(D0D+ − D+D0)

with I = 0. Since only l = 0 is considered and the total spin
wavefunction is symmetric the system of an isospin-scalar is
forbidden and the isospin-1 state is reduced to D0D+. The
exchanged mesons between the two pseudoscalars are vector
mesons, obviously we only need to keep the lightest vector
mesons ρ and ω [34,35], the Feynman diagrams correspond-
ing these effective interactions are depicted in Fig. 1.
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Fig. 1 A bound state composed of two pseudoscalars. In the Feynman diagram (a) ω exchange should also be included

With the Feynman diagrams depicted in Fig. 1 and the
effective interactions shown in appendix A we obtain the
interaction kernel

KS(p, p
′) = KS0(p, p

′,mρ) + KS0(p.p
′,mω),

KS0(p, p
′,mV ) = iCS0 g

2
DDV

(p1 + p′
1) · (p2 + p′

2) − (p1 + p′
1) · q(p2 + p′

2) · q/m2
V

q2 − m2
V

F(q)2, (5)

where q = p1 − p′
1. For exchanging ρ the expression

KS0(p, p′,mρ) includes the contributions from figures Fig. 1
(a) and (b) but for exchanging ω it only includes the contri-
bution from figure Fig. 1a. CS0 = 1

2 for ρ and ω. Since the
constituent meson is not a point particle, a form factor at
each interaction vertex among hadrons must be introduced
to reflect the finite-size effects of these hadrons. The form
factor is assumed to be in the following form:

F(k) = 
2 − M2
V


2 − k2 , (6)

where 
 is a cutoff parameter.
Solving the Eq. (3) is rather difficult. In general one needs

to use the so-called instantaneous approximation:p′
0 = p0 =

0 for K0(p, p′) by which the B–S equation can be reduced
to

E2 − (E1 + E2)
2

(E1 + E2)/E1E2
ψ

S
(p) = i

2

∫
d3p′

(2π)3 KS(p,p′)ψ
S
(p′),

(7)

where Ei ≡
√
p2 + m2

i , E = P0, and the equal-time wave

function is defined as ψS (p) = ∫
dp0 χS (p) . For exchange

of a light vector between the mesons, the kernel is

KS(p,p′) = KS0(p,p′,mρ) + KS0(p,p′,mω), (8)

where the expressions of KS0(p,p′,mV ) can be found in
Appendix B.

2.2 The B–S equation of 1+ which is composed of a
pseudoscalar and a vector

The B–S wave function for the bound state |V 〉 composed
of one pseudoscalar and one vector mesons is defined as
following:

〈0|T φ1(x1)φ
μ
2 (x2)|V 〉 = χ

V
(x1, x2)ε

μ, (9)

where ε is the polarization vector of the bound state, χV is
the B–S wave function, φ1(x1) and φ

μ
2 (x2) are respectively

the field operators of the two mesons. The equation for the
B–S wave function is

χV (p)εμ = 	1

∫
d4 p′

(2π)4 KVαβ(p, p′)χV (p′)εβ	2μα. (10)

Here 	1 = i
p2

1−m2
1

and 	2μα = i
p2

2−m2
2
(
p2μ p2α

m2
2

−gμα) are the

propagators of pseudoscalar and vector mesons. We multiply
an ε∗

μ on both sides, sum over the polarizations and then
deduce a new equation

χ
V
(p)

= −1

3(p2
1 − m2

1)(p
2
2 − m2

2)

∫
d4 p′

(2π)4 KVαβ(p, p′)χ
V
(p′)

×
(
pμ

2 pα
2

m2
2

− gμα

) (
PμPβ

M2 − gβ
μ

)
. (11)

With the Feynman diagrams depicted in Figs. 2 and 3 we
eventually obtain

KVαβ(p, p′) = KV 1αβ(p, p′,mρ) + KV 2αβ(p, p′,mρ)

+KV 1αβ(p, p′,mω)

+KV 2αβ(p, p′,mω) + KV 3αβ(p, p′,mπ ),

KV 1αβ(p, p′,mV ) = CV 1gDDV

{
gD∗D∗V

[
gαβ(p2 + p′

2)

·(p1 + p′
1) + gαβ

q · (p1 + p′
1)q · (p2 + p′

2)

m2
V

]

+2g′
D∗D∗V

[
qα(p1 + p′

1)
β − qβ(p1 + p′

1)
α
] }
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Fig. 2 A bound state composed of a pseudoscalar and a vector by exchanging π
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Fig. 3 A bound state composed of a pseudoscalar and a vector by exchanging ρ. In the two Feynman diagrams (a) and (c) exchange of ω also is
also taken into account

i

q2 − m2
V

F(q)2

KV 2αβ(p, p′,mV ) = CV 2ε
μνβτ (q ′

νgλμ − q ′
μgλν)

×(p′
2 − p1)τ ε

μ′ν′ατ ′
(q ′

μgλ′ν − q ′
νgλ′μ)(p2 − p′

1)τ ′

× i

q ′2 − m2
V

(−gλλ′ + q ′λq ′λ′
/m2

V )F(q ′)2,

KV 3αβ(p, p′,mP ) = CV 3g
2
DD∗P

i

q ′2 − m2
P

q ′
αq

′
βF(q ′)2,

(12)

where q ′ = p1 − p′
2. The contributions from Fig. 2 are

included in KV 3αβ(p, p′,mπ ) and those from Fig. 3a, b are
included in KV 1αβ(p, p′,mV ). When the bound state is an
isospin-scalar CV 1 = − 3

2 and CV 2 = 3
2 for ρ, CV 1 = 1

2 and
CV 2 = − 1

2 for ω and CV 3 = 3
2 for π . When the bound state

is an isospin-vector CV 1 = 1
2 and CV 2 = 1

2 for ρ, CV 1 = 1
2

and CV 2 = 1
2 for ω and CV 3 = 1

2 for π .

Defining KV (p, p′) = KVαβ(q)(
pμ

2 pα
2

m2
2

− gμα)(
PμPβ

M2 −
gβ
μ) and setting p0 = q0 = 0 we derive the BS equation

which is similar to Eq. (7) but possesses a different kernel,

E2 − (E1 + E2)
2

(E1 + E2)/E1E2
ψ

V
(p) = i

2

∫
d3p′

(2π)3 KV (p,p′)ψ
V
(p′),

(13)

where

KV (p,p′) = KV 1(p,p′,mρ) + KV 2(p,p′,mρ)

+KV 1(p,p′,mω)

+KV 2(p,p′,mω) + KV 3(p,p′,mπ ), (14)

where the expressions of KV 1(p,p′,mV ), KV 2(p,p′,mV )

and KV 3(p,p′,mP ) can be found in Appendix B.
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Fig. 4 A bound state composed of two vectors. a π is exchanged and in fact there totally are four diagrams like those in Fig. 3. b ρ (ω) is exchanged
and there are four (two) diagrams like those in Fig. 3

2.3 The bound state (0+) composed of two vector mesons

The quantum number J P of the bound state composed of
two vectors can be 0+, 1+ and 2+. The corresponding B–S
wave function |S′〉 is defined as following:

〈0|T φ
μ
1 (x1)φ

ν
2 (x2)|S′〉 = χ

0
(x1, x2)g

μν. (15)

The equation for the B–S wave function is derived as

χ
0
(p) = 1

4
	1μλ

∫
d4 p′

(2π)4 K αα′μμ′
0 (p, p′)

χ
0
(p′)	2μ′λ′gαα′gλλ′

, (16)

where 	 jμλ = i
p2
j−m2

j
(
p jμ p jλ

m2
2

− gμλ).

With the Feynman diagrams depicted in Fig. 4 and the
effective interaction we obtain pg

Kαα′μμ′
0 (p, p′) = Kαα′μμ′

01 (p, p′,mρ)

+Kαα′μμ′
02 (p, p′,mρ)

+Kαα′μμ′
01 (p, p′,mω)

+Kαα′μμ′
02 (p, p′,mω) + Kαα′μμ′

03 (p, p′,mπ )

+Kαα′μμ′
04 (p, p′,mπ ),

Kαα′μμ′
01 (p, p′,mV ) = iC01

qνqν′
/mV

2 − gνν′

q2 − m2
V

×
[
gD∗D∗V g

αμ(p1 + p′
1)ν − 2g′

D∗D∗V (qαgμν − qμgαν)

]

×
[
gD∗D∗V g

α′μ′
(p2 + p′

2)ν′

+2g′
D∗D∗V (qα′

gμ′ν′ − qμ′
gα′ν′)

]
F(q)2,

Kαα′μμ′
02 (p, p′,mV ) = iC02

q ′νq ′ν′
/mV

2 − gνν′

q ′2 − m2
V

×
[
gD∗D∗V g

αμ(p1 + p′
2)ν − 2g′

D∗D∗V (q ′αgμν − q ′μgαν)

]

×
[
gD∗D∗V g

α′μ′
(p2 + p′

1)ν′

+2g′
D∗D∗V (q ′α′

gμ′ν′ − q ′μ′
gα′ν′ )

]
F(q ′)2,

Kαα′μμ′
03 (p, p′,mP ) = C03g

2
D∗D∗P εαβμν

×qν(p1 + p′
1)βεα′β ′μ′ν′

qν′ (p2 + p′
2)β ′

−i

q2 − M2
π

F(q)2,

Kαα′μμ′
04 (p, p′,mP ) = C04g

2
D∗D∗P εαβμν

×q ′
ν(p1 + p′

2)βεα′β ′μ′ν′
q ′
ν′ (p2 + p′

1)β ′
−i

q ′2 − m2
P

F(q ′)2.

(17)

The contributions from vector-exchanges are included in

K αα′μμ′
01 (p, p′,mV ) and K αα′μμ′

02 (p, p′,mV ) and those for

exchanging pseudoscalars are included in K αα′μμ′
03 (p, p′,mP )

and K αα′μμ′
04 (p, p′,mP ). When the bound state is an isospin-

scalarC01 = − 3
2 andC02 = 3

2 for ρ,C01 = 1
2 andC02 = − 1

2
for ω and C03 = − 3

2 and C04 = 3
2 for π . When the bound

state is an isospin-vector C01 = 1
2 and C02 = 1

2 for ρ,
C01 = 1

2 and C02 = 1
2 for ω and C03 = 1

2 and C04 = 1
2

for π .
Defining K0(p, p′) = 1

4 K
αα′μμ′
0 (p, p′)( p2μ′ p2λ′

m2
2

− gμ′λ′)

(
p1μ p1λ

m2
1

− gμλ) we derive the B–S equation which is similar

to Eq. (7) but possesses a different kernel.
The B–S equation can be reduced to

E2 − (E1 + E2)
2

(E1 + E2)/E1E2
ψ

0
(p) = i

2

∫
d3p′

(2π)3 K0(p,p′)ψ
0
(p′),

(18)

where

K0(p,p′) = K01(p,p′,mρ) + K02(p,p′,mρ)

+K01(p,p′,mω) + K02(p,p′,mω)

+K03(p,p′,mπ ) + K04(p,p′,mπ ), (19)

The expressions of K01(p,p′,mV ), K02(p,p′,mV ), K03(p,

p′,mP ) and K04(p,p′,mP ) can be found in Appendix B.
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2.4 The B–S equation of 1+ state which is composed of
two vectors

The B–S wave function of 1+ state |V ′〉 composed of two
axial-vectors is defined as

〈0|Tφα(x1)φα′(x2)|V ′〉 = εαα′ττ ′√
6M

χ1(x1, x2)ε
τ Pτ ′

, (20)

where ε is the polarization vector of 1+ state.
The corresponding B–S equation is

χ1(p) = 1

6M2 ελλ′ωσ εσ Pω	1μλ

×
∫

d4 p′

(2π)4 K αα′μμ′
1 (p, p′)εαα′ω′σ ′

χ1(p
′)εσ ′

Pω′
	2μ′λ′ , (21)

where K αα′μμ′
1 (p, p′) is the same as K αα′μμ′

0 (p, p′) in Eq.
(17).

Defining K1(p, p′) = K αα′μμ′
1 (p,p′)

6 M2 ελλ′ωσ εσ Pω(
p2μ′ p2λ′

m2
2

−
gμ′λ′)(

p1μ p1λ

m2
1

− gμλ)εαα′ω′σ ′εσ ′
Pω′

the B–S equation is

reduced to

E2 − (E1 + E2)
2

(E1 + E2)/E1E2
ψ

1
(p) = i

2

∫
d3p′

(2π)3 K1(p,p′)ψ
1
(p′),

(22)

with

K1(p,p′) = K11(p,p′,mρ) + K12(p,p′,mρ)

+K11(p,p′,mω) + K12(p,p′,mω)

+K13(p,p′,mπ ) + K14(p,p′,mπ ). (23)

The expressions of K11(p,p′,mV ), K12(p,p′,mV ), K13(p,

p′,mP ) and K14(p,p′,mP ) can be found in Appendix B.

2.5 The B–S equation of 2+ state |T ′〉 which is composed
of two vectors

The B–S wave-function of 2+ state composed of two axial-
vectors is written as

〈0|Tφα(x1)φ
α′

(x2)|T ′〉 = 1√
5
χ2(x1, x2)ε

αα′
, (24)

where ε is the polarization vector of the 2+ state.
The B–S equation can be expressed as

χ2(p) = 1

5
ελλ′

	1μλ

∫
d4q

(2π)4 K αα′μμ′
2 (p, p′)εαα′

χ2(q)	2μ′λ′ , (25)

where K αα′μμ′
2 (p, p′) is the same as K αα′μμ′

0 (p, p′) in Eq.
(17).

Defining K2(p, p′) = K αα′μμ′
2 (p,p′)

5 ελλ′
(
p2μ′ p2λ′

m2
2

− gμ′λ′)

(
p1μ p1λ

m2
1

− gμλ)εαα′ the B–S equation can be reduced to

E2 − (E1 + E2)
2

(E1 + E2)/E1E2
ψ

2
(p) = i

2

∫
d3p′

(2π)3 K2(p,p′)ψ
2
(p′),

(26)

where

K2(p,p′) = K21(p,p′,mρ) + K22(p,p′,mρ)

+K21(p,p′,mω) + K22(p,p′,mω)

+K23(p,p′,mπ ) + K24(p,p′,mπ ). (27)

The expressions of K21(p,p′,mV ), K22(p,p′,mV ), K23(p,

p′,mP ) and K24(p,p′,mP ) can be found in Appendix B.

3 Numerical results

Now let us solve the B–S Eqs. (7), (13), (18), (22) and (26).
Since we are interested in the ground state of a bound state the
function ψJ (p) (J represents S, V, 0, 1 or 2) only depends on
the norm of the three-momentum and we may first integrate
over the azimuthal angle of the functions in (7), (13), (18),
(22) or (26)

i

2

∫
d3p′

(2π)3 KJ (p,p′),

to obtain a potential formUJ (|p|, |p′|), then the B–S equation
turns into a one-dimension integral equation

ψJ (|p|) = (E1 + E2)/E1E2

E2 − (E1 + E2)2

∫
d|p′|UJ (|p|, |p′|)ψJ (|p′|).

(28)

When the potentialUJ (p,p′) is attractive and strong enough
the corresponding B–S equation has a solution(s) and we can
obtain the mass of the possible bound state.

Generally the standard way of solving an integral equation
is to discretize and perform algebraic operations. Concretely,
we let |p| and |p′| take n ( n is sufficiently large) order discrete
values Q1, Q2, . . . , Qn and the gap between two adjacent
values be 	Q, then the integral equation is transformed inton
coupled algebraic equations. ψ

J
(Q1), ψJ

(Q2), . . . ψJ
(Qn)

( the subscript J denotes S, V , 0, 1 or 2) constitute a column
matrix and the coefficients would stand as an n×n matrix M ,
thus these algebraic equations can be regarded as a matrix
equation with a unique eigenvalue 1. If one can obtain a
value of E which satisfies the equation with reasonable input
parameters and E is not far from E1 + E2 the corresponding
eigenvector should exist as a bound state.

In our calculation the values of the parameters
gDDV , gDD∗P , gDD∗V , gD∗D∗V and g′

D∗D∗V are presented in
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Appendix A. Supposing T+
cc is a D0D∗+ bound state, by

fitting its mass we fix 
 = 1.134 GeV. In Ref. [39,40] the
authors suggested a relation: 
 = m + α
QCD where m is
the mass of the exchanged meson, α is a number of O(1) and

QCD = 220 MeV i.e. 
 ∼ 1GeV for exchanging ρ or ω.
The value of 
 we obtained locates within the range.

The masses of the concerned constituent mesons mD ,
mD∗ , mB and mB∗ are directly taken from the databook [41].

3.1 The results of D(∗)D(∗) system

Now let us try to calculate the eigenvalues of these systems
of D0D+(J P = 0+, I = 1), D0D∗+(J P = 1+, I = 1),
D0D∗+(J P = 1+, I = 0), D∗0D∗+(J P = 0+, I = 1),
D∗0D∗+(J P = 1+, I = 0) and D∗0D∗+(J P = 2+, I = 1)

respectively. Apparently with the parameters 
 and coupling
constants, not all B–S equations are solvable. For D0D∗+
system with I = 0 the B–S equation has a solution. It
implies that D0D∗+ can form an isospin scalar bound state
by exchanging light mesons. In Ref. [42] the authors also
obtained the same results with similar approach. For the
D0D∗+ (I = 1) or D0D+ (I = 1) system, employing a
larger 
 and coupling constant we can obtain a solution. It
may imply the effective interaction between the two con-
stituents is weak. For the D∗0D∗+ system we can obtain
an eigenvalue 18.51 MeV, the corresponding eigenstate is a
bound state of J = 0 and I = 1. In Table 1 there are many
places symbolized by “∗′′ or “−′′ which means such bound
states cannot exist due to the symmetry restriction or the B–S
equation has no solution. However in Ref. [43] D∗D∗ system
with J = 1 and isospin I = 0 was suggested to exist, which
contradicts to our result. The reason is that the authors of
Ref. [43] did not symmetrize and antisymmetrize the flavor
wave functions of D∗D∗ for I = 0 and I = 1 states [44,45].
Instead, we redo the calculation as the total symmetry of the
wave-function including flavor, spin parts and orbital angular
momentum is taken into account. For the D∗0D∗+ system the
spin wave-function is symmetrized and/or antisymmetrized
so that the flavor wave functions need to be correspondingly
symmetrized and antisymmetrized when l = 0. For I = 1
and I = 0 states of D∗0D∗+ the symmetric and antisymmet-
ric flavor wave-functions were considered in Ref. [46].

3.2 The results of the B(∗)B(∗) system

Considering the flavor SU (3) symmetry and heavy quark
effective symmetry we generalize those relations as gBBV =
gDDV , gBB∗P = gDD∗P , gBB∗V = gDD∗V , gB∗B∗V = gD∗D∗V
and g′

B∗B∗V = g′
D∗D∗V which should be a not-bad approxima-

tion.
We use the same parameter 
 fixed for the DD∗ systems

to solve the B–S equation for the B(∗)B(∗) systems. We find
that two states which are the counterparts of D(∗)D(∗) can

exist. The binding energy of each state shown in Table 2
is apparently larger than that of the corresponding state of
D(∗)D(∗) since the mass of B(∗) meson is larger than that of
D(∗) meson (Fig. 5).

4 A brief summary

In this work we study whether two charmed (or bottomed)
mesons can form a hadronic molecule. We employ the B–S
framework to search for possible bound states of D(∗)D(∗)

[47] and B(∗)B(∗). In Ref. [21,22,34,35,38] the B–S wave
functions for the systems of one vector and one pseudoscalar,
two pseudoscalar mesons and two vectors were studied. It is
noted that all those works are dealing with bound states made
of one particle and one-antiparticle, no matter they are pseu-
doscalar or vector bosons. In comparison, this work is con-
cerning particle-particle bound states(charmed D(∗)D(∗) or
bottomed B(∗)B(∗)). Since the two constituents are accounted
as identical, symmetrization of the total wavefunctions is
necessarily required. In this work we deduce the interaction
kernels for these systems and solve these B–S equations.

In order to obtain the interaction kernels for B–S equations
we use the heavy meson chiral perturbation theory to calcu-
late the corresponding Feynman diagrams where π , ρ or ω

are exchanged. All coupling constants are taken from rele-
vant references. For making predictions we use the binding
energy of T+

cc to fix the parameter 
 under the hypothesis that
T+
cc is a bound state of D0D∗+ with I = 0 and J = 1. With

the same parameters we confirm that D∗0D∗+ with I = 1
and J = 0 should exist. For the D∗0D∗+ system with I = 1
and J = 2, a larger 
 or large coupling constants are needed
to form bound states.

Considering the flavor SU (3) symmetry and heavy quark
spin symmetry we employ the same parameters to calculate
possible bound states of B(∗)B(∗). Two states which are the
counterparts of D(∗)D(∗) can exist. The binding energy of
each state is apparently larger than that of the correspond-
ing state of D(∗)D(∗) since B(∗) meson is heavier than D(∗)

meson.
Since the parameters are fixed from data which span a rela-

tively large range we cannot expect all the numerical results to
be very accurate. The goal of this work is to study whether two
charmed (or bottomed) mesons can form a molecular state.
Our results, even if not accurate, have obvious qualitative
significance. Definitely, further theoretical and experimental
works are badly needed for gaining better understanding of
these exotic hadrons.
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Table 1 The binding energy of the ground DD(∗) system (in unit of MeV)

D0D+(0+) D0D∗+(1+) D∗0D∗+(0+) D∗0D∗+(1+) D∗0D∗+(2+)

I = 0 × 0.273 × – ×
I = 1 – – 18.51 × –

Table 2 The eigenvalues of the ground BB(∗) system (in unit of MeV)

B0B+(0+) B0B∗+(1+) B∗0B∗+(0+) B∗0B∗+(1+) B∗0B∗+(2+)

I = 0 × 17.38 × – ×
I = 1 – – 62.37 × –

(a) (b)

Fig. 5 The unnormalized wave functions of the bound states
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Appendix A: The effective interactions

The effective interactions can be found in[24–26]

LDDV = gDDV (Db
↔
∂ β D†

a)(Vβ)ba, (A1)

LDD∗V = igDD∗V εαβμν(∂αVβ − ∂βVα)ba

×(∂νDbD
∗μ†
a − ∂νD

∗μ†
b Da), (A2)

LDD∗P = gDD∗P Db(∂μM)baD
∗μ†
a

+gDD∗P D
∗μ
b (∂μM)baD

†
a, (A3)

LD∗D∗P = gD∗D∗P (D∗μ
b

↔
∂

β

D∗α†
a )(∂νM)baενμαβ, (A4)

LD∗D∗V = igD∗D∗V (D∗ν
b

↔
∂ μ D∗†

aν)(V)
μ
ba

+ig′
D∗D∗V (D∗μ

b D∗ν†
a − D∗μ†

b D∗ν
a )

(∂μVν − ∂νVμ)ba (A5)

where a and b represent the flavors of light quarks. In Refs.
[24] M and V are 3 × 3 hermitian and traceless matrix⎛
⎜⎜⎝

π0√
2

+ η√
6

π+ K+

π− − π0√
2

+ η√
6
K 0

K− K̄ 0 −
√

2
3η

⎞
⎟⎟⎠ and

⎛
⎜⎜⎝

ρ0√
2

+ ω√
2

ρ+ K ∗+

ρ− − ρ0√
2

+ ω√
2
K ∗0

K ∗− ¯K ∗0 φ

⎞
⎟⎟⎠

respectively.
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In the chiral and heavy quark limit, the above coupling
constants are gDDV = βgV√

2
, gDD∗V = λgV√

2
, gD∗D∗P = g

fπ
,

gDD∗P = − 2 g
fπ

√
MDMD∗ , gD∗D∗V = −βgV√

2
, g′

D∗D∗V =
−√

2λgV MD∗ with fπ = 132 MeV [25], g = 0.64 [26],
κ = g, β = 0.9, gV = 5.9 [48] and λ = 0.56 GeV−1 [49].

Appendix B: Kernel

KS0(p,p′,mv) = iCS1 g
2
DDV

(p + p′)2 + 4η1η2E2 + (p2 − p′2)2/m2
V

(p − p′)2 + m2
V

F(q)2. (B1)

KV 1(p,p′,mV ) = iCV 1gDDV F(q)2

−(p − p′)2 − m2
V

×
{

− gD∗D∗V p
2[4η1η2M

2 + (p + p′)2]/m2
2

− 3gD∗D∗V (p2 − p′2)2/m2
V

− gD∗D∗V p
2(p2 − p′2)2/(m2

2m
2
V )

+ 4η1η2g
′
D∗D∗V M

2(−p2 + p · p′)/m2
2

}

KV 2(p,p′,mV ) = iCV 2g2
D∗DV

F(q′)2

−(p + p′)2 − m2
V

×[−8η1η2M
2(p − p′)2 − 4p2p′2 + 4p · p′2]

KV 3(p,p′,mP ) = iCV 3g2
DD∗P F(q′)2

−(p + p′)2 − m2
P

× [−(p + q)2 − (p2(p + q)2/m22)] (B2)

K01 = iC01g2
D∗D∗V F(q)2

4[−(p − p′)2 − m2
V ]

× {−16η1η2M
2 − 4(p + p′)2

− (η1η2M2 + p2)2(p2 − p′2)2

(m2
1m

2
2m

2
V )

+ (η2
1M

2 − p2)(p2 − p′2)2/(m2
1m

2
V )

+ (η2
2M

2 − p2)(p2 − p′2)2/(m2
2m

2
V )

− 4(p2 − p′2)2/m2
V − (η1η2M

2 + p2)2[4η1η2M
2

+ (p + p′)2]/(m2
1m

2
2)

+ (η2
1M

2 − p2)[4η1η2M
2 + (p + p′)2]/m2

1

+ (η2
2M

2 − p2)[4η1η2M
2 + (p + p′)2]/m2

2}

+ iC01gD∗D∗V g
′
D∗D∗V F(q)2

−(p − p′)2 − m2
V

(η1 + η2)
2M2(η1η2M

2

+ p2)(p2 − p · p′)/(m2
1m

2
2)

+ iC01g′2
D∗D∗V F(q)2

4[−(p − p′)2 − m2
V ] {[8(p2

+ η1η2M
2)(p2p′2 − p · p′2)

− 4(η2
1η

2
2M

4 + 4η1η2p2M2 + 3p4)(p − p′)2]/(m2
1m

2
2)

− 24(p − p′)2 + [4(η2
1M

2 − 3p2)(p − p′)2

+ 8(p2p′2 − p · p′2)]/m2
1

+ [4(η2
2M

2 − 3p2)(p − p′)2 + 8(p2p′2 − p · p′2)]/m2
2}

K02 = iC02g2
D∗D∗V F(q′)2

4[−(p + p′)2 − m2
V ] {−16η1η2M

2 − 4(p − p′)2

− (η1η2M2 + p2)2(p2 − p′2)2

(m2
1m

2
2m

2
V )

+ (η2
1M

2 − p2)(p2 − p′2)2/(m2
1m

2
V )

+ (η2
2M

2 − p2)(p2 − p′2)2/(m2
2m

2
V )

− (4(p2 − p′2)2)/m2
V − (η1η2M

2 + p2)2[4η1η2M
2

+ (p − p′)2]/(m2
1m

2
2)

+ (η2
1M

2 − p2)[4η1η2M
2 + (p − p′)2]/m2

1

+ (η2
2M

2 − p2)[4η1η2M
2 + (p − p′)2]/m2

2}

+ iC02gD∗D∗V g
′
D∗D∗V F(q′)2

−(p + p′)2 − m2
V

(η1 + η2)
2M2(η1η2M

2

+ p2)(p2 + p · p′)/(m2
1m

2
2)

+ iC02g′2
D∗D∗V F(q′)2

4[−(p + p′)2 − m2
V ] {[8(p2

+ η1η2M
2)(p2p′2 − p · p′2)

− 4(η2
1η

2
2M

4 + 4η1η2p2M2

+ 3p4)(p + p′)2]/(m2
1m

2
2)

− 24(p + p′)2 + [4(η2
1M

2 − 3p2)(p + p′)2

+ 8(p2p′2 − p · p′2)]/m2
1

+ [4(η2
2M

2 − 3p2)(p + p′)2

+ 8(p2p′2 − p · p′2)]/m2
2}

K03 = 2
iC03g2

D∗D∗P F(q)2

(p − p′)2 + m2
P

[−p · p′2

+ η1η2M
2(p − p′)2 + p2p′2]

K04 = 2
iC04g2

D∗D∗P F(q′)2

(p + p′)2 + m2
P

[−p · p′2 + η1η2M
2(p + p′)2 + p2p′2] (B3)

K11 = − iC11g2
D∗D∗V F(q)2

−(p − p′)2 − m2
V

{4η1η2M
2m2

V

+ [m2
V + (p − p′)2](p + p′)2}

×[(3m2
2 + p2)m2

1 + m2
2p

2]/(3m2
1m

2
2m

2
V )

+ 4
iC11gD∗D∗V g

′
D∗D∗V F(q)2

−(p − p′)2 − m2
V

η1η2M
2(m2

1 + m2
2)

×(p2 − p · p′)/(3m2
1m

2
2) − iC11g′2

D∗D∗V F(q)2

−(p − p′)2 − m2
V
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×{[4(2m2
2 + p2)m2

1 + 4m2
2p

2](p − p′)2

+ 2(m2
1 + m2

2)(p · p′2 − p2p′2)}/(3m2
1m

2
2)

K12 = − iC12g2
D∗D∗V F(q′)2

−(p + p′)2 − m2
V

[(3m2
2 + p2)m2

1

+ m2
2p

2]{4η1η2M
2m2

V

+ [m2
V + (p + p′)2](p − p′)2}/(3m2

1m
2
2m

2
V )

+ 4
iC12gD∗D∗V g

′
D∗D∗V F(q′)2

−(p + p′)2 − m2
V

η1η2M
2(m2

1 + m2
2)(p

2

+p · p′)/(3m2
1m

2
2)

− iC12g′2
D∗D∗V F(q′)2

−(p + p′)2 − m2
V

{[4(2m2
2 + p2)m2

1

+ 4m2
2p

2](p + p′)2

+2(m2
1 + m2

2)(p · p′2 − p2p′2)}/(3m2
1m

2
2)

K13 = 4

3

iC13g2
D∗D∗P F(q)2

−(p − p′)2 − m2
P

η1η2M
2(p − p′)2

K14 = 4

3

iC14g2
D∗D∗P F(q′)2

−(p + p′)2 − m2
P

η1η2M
2(p + p′)2 (B4)

K21 = − iC21g2
D∗D∗V F(q)2

−(p − p′)2 − m2
V

g2
D∗D∗V [5m2

2p
2 + 2p4

+ 5m2
1(3m

2
2 + p2)]{4η1η2M

2m2
V

+[m2
V + (p − p′)2](p + p′)2}/(15m2

1m
2
2m

2
V )

+ 4
iC21gD∗D∗V g

′
D∗D∗V F(q)2

−(p − p′)2 − m2
V

η1η2M
2

× (5m2
1 + 5m2

2 + 4p2)(p2 − p · p′)/(15m2
1m

2
2)

+ iC21g′2
D∗D∗V F(q)2

−(p − p′)2 − m2
V

{[20m2
1(2m

2
2 + p2)

+4p2(−2η1η2M
2 + 5m2

2 + 2p2)](p − p′)2/(15m2
1m

2
2)

+2(−6η1η2M
2 + 5m2

1 + 5m2
2 + 2p2)(p · p′2

−p2p′2)/(15m2
1m

2
2)}

K22 = − iC22g2
D∗D∗V F(q′)2

−(p + p′)2 − m2
V

[5m2
2p

2 + 2p4

+5m2
1(3m

2
2 + p2)]{4η1η2M

2m2
V

+[m2
V + (p + p′)2](p − p′)2}/(15m2

1m
2
2m

2
V )

+4
iC22gD∗D∗V g

′
D∗D∗V F(q′)2

−(p + p′)2 − m2
V

η1η2M
2

×(5m2
1 + 5m2

2 + 4p2)(p2 + p · p′)/(15m2
1m

2
2)

+ iC22g′2
D∗D∗V F(q′)2

−(p + p′)2 − m2
V

×{[20m2
1(2m

2
2 + p2) + 4p2(−2η1η2M

2 + 5m2
2 + 2p2)]

×(p + p′)2/(15m2
1m

2
2)

+ 2(−6η1η2M
2 + 5m2

1 + 5m2
2 + 2p2)

×(p · p′2 − p2p′2)/(15m2
1m

2
2)}

K23 = −4

3

iC23g2
D∗D∗P F(q)2

−(p − p′)2 − m2
P

η1η2M
2(p − p′)2

K24 = −4

3

iC24g2
D∗D∗P F(q′)2

−(p + p′)2 − m2
P

η1η2M
2(p + p′)2 (B5)

where q = (p − p′) and q = (p + p′).

References

1. R. Aaij et al. [LHCb], arXiv:2109.01056 [hep-ex]
2. R. Aaij et al. [LHCb], arXiv:2109.01038 [hep-ex]
3. S.K. Choi et al. [Belle Collaboration], Phys. Rev. Lett. 91, 262001

(2003). arXiv:hep-ex/0309032
4. K. Abe et al. [Belle Collaboration], Phys. Rev. Lett. 98, 082001

(2007). arXiv:hep-ex/0507019
5. S.K. Choi et al. [Belle Collaboration], Phys. Rev. Lett. 94, 182002

(2005)
6. S.K. Choi et al. [BELLE Collaboration], Phys. Rev. Lett. 100,

142001 (2008). arXiv:0708.1790 [hep-ex]
7. R. Aaij et al. [LHCb], Phys. Rev. Lett. 127(8), 082001

(2021). https://doi.org/10.1103/PhysRevLett.127.082001.
arXiv:2103.01803 [hep-ex]

8. B. Collaboration, arXiv:1105.4583 [hep-ex]
9. R. Aaij et al. [LHCb], Phys. Rev. Lett. 122(22), 222001

(2019). https://doi.org/10.1103/PhysRevLett.122.222001.
arXiv:1904.03947 [hep-ex]

10. M. Gell-Mann, Phys. Lett. 8, 214 (1964)
11. H.X. Chen, W. Chen, X. Liu, Y.R. Liu, S.L. Zhu, Rep. Prog.

Phys. 80(7) (2017). https://doi.org/10.1088/1361-6633/aa6420.
arXiv:1609.08928 [hep-ph]

12. F.K. Guo, X.H. Liu, S. Sakai, https://doi.org/10.1016/j.ppnp.2020.
103757. arXiv:1912.07030 [hep-ph]

13. L. Meng, G.J. Wang, B. Wang, S.L. Zhu, Phys. Rev. D
104(5) (2021). https://doi.org/10.1103/PhysRevD.104.L051502.
arXiv:2107.14784 [hep-ph]

14. M.J. Yan, M.P. Valderrama, arXiv:2108.04785 [hep-ph]
15. H. Ren, F. Wu, R. Zhu, arXiv:2109.02531 [hep-ph]
16. M.L. Du, V. Baru, X.K. Dong, A. Filin, F.K. Guo, C. Hanhart,

A. Nefediev, J. Nieves, Q. Wang, arXiv:2110.13765 [hep-ph]
17. Q. Xin, Z.G. Wang, arXiv:2108.12597 [hep-ph]
18. A. Feijoo, W.H. Liang, E. Oset, Phys. Rev. D 104(11)

(2021). https://doi.org/10.1103/PhysRevD.104.114015.
arXiv:2108.02730 [hep-ph]

19. X.Z. Weng, W.Z. Deng, S.L. Zhu, arXiv:2108.07242 [hep-ph]
20. S.S. Agaev, K. Azizi, H. Sundu, arXiv:2108.00188 [hep-ph]
21. H.W. Ke, X.H. Liu, X.Q. Li, Chin. Phys. C 44(9) (2020). https://doi.

org/10.1088/1674-1137/44/9/093104. arXiv:2004.03167 [hep-
ph]

22. H.W. Ke, X. Q. Li, Y.L. Shi, G.L. Wang, X.H. Yuan, JHEP
1204, 056 (2012). https://doi.org/10.1007/JHEP04(2012)056.
arXiv:1202.2178 [hep-ph]

23. H.W. Ke, M. Li, X.H. Liu, X.Q. Li, Phys. Rev. D
101(1) (2020). https://doi.org/10.1103/PhysRevD.101.014024.
arXiv:1909.12509 [hep-ph]

24. G.J. Ding, Phys. Rev. D 79, 014001 (2009). https://doi.org/10.
1103/PhysRevD.79.014001. arXiv:0809.4818 [hep-ph]

25. P. Colangelo, F. De Fazio, R. Ferrandes, Phys. Lett. B
634, 235 (2006). https://doi.org/10.1016/j.physletb.2006.01.021.
arXiv:hep-ph/0511317

123

http://arxiv.org/abs/quant-ph/2109.01056
http://arxiv.org/abs/quant-ph/2109.01038
http://arxiv.org/abs/hep-ex/0309032
http://arxiv.org/abs/hep-ex/0507019
http://arxiv.org/abs/quant-ph/0708.1790
https://doi.org/10.1103/PhysRevLett.127.082001
http://arxiv.org/abs/quant-ph/2103.01803
http://arxiv.org/abs/quant-ph/1105.4583
https://doi.org/10.1103/PhysRevLett.122.222001
http://arxiv.org/abs/quant-ph/1904.03947
https://doi.org/10.1088/1361-6633/aa6420
http://arxiv.org/abs/quant-ph/1609.08928
https://doi.org/10.1016/j.ppnp.2020.103757
https://doi.org/10.1016/j.ppnp.2020.103757
http://arxiv.org/abs/quant-ph/1912.07030
https://doi.org/10.1103/PhysRevD.104.L051502
http://arxiv.org/abs/quant-ph/2107.14784
http://arxiv.org/abs/quant-ph/2108.04785
http://arxiv.org/abs/quant-ph/2109.02531
http://arxiv.org/abs/quant-ph/2110.13765
http://arxiv.org/abs/quant-ph/2108.12597
https://doi.org/10.1103/PhysRevD.104.114015
http://arxiv.org/abs/quant-ph/2108.02730
http://arxiv.org/abs/quant-ph/2108.07242
http://arxiv.org/abs/quant-ph/2108.00188
https://doi.org/10.1088/1674-1137/44/9/093104
https://doi.org/10.1088/1674-1137/44/9/093104
http://arxiv.org/abs/quant-ph/2004.03167
https://doi.org/10.1007/JHEP04(2012)056
http://arxiv.org/abs/quant-ph/1202.2178
https://doi.org/10.1103/PhysRevD.101.014024
http://arxiv.org/abs/quant-ph/1909.12509
https://doi.org/10.1103/PhysRevD.79.014001
https://doi.org/10.1103/PhysRevD.79.014001
http://arxiv.org/abs/quant-ph/0809.4818
https://doi.org/10.1016/j.physletb.2006.01.021
http://arxiv.org/abs/hep-ph/0511317


Eur. Phys. J. C (2022) 82 :144 Page 11 of 11 144

26. P. Colangelo, F. De Fazio, F. Giannuzzi, S. Nicotri, Phys. Rev. D
86, 054024 (2012). https://doi.org/10.1103/PhysRevD.86.054024.
arXiv:1207.6940 [hep-ph]

27. R. Casalbuoni, A. Deandrea, N. Di Bartolomeo, R. Gatto, F. Fer-
uglio, G. Nardulli, Phys. Rep. 281, 145–238 (1997). https://doi.
org/10.1016/S0370-1573(96)00027-0. arXiv:hep-ph/9605342

28. R. Casalbuoni, A. Deandrea, N. Di Bartolomeo, R. Gatto, F. Fer-
uglio, G. Nardulli, Phys. Lett. B 292, 371–376 (1992). https://doi.
org/10.1016/0370-2693(92)91189-G. arXiv:hep-ph/9209248

29. R. Casalbuoni, A. Deandrea, N. Di Bartolomeo, R. Gatto, F. Fer-
uglio, G. Nardulli, Phys. Lett. B 299, 139–150 (1993). https://doi.
org/10.1016/0370-2693(93)90895-O. arXiv:hep-ph/9211248

30. X.H. Guo, A.W. Thomas, A.G. Williams, Phys. Rev. D
59, 116007 (1999). https://doi.org/10.1103/PhysRevD.59.116007.
arXiv:hep-ph/9805331

31. Q. Li, C.H. Chang, S.X. Qin, G.L. Wang, Chin. Phys.
C 44(1) (2020). https://doi.org/10.1088/1674-1137/44/1/013102.
arXiv:1903.02282 [hep-ph]

32. M.-H. Weng, X.-H. Guo, A.W. Thomas, Phys. Rev. D
83, 056006 (2011). https://doi.org/10.1103/PhysRevD.83.056006.
arXiv:1012.0082 [hep-ph]

33. G.Q. Feng, X.H. Guo, Phys. Rev. D 86, 036004 (2012). https://doi.
org/10.1103/PhysRevD.86.036004

34. X.H. Guo, X.H. Wu, Phys. Rev. D 76, 056004 (2007).
arXiv:0704.3105 [hep-ph]

35. G.Q. Feng, Z.X. Xie, X.H. Guo, Phys. Rev. D 83, 016003 (2011)
36. H.W. Ke, X.Q. Li, Eur. Phys. J. C 78(5), 364 (2018). https://doi.org/

10.1140/epjc/s10052-018-5834-9. arXiv:1801.00675 [hep-ph]
37. Z.M. Ding, H.Y. Jiang, D. Song, J. He, Eur. Phys. J. C 81(8),

732 (2021). https://doi.org/10.1140/epjc/s10052-021-09534-6.
arXiv:2107.00855 [hep-ph]

38. H.W. Ke, X. Han, X.H. Liu, Y.L. Shi, Eur. Phys. J. C 81(5),
427 (2021). https://doi.org/10.1140/epjc/s10052-021-09229-y.
arXiv:2103.13140 [hep-ph]

39. C. Meng, K.T. Chao, Phys. Rev. D 77, 074003 (2008). https://doi.
org/10.1103/PhysRevD.77.074003. arXiv:0712.3595 [hep-ph]

40. H.Y. Cheng, C.K. Chua, A. Soni, Phys. Rev. D 71,
014030 (2005). https://doi.org/10.1103/PhysRevD.71.014030
arXiv:hep-ph/0409317

41. K. Nakamura et al. [Particle Data Group], J. Phys. G 37, 075021
(2010)

42. M.J. Zhao, Z.Y. Wang, C. Wang, X.H. Guo, arXiv:2112.12633
[hep-ph]

43. K. Chen, R. Chen, L. Meng, B. Wang, S.L. Zhu, arXiv:2109.13057
[hep-ph]

44. N. Li, Z.F. Sun, X. Liu, S.L. Zhu, Phys. Rev. D 88(11) (2013).
https://doi.org/10.1103/PhysRevD.88.114008. arXiv:1211.5007
[hep-ph]

45. M.Z. Liu, T.W. Wu, M. Pavon Valderrama, J.J. Xie, L.S. Geng,
Phys. Rev. D 99(9), 094018 (2019). https://doi.org/10.1103/
PhysRevD.99.094018. arXiv:1902.03044 [hep-ph]

46. C. Deng, S.L. Zhu, arXiv:2112.12472 [hep-ph]
47. L.R. Dai, R. Molina, E. Oset, arXiv:2110.15270 [hep-ph]
48. A.F. Falk, M.E. Luke, Phys. Lett. B 292, 119 (1992). https://doi.

org/10.1016/0370-2693(92)90618-E arXiv:hep-ph/9206241
49. R. Chen, Z.F. Sun, X. Liu, S.L. Zhu, Phys. Rev. D (2019). https://

doi.org/10.1103/PhysRevD.100.011502. arXiv:1903.11013 [hep-
ph]

123

https://doi.org/10.1103/PhysRevD.86.054024
http://arxiv.org/abs/quant-ph/1207.6940
https://doi.org/10.1016/S0370-1573(96)00027-0
https://doi.org/10.1016/S0370-1573(96)00027-0
http://arxiv.org/abs/hep-ph/9605342
https://doi.org/10.1016/0370-2693(92)91189-G
https://doi.org/10.1016/0370-2693(92)91189-G
http://arxiv.org/abs/hep-ph/9209248
https://doi.org/10.1016/0370-2693(93)90895-O
https://doi.org/10.1016/0370-2693(93)90895-O
http://arxiv.org/abs/hep-ph/9211248
https://doi.org/10.1103/PhysRevD.59.116007
http://arxiv.org/abs/hep-ph/9805331
https://doi.org/10.1088/1674-1137/44/1/013102
http://arxiv.org/abs/quant-ph/1903.02282
https://doi.org/10.1103/PhysRevD.83.056006
http://arxiv.org/abs/quant-ph/1012.0082
https://doi.org/10.1103/PhysRevD.86.036004
https://doi.org/10.1103/PhysRevD.86.036004
http://arxiv.org/abs/quant-ph/0704.3105
https://doi.org/10.1140/epjc/s10052-018-5834-9
https://doi.org/10.1140/epjc/s10052-018-5834-9
http://arxiv.org/abs/quant-ph/1801.00675
https://doi.org/10.1140/epjc/s10052-021-09534-6
http://arxiv.org/abs/quant-ph/2107.00855
https://doi.org/10.1140/epjc/s10052-021-09229-y
http://arxiv.org/abs/quant-ph/2103.13140
https://doi.org/10.1103/PhysRevD.77.074003
https://doi.org/10.1103/PhysRevD.77.074003
http://arxiv.org/abs/quant-ph/0712.3595
https://doi.org/10.1103/PhysRevD.71.014030
http://arxiv.org/abs/hep-ph/0409317
http://arxiv.org/abs/quant-ph/2112.12633
http://arxiv.org/abs/quant-ph/2109.13057
https://doi.org/10.1103/PhysRevD.88.114008
http://arxiv.org/abs/quant-ph/1211.5007
https://doi.org/10.1103/PhysRevD.99.094018
https://doi.org/10.1103/PhysRevD.99.094018
http://arxiv.org/abs/quant-ph/1902.03044
http://arxiv.org/abs/quant-ph/2112.12472
http://arxiv.org/abs/quant-ph/2110.15270
https://doi.org/10.1016/0370-2693(92)90618-E
https://doi.org/10.1016/0370-2693(92)90618-E
http://arxiv.org/abs/hep-ph/9206241
https://doi.org/10.1103/PhysRevD.100.011502
https://doi.org/10.1103/PhysRevD.100.011502
http://arxiv.org/abs/quant-ph/1903.11013

	Possible molecular states of D(*)D(*) and B(*)B(*) within the Bethe–Salpeter framework
	Abstract 
	1 Introduction
	2 The Bethe–Salpeter formalism
	2.1 The B–S equation of 0+ which is composed of two pseudoscalars
	2.2 The B–S equation of 1+ which is composed of a pseudoscalar and a vector
	2.3 The bound state (0+) composed of two vector mesons
	2.4 The B–S equation of 1+ state which is composed of two vectors
	2.5 The B–S equation of 2+ state |T'rangle which is composed of two vectors

	3 Numerical results
	3.1 The results of D(*)D(*) system
	3.2 The results of the B(*)B(*) system

	4 A brief summary
	Acknowledgements
	Appendix A: The effective interactions
	Appendix B: Kernel
	References




