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Abstract The SN1987A detection through neutrinos was
an event of great importance in neutrino physics, being the
first detection of neutrinos created outside our solar sys-
tem, and then inaugurating the era of experimental neutrino
astronomy. The data have been largely studied in many differ-
ent analysis, and has presented several challenges in different
aspects, since both supernova explosion dynamics and neu-
trino flavour conversion in such extreme environment still
have many unknowns. In addition, the low statistics also
invoke the need of unbinned statistical methods to compare
any model proposal with data. In this paper we focus on
a discussion about the most used statistical analysis inter-
pretation, presenting a pedagogical way to understand and
visualize this comparison.

1 Introduction

Particle physics provides a fertile ground to a vast number
of methods to statistically compare theory and data, giving a
quantitative filling in order to guide the prospects of a theory,
or even revealing important accomplishments or tensions in
experimental efforts.

In general, when a measurement provides a large number
of data points, a particular theory can visually (and intu-
itively) be compared to data by a superposition of measured
and theoretically expected number of events, together with
the associated uncertainties. However, when the number of
data points is low, although there are a number of efficient
methods from which is possible to draw rigorous quantita-
tive conclusions from data, an intuitive method of comparing
theory and experimental results is less direct.

One interesting phenomena, the neutrino burst detected
from the supernova SN1987A, is particularly affected by low
statistics, evidencing the above mentioned difficulties.
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In this paper we review a particular statistical method to
interpret and extract scientific conclusions from experiments
with low number of data points, using the SN1987A data as
an example, and propose a procedure to handle this difficulty
through animations.

2 Statistical analysis

The quantitative comparison between theoretical predictions
and experimental results is a major part of any scientific
endeavour. When comparing theory and experimental data
some important features of the theory that can be tested quan-
titatively are: (i) how good is the agreement between theoret-
ical predictions and experimental data – the goodness of fit,
gof, (ii) which set of theoretical parameter values provides
the best agreement between theory and observations – the
parameters best fit point, bfp and (iii) what is the region in
the theoretical parameter phase space in which such agree-
ment is valid for some confidence level. These features can be
usually presented graphically, in ways that drive our intuition
to better visually comprehend the key concepts of the statis-
tical method used. An interested reader can follow, among
many good textbooks on statistics, Ref. [1] for basic concepts
of statistical data analysis.

As in many other areas, in particle physics an important
quantity around such analysis is made is the detection rate
of a specific event. As an example, theoretical models of
solar neutrino production provide us with a steady theoreti-
cal neutrino flux, and solar neutrino experiments provide us
with a detected event rate of solar neutrinos. The compari-
son between these two quantities can be done by translating
the theoretical flux in an expected event rate, or inversely,
translating the detected event rate in a compatible expected
flux.

Besides, a lot of information can be extracted from the
dependence of neutrino flux with its energy or time of detec-
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tion. The most straightforward way to include this informa-
tion on statistical analysis would be to split the total data into
bins of specific energy or time intervals. Maybe the most
spread statistical tool to implement these kind of analysis
would be to calculate the following χ2:

χ2 =
∑

i, j

(Rth
i − Rex

i )(σ−2)i j (R
th
j − Rex

j ) (1)

where the indices i and j track the binning of the data, Rth
k is

the theoretical prediction, Rex
k is the experimental data and

σ is the covariance matrix, that holds uncertainties and cor-
relations (and then σ−2

i j is the i j element of the inverse of

σ 2). This analysis has one great advantage: it allows to visu-
ally grasp how good is the accordance between theory and
experiment in a figure where experimental data points, uncer-
tainties and theoretical predictions can be plotted together. If
theoretical predictions are contained inside the region around
the experimental data points delimited by the uncertainties,
than we expect a good fit.

Several examples in neutrino physics can illustrate such
procedure. Again taking solar neutrinos as an example, the
data presented by the neutrino detector Super-Kamiokande
is divided both in energy and the zenith angle that gives the
Sun’s position in the time of detection. In Fig. 1 the data of
1496 days of running experiment are presented, and the bin-
ning on energy and angle can be seen. The continuous line
represent the prediction for the best fit point of the statistical
analysis when flavour conversion is considered in two sce-
narios, the large mixing angle with large �m2 (LMA) and
lower �m2 (LOW).1

As discussed, it is possible to visually get a feeling about
how good the accordance between experimental data and
theoretical predictions by how the theoretical curves cross the
region around the experimental data within the error bars. For
this particular example, two solutions to the solar neutrino
problem are presented. We can expect by visually inspecting
the figure that both solutions would fit the data quite well,
fact that is confirmed by a more careful statistical analysis.

The problem of this visualization is when there is no effi-
cient way to collect the data to form bins, for instance, due
to the low event rate. In particular, when the event rate is
very low it is necessary to take the experimental data event
by event.

In this context, what we propose here is to recover a way
to visually access how good the accordance between experi-
mental data and theoretical prediction in a particular scenario
when the statistical analysis is done event by event: the neu-
trino data from Supernova 1987A.

1 By the time these data was released, both set of parameters provided
acceptable solutions to the solar neutrino problem, as is discussed in [2].

Fig. 1 Data from the 1496 days of Super-Kamiokande. Each day/night
plot gives a binning in energy, LOW (light gray) and LMA (black) pro-
posed solutions to be visually compared to data points. Taken from [2]

3 Supernova 1987A

The Core Collapse Supernova is a remarkable end of life of a
star and one of the most peculiar astrophysical phenomena.
Despite being a prominent optical event, its most outstanding
property is the powerful release of ∼ 99% of gravitational
binding energy, generally in the order of ∼ 1053 erg, from a
m � 10M� progenitor star in (anti)neutrinos of all flavors in
MeV scale.

Nevertheless the high neutrino luminosity, a limitation in
the neutrino observation on Earth is related to the high dis-
tance D from the source, with decreasing flux proportional to
D−2, restricting the possible region for neutrino burst detec-
tion to a galactic or nearby the Milky Way, that possesses a
low supernova rate of ∼ 1 per century [3].

Even though, in 1987, three detectors, Kamiokande II [4,
5], IMB [6,7] and Baksan [8], were capable to observe a neu-
trino signal associated to a SN in the Large Magellanic Cloud
(∼ 50 kpc). These data are presented in Fig. 2. In contrast
with Super-Kamiokande data in Fig. 1, these are individual
events, and there is no obvious way to overlap a theoretical
curve to them. Since the theoretical models provide a flux
density and any kind of binning to convert this density into
an event probability would be quite arbitrary, the approach
through an unbinned maximum likelihood estimation is a
robust alternative to confront the theoretical hypothesis with
these individual events. In next section we describe such pro-
cedure.
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Fig. 2 Positron energy and relative time from the IMB, Kamiokande
II and Baksan detectors, with a total of 29 events

4 Modelling SN1987A event-by-event likelihood

Frequently the likelihood treatment in particle physics
involves the usage of Poisson distribution P(μ, n), that fits
well to phenomena that has small probability to occur, but a
large number of tries. Given a measured variable set x, the
Poisson likelihood is given by:

L =
Nbins∏

i=1

μ(xi )ni

ni ! eμ(xi ) (2)

where ni can be a particular number of events that occurs in
a xi +δxi interval of our variable, in a number N of intervals,
or bins, and μ(xi ) is the expected value in the same interval.
It is convenient to write μ(xi ) as a distribution function on
the variable xi , or μ(xi ) = R(xi )δxi , with a given events
rate R(xi ) = dN

dxi
in an equally spaced bin of variable δxi and

number of counts ni . Including it in Eq. (2):

L =
Nbins∏

i=1

[R(xi )δx]ni
ni ! e−R(xi )δx

= e−∑Nbins
j=1 R(x j )δx

Nbins∏

i=1

[R(xi )δx]ni
ni ! . (3)

However, binning the data to use a single expected value
of a set of points requires to assume a given statistical distri-
bution of such a bin, that generally is assumed to be Gaussian
for higher number of entries. The low statistics scenario does
not allow this assumption, then it is possible to model the like-
lihood (3) to account for each event apart. This can be made
by taking the bin to an infinitesimal width δx → dx and
number of counts ni → 1, so we consider only infinitesimal

bins with one event and drop the others, then (3) becomes

L ∝ e− ∫
R(x)dx

Nobs∏

i=1

R(xi ) (4)

that also has the change from total number of bins Nbins

to total number of observed events Nobs and the index i
accounts for each individual event. The idea behind maxi-
mum likelihood is to maximize the quantity in (4), or given
the correspondence L = e−χ2/2, minimize the χ2(x) =
−2 logL (x) to respect to a free set of parameters x. If
we have a single event at x = x̄ , this expressions reduces
to e− ∫

R(x)dx R(x̄). For different models with a normalized
expected event rate

∫
R(x)dx , the likelihood is maximized

for the model with the highest value of R(xi ). And letting the
normalization runs freely, it is maximized for

∫
R(x)dx = 1.

It is straightforward to note that if we consider more than
one single event this maximum occurs on the total number
of events.

In a supernova detection, such as SN1987A, the variables
x are the neutrino energy, the detection time and events scat-
tering angle, i.e. R = R(E, t, cos θ) [9]:

R(E, t, cos θ) = np
dσ(Eν, cos θ)

d cos θ

d2φν̄e(Eν, t)

dEνdt

× ξ(cos θ)η(Ee)
dEν

dEe
(5)

with n p being the number of free protons of each detector,
σ(Eν, cos θ) is the inverse beta decay cross section [10],
φν̄e(Eν, t) represents the electron antineutrino flux on Earth,
ξ(cos θ) is an angular bias of IMB detector and η(Ee) is
an efficiency function taken from [8], that fits the reported
efficiency points from each collaboration.

Then Eq. (4) becomes:

L = e− ∫
R(E,t,cos θ) dE dt d cos θ

Nobs∏

i=1

R(Ei , ti , cos θi )

×dE dt d cos θ (6)

where R is a triply differential equation, R = d3N
dE dt d cos θ

and
N is the expected number of events at the detector. For sim-
plicity we did not include the scattering angle dependence
on the animations presented in the following, although they
were used in the likelihood calculation. A complete analy-
sis, including other details such as background and energy
resolution can be seen in [9,11–15].

5 Single event distribution

The main ingredient to construct the likelihood is the theoret-
ical triply differential expected rate. However, since there is

123



145 Page 4 of 7 Eur. Phys. J. C (2022) 82 :145

Fig. 3 Theoretical events rate cumulative integrated over time
(Eq. 8) (blue) and normally distributed data as proposed in (9) (red)
changing along relative detection time since the first measured neu-
trino from SN1987A. The time scale runs logarithmically in the
first second and linearly afterwards to better show the data struc-
ture for early time events (see the animation here: https://github.
com/santosmv/Animations-visualizing-SN1987A-data-analysis/blob/
main/events_rate.png)

no way to convert the theoretical predictions into some quan-
tity to be compared with individual events, we can instead
modify the events to match the theoretical probability dis-
tribution. For instance, all SN1987A events are published
with an uncertainty in energy, so the true information we can
take from each event is a probability distribution around some
most probable result. Assuming such distribution to be Gaus-
sian, a specific event with measured energy Ēν ± σE , where
σE is the energy uncertainty, measured on time t̄ ± σt , with
σt being the uncertainty in time, is related to the following
probability distribution:

d2P(Eν, t)

dEν dt
= 1

σE
√

2π
exp

(
−1

2

(Eν − Ēν)
2

σ 2
E

)

× 1

σt
√

2π
exp

(
−1

2

(t − t̄)2

σ 2
t

)
(7)

where P(Eν, t) is the probability that the event had a true
energy between Eν and Eν + dEν , and was measured in the
true time between t and t + dt .

This can be compared with the theoretical probability of
inducing an event on the detector:

d2N

dEν dt
= A

d2φ(Eν, t)

dEν dt
σ(Eν) (8)

where A is a normalization constant that takes into account
the number of targets in the detector and its efficiency. The
neutrino interaction cross section is given by σ(Eν), and
φ(Eν, t) is the neutrino flux. The specific parameterization
of these two last functions will be presented in the sequence.

To proper visualize the data points being collected, we can
create an animation with the detected event probability inte-
grated on time. Since the uncertainty on time is very small,
the distribution converges to a δ-function, and such animation
would advance in steps while the data gets collected:

∑

i

d Pi (Eν, t)

dEν

=
∫ t

t0
dt

∑

i

d2Pi (Eν, t)

dEν dt

=
∑

i

1

σEi

√
2π

exp

(
−1

2

(Eν − Ēνi )
2

σ 2
Ei

)
θ(t − ti ) (9)

Such animation is presented in Fig. 3 (red curve). Since
what is presented is the cumulative result after integrating
on time, the final moment of this animation, when integrated
also on energy, provides all the 29 events detected by the
three experiments. The comparison with theoretical predic-
tions can be made visually if we produce a similar animation
for the expected number of events, integrating Eq. (8) on
time, also presented in Fig. 3 (dashed curve). This method
of a model independent curve representing the spectrum has
already been fully discussed in [16–18], where Refs. [17,18]
also bring a comparative analysis to neutrino emission mod-
els.2

Our parameterization of the electron antineutrino3 flux
φ(Eν, t) in Eq. (8) follows the model of Ref. [9] and con-
sists in a two-component emission (accretion + cooling)
with nine free parameters, that come from the proposed flux
φ = φ(t, E, cos θ, y), with y = (Tc, Rc, τc, Ta, Ma, τa),
where Tc (Ta) is the initial antineutrino (positron) temper-
ature from the cooling (accretion) phase, Rc is the radius
of the neutrinosphere, τc (τa) is the characteristic time from
the cooling (accretion) phase and Ma is the initial accreting
mass. The remaining three free parameters are a time offset
toff to be adjusted independently for each detector. It was
assumed that the neutrino flux was affected by mixing exclu-
sively through MSW effect, in the normal hierarchy scenario
[19,20], with mixing parameters taken from [21]. A more
detailed discussion of fitting SN1987A data in a similar way
can be seen in the widely cited [22]. A complete comparison
of distinct parameterizations is also discussed in [18].

These parameters are estimated from an event-by-event
maximum likelihood, and the best fit values of our analysis,

2 While Ref. [17] compares the data curve to a Fermi–Dirac spectrum,
[18] uses a neutrino fluence ∝ E2/T 4e−E/T , where E and T are energy
and temperature of the electron antineutrino
3 Once the detectors in 1987 were capable to measure a single channel,
the inverse beta decay (ν̄e + p → e+ + n), only electron antineutrinos
could be detected.
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Fig. 4 To visualize the effect of spectral distortion impact on
events rate, we used two sets of parameters for Ta and Ma (in
green and in cyan) that are excluded at 90% C.L. according to
our analysis. The green curve produces a distortion for low energy
events, while the cyan produces a distortion that favour high-energy
events. Also on light grey we present the best-fit point of our
analyses, shown in Fig. 2 (see the animation here: https://github.
com/santosmv/Animations-visualizing-SN1987A-data-analysis/blob/
main/events_rate_worse_fit.png)

used in Fig. 3, are:

Tc = 5.1 MeV, Rc = 12 km, τc = 4.3 s, (10)

Ta = 1.7 MeV, Ma = 1.2 M�, τa = 0.7 s (11)

As described before, the maximization on the likelihood
depends on two terms. The term in the exponential factor is
related to the number of events, and drives the theoretical
parameters to those who provides the right expected number
of events, i.e., the area under the curves at the end of the
animation in Fig. 3. It is quite easy to grasp if our theoretical
model fits well the data by this aspect.

The second term access how close the theoretical curve
is to the experimental one at the data central points, both in
energy and in time. Since the uncertainty in time is negligible,
we can visually compare the curves at the moments a new
data is collected, providing us with a visual tool to this second
ingredient of the statistical analysis. By performing these two
analysis on Fig. 3, we can expect that, although not perfect,
the theoretical prediction would provide a reasonably good
fit to the data.

It is useful now to analyse a set of theoretical parameters
that do not fit well the data. This is done in Fig. 4, where we
chosed two set of parameters that are excluded at 90% C.L.
according to our analysis. These parameters were chosen in
a way to not change the total number of predicted events,
so we can focus on the energy spectrum information. It is
clear, again using a visual comparison, that these new set
of parameters produce a worse fit to the data, fact that is
confirmed by a full statistical analysis.

As it was pointed out earlier, the two main neutrino observ-
ables that we are taking into consideration are the neutrino
energy and the time of detection. After discussing the first
on the above analysis, we will now focus on the second, and
the best way to do this is the limits in neutrino mass that can
be achieved using this statistical method.

6 Neutrino mass limits

An important remark is that the neutrino detection spread in
time is an important source of physical information, allowing
us to probe both Supernova explosion mechanisms and neu-
trino properties. The most important neutrino property that
can be probed by such time spread is its mass.

The first difficulty in these kind of analysis is that the data
itself does not allow us to correlate the time of arrival of
the neutrino burst at the detectors with the unknown time at
which the neutrinos left the Supernova. The solution is to
use the data itself to establish, through statistical analysis,
the match between the neutrino flux theoretical prediction
and the data, taking the time of arrival of the first neutrino
event in each detector as a marker. The time of the following
events, ti are taken as relative ones to the time of arrival of
the first event, t1:

δi = ti − t1

and t1 is left to vary freely to best match the theoretical pre-
diction in a previously established time scale.

This simple picture arises when we assume massless neu-
trinos. In this case the relative time between events is identical
to the relative time between the emission of these detected
neutrinos on the production site, since the time delay due to
the travel between the supernova and the detectors does not
depend on the neutrino properties. In Fig. 3 it is assumed a
vanishing mass neutrino, and the time showed on the anima-
tion correspond to the time since the supernova offset.

However, since the neutrinos have mass, neutrinos with
different energies have different velocities, which changes
the described scenario. More energetic neutrinos travels
faster then less energetic neutrinos, meaning that the rela-
tive times between events does not correspond to relative
times of the neutrinos emission. The correction is done by a
simple kinematic analysis:

ti.d = ti,p + D

vi
= ti,p + D

c

√
1 − m2

p2
i

∼ ti,p

+D

c

(
1 − m2

2E2
i

)

where D is the distance to the supernova, andm and E are the
neutrino mass and event energy. The sub-index p (d) refers
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Fig. 5 Effect of neutrino mass delay on SN1987A detected
burst compared to standard flux for a 3σ excluded neu-
trino mass. The gray line corresponds to the fitted theory in
Fig. 3 (see the animation here: https://github.com/santosmv/
Animations-visualizing-SN1987A-data-analysis/blob/main/
events_rate_mass_delay.png)

to the time at production (detection). The emission time of
each event is then calculated from the relative times δi , and
the kinematic corrections:

ti,d = t1,d + δi

ti,p = δi +
(
ti,p − D

c

m2

2E2
1

)
+ D

c

m2

2E2
i

(12)

For more details, we refer to [22,23].
Instead of making the correction on the time of the pro-

duction, presented here to give proper credit to the authors
that proposed and performed this analysis, we prefer to cor-
rect the theoretical predictions by continuous spread in time
on the neutrino flux spectrum at the detector. So, instead of
converting the time of the detected events to the supernova
emission, we adjust the theoretical prediction to the detec-
tor site. Clearly both choices are equivalent, but with this
second procedure we can use the same data animation pre-
sented in Fig. 3, and adjust the theoretical curve by making
the replacement:

t → t − D

c

m2

2E2

in Eq. (8).
An animation evidencing this model independent limit is

shown in Fig. 5, where we chose an exceeding neutrino mass
of 30 eV, highly beyond of astrophysical limits of ∼ 5 eV
[22,23] in order to effectively visualize the delay given by
mass, with the same astrophysical parameters used to pro-
duce Fig. 3, and then with the same neutrino flux at the
source. But due to the different time lag of neutrinos trav-
eling to Earth with different energies, the time history of the
expected number of events changes significantly, allowing us

to place a limit on neutrino analysis using a proper statistical
analysis.

7 Conclusion

This paper intended to present a pedagogical view of how to
understand the likelihood analysis when an event-by-event
treatment is necessary. The detection of SN1987A is a per-
fect example for that, once a lot of physics can be extracted by
the few events that were collected through neutrino detection.
It also has the interesting feature that different information
can be extracted from the total expected number of events,
its spectral distortion or its time structure. We present some
animations as a visual tool to understand the statistical proce-
dure, and produce a first impression on how different models
fit the data.
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