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Abstract The Minkowski vacuum |0〉M , which for an iner-
tial observer is devoid of particles, is perceived as a thermal
bath by Rindler observers living in a single Rindler wedge
(Unruh in Phys Rev D 14:870, 1976) as a result of the dis-
crepancy in the definition of positive frequency between the
two classes of observers and a strong entanglement between
degrees of freedom in the left and right Rindler wedges. We
revisit the problem of quantification of the correlations in a
two-mode state of a free neutral scalar field which is observed
by an inertial observer Alice and left/right Rindler observers
Rob/AntiRob, a problem that pertains to the field of relativis-
tic quantum information and has been previously studied in
Martin-Martinez et al. (Phys Rev D 82:064006, 2010) and
Datta (Phys Rev A 80:052304, 2009). We focus on the anal-
ysis of informational quantities like the locally accessible
and locally inaccessible information (Koashi and Winter in
Phys Rev A 69:022309, 2004; Fanchini et al. in Phys Rev A
84:012313, 2011; Fanchini et al. in New J Phys 14:013027,
2012) and a closely associated entanglement measure, the
entanglement of formation. We conclude that, with respect
to the correlation structure probed by inertial observers alone,
the introduction of a Rindler observer gives rise to a correla-
tion redistribution which can be quantified by the entangle-
ment of formation. Given the informational meaning of the
derived correlations, we discuss on the capacity of a quan-
tum channel to communicate classical information between
accelerated parties.

1 Introduction

The black hole information problem is one of the most out-
standing problems related to quantum gravity. While it may
be true that in a semiclassical analysis of quantum field the-
ory in curved spacetimes, in which gravity is treated in the
purely classical framework of general relativity, some may
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give good arguments that information is really lost in the pro-
cess of black hole formation and evaporation [1], admitting
that this remains the case in the quantum theory seems really
disturbing, see e.g. [2] and references therein. One important
aspect related to this problem is the calculation of the detailed
information flow out of black holes [3]. In that case it could
prove useful to understand how informational quantities like
the locally accessible information (LAI) and locally inac-
cessible information (LII) behave in the presence of causal
horizons and revisit the study of entanglement employing one
entanglement monotone which is connected to these infor-
mational quantities. We study these quantities in a far simpler
scenario than that of the black hole information problem, in
which a causal horizon analogous to that of the black hole is
present: we consider two modes of a scalar field in the con-
text of the Unruh effect in Minkowski spacetime. In doing
so we evade the complications introduced by the true black
hole, we have a system in hand for which we can evaluate the
informational quantities of interest or bounds thereof, and we
still retain a causal horizon, the Rindler horizon.

The Unruh effect is one of the most important predictions
of Quantum Field Theory in Curved Spacetime, showing very
clearly that the idea of particle is not really a fundamental
concept, being observer-dependent [4] – the Minkowski vac-
uum |0〉M which, by definition, is devoid of particles for an
inertial observer, is experienced as a thermal bath by one uni-
formly accelerated observer. The reason for that is twofold:
first, such uniformly accelerated observer has a definition of
energy, and hence of positive-frequency, inequivalent to that
of the inertial observer. Second, such observer experiences a
causal horizon which implies an information loss that renders
the pure state |0〉M a mixed thermal state.

The setting to study the Unruh effect is to consider
a D-dimensional Minkowski spacetime with coordinates
(t, x, yi ), where i = 1, . . . , D−2, and to consider observers
which uniformly accelerate either towards the positive x
direction or towards the negative x direction. The ones accel-
erating towards x > 0 are restricted to the so-called right
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Fig. 1 Worldlines of Rindler observers on the right and left wedges,
shown in gray (solid) lines. The Rindler horizons separating the wedges
are shown as the red (dashed) lines

Rindler wedge, UI, defined by x > |t | whereas the ones
accelerating towards x < 0 are restricted to the so-called
left Rindler wedge, UII, defined by x < −|t |. Both classes
of observers are called Rindler observers and some of their
worldlines are shown in Fig. 1, where it is clear that the right
and left Rindler wedges are causally disconnected from each
other.1

The origin of the Unruh effect lies in a strong entanglement
between degrees of freedom in UI and UII. In fact, it can be
shown that the Minkowski vacuum can be written in a basis
appropriate to the Rindler observers as [5]

|0〉M =
∏

ω

1

cosh αω

∞∑

nω=0

tanhnω αω|nω〉I |nω〉I I , (1)

where one has introduced the so-called squeezing parameter
αω for each frequency by the relation

tanh αω = e−πω/a, (2)

being a the acceleration parameter of the Rindler observers.
In that case, the Rindler observer is restricted to the right
Rindler wedge, and thus is causally forbidden to have knowl-
edge about the degrees of freedom in the left Rindler wedge.
Due to the strong entanglement between both regions, this

1 In fact, the surfaces characterized by t = ±x are null surfaces respec-
tively called past and future Rindler horizons, denoted H− and H+, and
they act as spacetime boundaries for the Rindler observers.

lack of knowledge manifests as a high degree of mixedness
for the state locally probed. There are already many rele-
vant discussions on this subject in the literature, in the field
of Relativistic Quantum Information, for example Refs. [6–
10] and references therein, to quote a few. Nonetheless, in
most of these references the entanglement monotone that
has been employed was the negativity, which is not directly
related to informational quantities like the LAI and LII. In
that case, it would be particularly interesting that the entan-
glement monotone employed not only have an informational
meaning behind its definition, but also, allow the understand-
ing and actual quantification on how the quantum correlation
initially established between Alice and Bob is redistributed in
non-inertial reference frames. In a practical setting it would
allow, for example, to quantify the capacity of the established
communication channels between accelerated parties. This
could allow to further understand open problems related to
the description of the physics of strongly accelerated bodies.

In this paper we give our first step in this program, by com-
puting both the classical and quantum correlation distribu-
tion as locally probed by Alice, who is in an inertial reference
frame, and by Rob in the right Rindler wedge, or when probed
by Alice and AntiRob, in the left Rindler wedge, and interpret
these results in terms of locally accessible and locally inac-
cessible information [11,12]. This contrasts with [7] which
analyzed just quantum discord for the Alice and Rob bipar-
tition, aiming at answering whether or not there are quantum
correlations in the near-horizon limit. We further combine
the results to the methods of [11–13] which enables the com-
putation of the entanglement of formation for the subsystem
probed by Rob and AntiRob. The ideas of [11–13] allow for
an interpretation of this entanglement of formation in terms
of correlation redistribution. For each measure we have ana-
lyzed (mutual information, classical correlations, quantum
discord and entanglement of formation) we review its defini-
tion and significance and give the plots against acceleration
together with the way we interpret it. The paper is organized
as follows. In Sect. 2 we introduce the problem appropriately
and review the previous treatments. In Sect. 3 we develop the
basic canonical quantization rules in a curved spacetime. In
Sect. 4 we review the relevant modes for the analysis we
wish to develop, mainly the Minkowski, Unruh and Rindler
Modes. In Sect. 5 we review the transformation of the states
we wish to study to the Rindler basis. In Sect. 6 we present and
discuss the mutual information, a result already known from
[6]. In Sect. 7 we discuss locally accessible and locally inac-
cessible informations and plot all such correlation measures
together to show the correlation redistribution. In Sect. 8 we
present the entanglement of formation and its role as a quan-
tifier of correlation redistribution. In Sect. 9, we employ the
entanglement of formation for quantification of several quan-
tities, including a discussion on channel capacity. Finally
in Sect. 10 we give the final remarks and conclusions. For
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completeness, in Appendix A, we describe the numerical
method we have employed to evaluate the locally accessible
and locally inaccessible information and in Appendix B we
describe how the same numeric method allows, for a class of
states, a numeric evaluation of the entanglement of formation
by an optimization over two angles.

2 Basic canonical quantization in curved spacetime

We shall review the most basic approach to the canonical
quantization of a Klein–Gordon field in a globally hyper-
bolic spacetime. We just give the basic definitions and results,
referring the reader to [14,15] for a complete account of the
subject.

Let (M, g) be a globally hyperbolic spacetime, and φ

be a real, minimally coupled Klein–Gordon field on said
background [16]. The dynamics of φ can be encoded in the
Lagrangian density

L = 1

2

(
∇μφ∇μφ − m2φ2

)√|g|. (3)

The equation of motion deriving from this Lagrangian is the
well-known Klein–Gordon equation

(� − m2)φ = 0. (4)

Given a Cauchy surface � ⊂ M , with normal vector field
nμ and induced metric h, we can describe this system in the
canonical formalism [15]. In particular, the φ(x), for x ∈ �,
act as the coordinates, and the conjugate momenta are π(x),
given by [15]:

π(x) = (nμ(x)∇μφ(x))
√
h. (5)

Canonical quantization therefore amounts to finding a Hilbert
space on which operators φ(x), π(x) act satisfying the equal-
time canonical commutation relations

[φ(x), π(y)] = iδ(x, y), x, y ∈ �. (6)

A manner of doing so is to expand the field into modes. In
particular, recall that we can define, on the space of solutions
to the Klein–Gordon equation, the bilinear form

(φ,ψ) = i
∫

�

(φ∗∇μψ − ψ∇μφ∗)nμd�, (7)

which satisfies all axioms of an inner product except that
it is not positive-definite. One then introduces a set of the
so-called mode functions {ui , u∗

i } such that

(ui , u j ) = δi j , (ui , u
∗
j ) = 0, (u∗

i , u
∗
j ) = −δi j , (8)

and such that any real solution φ to Eq. (4) can be uniquely
expanded as

φ =
∑

i

ai ui + a∗
i u

∗
i . (9)

Turning φ(x) to operators would then be equivalent to
turning ai to operators. One may further argue [14] that the
canonical commutation relations (6) are equivalent to the
commutation relations

[ai , a†
j ] = δi j , [ai , a j ] = [a†

i , a
†
j ] = 0. (10)

This justifies a Fock space picture on which we have a vac-
uum state |0〉 defined by

ai |0〉 = 0. (11)

Being more explicit, the one-particle space is taken as the
Hilbert space completion of the space of solutions spanned
by just the {ui }, without the complex conjugates, with inner
product being the restriction of the Klein–Gordon form (, )

to that subspace. The Hilbert space of the theory is the
bosonic Fock space construct, based on said one-particle
Hilbert space [15,16]. The interpretation of the construction
lies in the observation that if the ui are positive-frequency
with respect to a family of observers following the integral
lines of a timelike future-directed normalized vector field Z ,
by which we mean that there are ωi ∈ [0,+∞) satisfying

LZui = −iωi ui , ωi > 0, (12)

then the states |1〉i = a†
i |0〉 are states containing just one

particle in mode ui with energy ωi and, more generally, we
shall denote by |n〉i the state with n particles the mode ui .

In general there is not a preferred choice of mode functions
{ui , u∗

i } as there is no privileged notion of time in an arbitrary
spacetime. It is important therefore to relate the constructions
obtained by two distinct choices of mode functions {ui , u∗

i }
and {ūi , ū∗

i }. This may be accomplished by expanding one
set in terms of the other set:

ūi =
∑

j

αi j u j + βi j u
∗
j , (13)

in terms of the Bogolyubov coefficients αi j , βi j [14]. These
coefficients, which can be straightforwardly computed using
Eq. (8) to be

αi j = (u j , ūi ), βi j = −(u∗
j , ūi ), (14)

allows us to establish a relation between the annihilation
and creation operators ai , a

†
i of the {ui , u∗

i } quantization and

āi , ā
†
i of the {ūi , ū∗

i } quantization. The relation, which, in
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this approach, is the central aspect of the comparison of the
two quantizations, is given by

āi =
∑

j

αi j ai − βi j a
†
i , ā†

i =
∑

j

α∗
i j a

†
i − β∗

i j ai . (15)

It immediately follows from Eq. (15) that if |0〉 is the vacuum
of the {ui , u∗

i } quantization then, in general, āi |0〉 	= 0, so
that it does not coincide with the vacuum |0̄〉 of the {ūi , ū∗

i }
quantization. The two vacua coincide if and only if βi j = 0,
which in turn happens when each ūi is a combination of only
positive frequency modes of the first quantization. This is
the straightforward treatment taken in many references, for
instance in [14]. A more rigorous treatment is presented in
[15].

3 Minkowski, Unruh and Rindler modes

We now briefly review the modes of importance for the anal-
ysis we wish to develop. Consider now the two-dimensional
Minkowski spacetime (M, η) with the flat metric (ημν) =
diag(−1, 1). Let a real massless Klein–Gordon field φ be
given. We wish to quantize the field according to the ideas
of the previous section. Minkowski spacetime, however, has
a timelike Killing vector field, and hence has a class of dis-
tinguished observers whose four-velocity is proportional to
the Killing field, namely the inertial observers. To quantize
the field in appropriate manner to this class of observers one
chooses modes which are positive frequency with respect to
the inertial observers. A natural family of such modes are the
plane waves

uM
k (t, x) = 1√

4πωk
e−iωk t+ikx , ωk = |k|, k ∈ R, (16)

where the superscript M indicates these are Minkowski
modes. These modes define the usual Minkowski quantiza-
tion used in most flat-spacetime Quantum Field Theory text-
books [17–20]. They are labelled by a real number k ∈ R and
divide in two classes: the left-moving solutions with k < 0
and the right-moving solutions with k > 0. Employing these
modes, the field expands as

φ(t, x) =
∫

R

(
uM
k (t, x)a(k) + uM

k
∗
(t, x)a†(k)

)
dk, (17)

and it is evident that decomposing the integral on the regions
k < 0 and k > 0 we may write

φ(t, x) = φ−(t, x) + φ+(t, x), (18)

where φ− and φ+ are, respectively, the parts of the integral
with k < 0 and k > 0. This equation tells that in the quantum

theory the two sectors decouple and can be studied indepen-
dently [21].

Now let us consider one eternally uniformly accelerating
observer, also known as a Rindler observer, living in the right
Rindler wedgeUI defined in the introduction. We can choose
coordinates (η, ξ) on UI adapted to the worldlines of such
observers, given by

t = 1

a
eaξ sinh(aη), z = 1

a
eaξ cosh(aη). (19)

In terms of these coordinates the appropriate modes for the
right Rindler observer are the modes

uI
k (η, ξ) = 1√

4πωk
e−iωkη+ikξ , ωk = |k|, k ∈ R. (20)

where now the superscript I indicates these are Rindler
modes on the right Rindler wedge.

We wish to compare the two quantizations, but the
Minkowski observer also probes degrees of freedom in the
left Rindler wedge. Because of that, we also need to con-
sider Rindler modes for a Rindler observer supported in that
region. We similarly introduce in region UI I coordinates
(η, ξ), denoted by the same symbols as those in region UI ,
which relate to the Minkowski coordinates by

t = −1

a
eaξ sinh(aη), z = −1

a
eaξ cosh(aη). (21)

Using these coordinates the appropriate mode functions for
the left Rindler observer are the modes

uI I
k (η, ξ) = 1√

4πωk
eiωkη+ikξ , ωk = |k|, k ∈ R. (22)

The modes uI
k and uI I

k are at first defined just on UI and
UI I , but if we set uI

k to be zero on UI I and uI I
k to be zero on

UI , then the set of modes {uI
k , u

I
k
∗
, uI I

k , uI I
k

∗} taken together
allow us to expand the general solution to the Klein–Gordon
equation as

φ(η, ξ) =
∑

A=I,I I

∫

R

(
bA(k)uA

k (η, ξ) + bA
†
(k)uA

k
∗
(η, ξ)

)
dk.

(23)

If we consider the space of solutions spanned by just the
positive-frequency modes {uI

k , u
I I
k } then it is clear that its

Hilbert space completion is a direct sum HI ⊕HI I where HI

is the space spanned by just the {uI
k } and HI I is the space

spanned by just the {uI I
k }. It follows immediately that, for

the Rindler quantization, the Fock space is a tensor product

F(HI ⊕ HI I ) = F(HI ) ⊗ F(HI I ). (24)
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In particular the Rindler vacuum |0〉R decomposes as a prod-
uct

|0〉R = |0〉I ⊗ |0〉I I . (25)

We wish to compare the quantizations, which would entail
the computation of the Bogolyubov coefficients relating the
Rindler modes and Minkowski modes. There is, however, a
workaround, which will be further relevant for the informa-
tional analysis. The idea, due to Unruh [4], is to find a new
set of modes which reproduces the Minkowski quantization,
but which have a simpler expression in terms of the Rindler
modes [6]. The appropriate modes are the so-called Unruh
modes, defined by

hR
k = cosh αωu

I
k + sinh αωu

I I−k
∗
, (26a)

hLk = cosh αωu
I I
k + sinh αωu

I−k
∗
, (26b)

where the squeezing parameter αω is defined by tanh αω =
e−πω/a and where ω = |k| as already explained.

These modes allow for an expansion of the general solu-
tion to the Klein–Gordon equation, which in the quantum
theory gives rise to the annihilation and creation operators

φ(t, x) =
∑

A=R,L

∫ (
cAk h

A
k (t, x) + cAk

†
hA
k

∗
(t, x)

)
dk. (27)

The Unruh modes are defined explicitly in terms of Rindler
modes in Eq. (26a) and so the Bogolyubov coefficients relat-
ing hR

k , hR
k

∗
with the Rindler modes can be obtained by

inspection [21], being simply:

α
(I )
kk′ = cosh αωδ(k − k′), α

(I I )
kk′ = 0, (28a)

β
(I )
kk′ = 0, β

(I I )
kk′ = sinh αωδ(k − k′). (28b)

Since the Unruh quantization agrees with the Minkowski
one, they share the same vacuum |0〉M and the Minkowski
vacuum may be defined by the equation

cRk |0〉M = cLk |0〉M = 0, (29)

for k ∈ R. Using Eqs. (28) to express cRk , cLk in terms of

bIk , b
I
k

†
, bI Ik , bI Ik

†
, one is able to solve Eq. (29) on the Rindler

basis and express the Minkowski vacuum in a basis meaning-
ful for the Rindler observers. When this is done one obtains
Eq. (1) [5]. To find out what a Rindler observer living in
the right Rindler wedge UI perceives one would trace out the
modes supported in the regionUI I . If this is done one obtains
the density operator

ρI =
∏

ω

1

cosh2 αω

∞∑

nω=0

tanh2n αω|n〉Iω〈n|. (30)

Upon recalling the definition of the squeezing parameter,
Eq. (2), one is able to find out that this is, in fact, a thermal
density operator with temperature, in natural units, T = a

2π
.

This result is the Unruh effect, stating that the Minkowski
vacuum is perceived as a thermal mixed state for Rindler
observers living in either the right or left Rindler wedges.

4 Observers and reference frames

Two inertial observers, Alice and Bob, observe two Unruh
modes hR

k and hR
k′ of a massless Klein–Gordon field. Alice is

supposed to carry a detector sensitive only to the frequency
ω of mode hR

k whereas Bob is supposed to carry a detector
sensitive only to frequency ω′ of mode hR

k′ . The state of the
system is supposed to be a maximally entangled state

|ψ〉 = 1√
2

(
|0〉Rk |0〉Rk′ + |1〉Rk |1〉Rk′

)
. (31)

It is fundamental to understand here that this is a bipartition
with respect to modes. The fact that Alice’s detector can
only detect frequency ω and not ω′ implies that she has no
access to the subsystem that Bob has access and vice-versa.
In particular, any information Alice is able to gather about
the mode hR

k′ is through correlations.
One now introduces a Rindler observer, living on the right

Rindler wedge UI , Rob, which also carries a detector sensi-
tive only to frequency ω′. It is fundamental here that one is
working with Unruh modes. In that case, a mode which for
the inertial observer has some specified frequency has the
same frequency for the Rindler observer [6]. In that setting,
inasmuch as Bob, Rob only observes mode hR

k′ . But since we
have the two disconnected Rindler wedges, UI and UI I , iso-
lated from each other by causal horizons, the transformation
from the inertial basis to the Rindler basis introduces one
additional bipartition between the two regions, c.f. Eq. (1).
While Rob can only access the part of the state of mode
hR
k′ associated to UI a symmetric Rindler observer on the

left Rindler wedge UI I can only observe the complemen-
tary part. The introduction of said observer has been done in
Ref. [6], where he is conventionally called AntiRob. Hence
the setup is that of a tripartite quantum state observed by three
observers: Alice, Rob and AntiRob, the first being inertial,
and the other two being uniformly accelerated, living respec-
tively on regions I and I I . Alice carries a detector sensitive
only to mode hR

k whereas Rob and AntiRob carry detectors
sensitive only to mode hR

k′ . In that sense, the state, which
when probed by Alice and Bob was naturally bipartite – a
bipartition between modes hR

k and hR
k′ – when probed by

Alice, Rob and AntiRob is naturally tripartite – a bipartition
between modes hR

k and hR
k′ with a second bipartition between
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regions UI and UI I affecting the mode hR
k′ subsystem. That

is the setup of Refs. [6,7] which we consider.
In [6], the author considered the evaluation of the mutual

information of the three possible bipartite subsystems and
the negativity as a measure of entanglement. The negativity
of the bipartitions between Alice–Rob and Alice–AntiRob
was observed to decrease to zero in the infinite accelera-
tion limit, which corresponds to the near-horizon limit. The
authors concluded that an entanglement degradation existed
due to the horizon and supposed that there remain no quan-
tum correlations on the near-horizon limit, since the nega-
tivity vanishes in said situation. Moreover, the authors found
that the negativity for the bipartition between Rob–AntiRob,
i.e., between the observers separated by the causal horizon,
increased in the near-horizon limit. They noticed, however,
that this entanglement is not useful as a resource because
these two observers are forbidden classical communication.
In [7], the author evaluated the quantum discord of the state
probed by Alice and Rob. The main conclusion was a com-
parison to the negativity and the observation that even though
the negativity vanishes on the near-horizon limit, the quan-
tum discord does not, signaling that there are still quantum
correlations in that limit, which are not captured by the neg-
ativity.

5 States in the Rindler basis

Following previous works on the subject [6,7], the first step
to perform the analysis is to expand the mode hR

k′ part of
the state in Eq. (31) into a basis appropriate for the Rindler
observers. This can be done employing the transformation of
the Minkowski vacuum, Eq. (1), together with the transfor-
mation of the creation and annihilation operators of Unruh
modes to creation and annihilation operators of Rindler
modes, which can be done with the general transformation,
Eq. (15), together with the concrete Bogolyubov coefficients,
Eq. (28). This last step gives the one-particle Unruh state:

|1〉Rk′ = 1

cosh2 α

∞∑

n=0

tanhn α
√
n + 1|n + 1〉Ik′ |n〉I Ik′ , (32)

where α = arctanh(e−πω′/a) is the squeezing parameter
associated to the frequency ω′ of mode hR

k′ . The fact that
the transformation does not change the frequency, but only
the occupation numbers, leading a monochromatic state to
another monochromatic state, is the reason to use Unruh
modes for this analysis. With this data, let ρM,I , ρM,I I , ρI,I I

be the bipartite states of the subsystems probed by Alice–
Rob, Alice–AntiRob and Rob–AntiRob where the subscript
M means that Alice is an inertial observer and therefore
measures particles according to the Minkowski quantization,

Rob is a Rindler observer in the right Rindler wedge UI and
AntiRob is a Rindler observer in the left Rindler wedge UI I ,
both of which measure particles according to the Rindler
quantization in their respective wedges. Employing the above
transformations, the states in the Rindler basis are

ρM,I = 1

2 cosh2 α

∞∑

n=0

tanh2n α

[
|0n〉M,I

kk′ 〈0n| + (n + 1)

cosh2 α
|1n + 1〉M,I

kk′ 〈1n + 1|

+
√
n + 1

cosh α

(
|0n〉M,I

kk′ 〈1n + 1| + |1n + 1〉M,I
kk′ 〈0n|

)]
, (33)

ρM,I I = 1

2 cosh2 α

∞∑

n=0

tanh2n α

[
|0n〉M,I I

kk′ 〈0n| + n + 1

cosh2 α
|1n〉M,I I

kk′ 〈1n| +
√
n + 1 tanh α

cosh α
(

|0n + 1〉M,I I
kk′ 〈1n| + |1n〉M,I I

kk′ 〈0n + 1|
)]

,

(34)

ρI,I I = 1

2 cosh2 α

∞∑

n,m=0

tanhn+m α

×
(

|nn〉I,I Ik′ 〈mm|+
√
n + 1

√
m + 1

cosh2 α
|n + 1n〉I,I Ik′ 〈m+1m|

)
.

(35)

In that same way, one may further obtain the states of the three
subsystems probed individually by Alice, Rob and AntiRob.
It gives

ρM = 1

2

(
|0〉Mk 〈0| + |1〉Mk 〈1|

)
, (36)

ρI =
∞∑

n=0

tanh2(n−1) α

2 cosh2 α

(
tanh2 α + n

cosh2 α

)
|n〉Ik′ 〈n|,

(37)

ρI I = 1

2 cosh2 α

∞∑

n=0

tanh2n α

(
1 + n + 1

cosh2 α

)
|n〉I Ik′ 〈n|.

(38)

6 Mutual information

Let ρAB be a bipartite state and let ρA = TrB ρAB and ρB =
TrA ρAB be the marginal states of the two subsystems, A and
B, respectively. The mutual information is defined to be

I (ρAB) = S(ρA) + S(ρB) − S(ρAB), (39)

where S(ρ) is the von Neumann entropy of the density oper-
ator ρ. The mutual information quantifies the total correla-
tions between the two parts. If we have a tripartite pure state

123



Eur. Phys. J. C (2022) 82 :152 Page 7 of 16 152

Fig. 2 von Neumann entropies of the states ρM , ρI , ρI I . The state ρM
is shown by the black (dotted) line, ρI by the blue (solid) line and ρI I
by the red (dashed) line

ρABC = |ψ〉〈ψ | then we can extract three marginal bipar-
tite states from it, ρAB = TrC ρABC , ρAC = TrB ρABC , and
ρBC = TrA ρABC . In that case, the fact that ρABC is pure
implies the equalities

S(ρAB) = S(ρC ), (40a)

S(ρAC ) = S(ρB), (40b)

S(ρBC ) = S(ρA), (40c)

and this implies that the evaluation of the mutual information
for such bipartite states reduces to the problem of evaluating
the von Neumann entropies S(ρA), S(ρB), S(ρC ).

For the concrete problem we considered, all the states
ρM , ρI , ρI I of the individual subsystems are diagonal in the
Rindler occupation number basis. This means that evalu-
ating the von Neumann entropies can be done straightfor-
wardly. The results are shown in Fig. 2. From these entropies
the mutual information can be straightforwardly obtained as
well. The result is shown in Fig. 3.

In Fig. 3 we see that the higher the squeezing param-
eter the more the correlations of the bipartition between
the Minkowski and Rindler observer on the right Rindler
wedge decrease and the more the correlations between the
Minkowski and Rindler observer on the left Rindler wedge
increase. Moreover, this follows a conservation law [6]. In
fact, we have from Eqs. (39) and (40a),

I (ρM,I ) + I (ρM,I I ) = 2S(ρM ), (41)

but it follows immediately from Eq. (36) that S(ρA) = 1 and
we find

I (ρM,I ) + I (ρM,I I ) = 2, (42)

Fig. 3 Mutual information – The state ρM,I is the blue solid line, ρM,I I
is the red dashed line and ρI,I I is the black dotted line

which works as a conservation law, which is obeyed as a cor-
relation transfer from the bipartition ρM,I to the bipartition
ρM,I I . The meaning of this redistribution of correlation will
become clear as we discuss the distinction of classical and
quantum correlation in what follows.

7 Locally accessible and inaccessible information

Let again ρAB be a bipartite state. The mutual information
quantifies the total amount of information contained in the
correlations between the two parts. One may ask how much
of such information is locally accessible to each part by local
measurements. This is quantified by the Locally Accessible
Information (LAI) [12], also known as Classical Correlation
[22]. To define it, suppose we wish to find how much infor-
mation is accessible locally to B by local measurements. In
that case the LAI is defined to be

J←(ρAB) = max
1⊗�

[
S(ρA) −

∑

λ

pλS(ρλ
A)

]
, (43)

where the maximum is taken over all possible projective mea-
surements on the B subsystem. For each measurement �,
the probabilities are pλ and the post-selected states of the
A subsystem are ρλ

A (in other words, one takes the post-
selected state of the composite system and traces B out). In
the notation, the arrow points away from the system being
measured. This quantity measures the maximum decrease in
the uncertainty of the state of A that a measurement in B
might impart, that being the reason why it is called Locally
Accessible Information. The reason for the name Classical
Correlations lies in the fact that J←(ρAB) satisfies properties
that a quantifier of exclusively classical correlations should
satisfy.
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Associated to the LAI there is the Locally Inaccessible
Information (LII). The idea is that it should quantify the
amount of information contained in the correlations which
cannot be accessed locally through measurements. Since the
mutual information, I (ρAB) quantifies the total correlations,
this can be defined straightforwardly as

D←(ρAB) = I (ρAB) − J←(ρAB). (44)

This quantity is also known as the quantum discord and, inas-
much as J←(ρAB) quantifies the classical part of the corre-
lations, it quantifies the quantum part of the correlations. We
see from the definitions Eqs. (43) and (44) that both quan-
tities can be very hard to compute due to the optimization
they require. For a special case there is a simplification, that
being the central idea of the method employed in [7], which
allows the optimization to be carried out numerically as one
optimization over S2. We present the details of the method
in Appendix A and here just give a brief overview.

The idea is that if a bipartite state ρAB has one part which
is effectively two-level, by which we mean it is written as

ρAB =
∑

a,b=0,1

Mab ⊗ |a〉〈b|, (45)

then one may focus on the measurements in B which lie
in the subspace spanned by the basis operators |a〉〈b| for
a, b = 0, 1. In that case, the measurements are represented
by 2 × 2 projectors and this enables to parameterize them by
points on a sphere. Concretely, every measurement of interest
consists of two projectors �±(x) for x ∈ S2 given by

�±(x) = 1

2
[1 ± x · σ ] , x ∈ S2, (46)

where σ = (σ1, σ2, σ3) is a vector whose components are
three operators whose matrix representations are the Pauli
matrices. In that case, J←(ρAB) may be obtained by an opti-
mization over S2 and D←(ρAB) may be obtained from it.
The two angles over which we optimize are the two angles
that parameterize the measurement according to Eq. (46).

Considering the concrete state we are working with, there
are two bipartitions to which the method applies, namely
the bipartitions between Alice–Rob and Alice–AntiRob. The
subsystem which is effectively two level is that of Alice, i.e.,
of the inertial observer, and hence the method allows to com-
pute the LAI and LII for measurements made on the subsys-
tem probed by the inertial observer. In other words, we are
able to plot the LAI J→(ρM,I ) and J→(ρM,I I ), and the LII
D→(ρM,I ) and D→(ρM,I I ). We plot, in Fig. 4, all correla-
tions – mutual information, LAI and LII – for the Alice–Rob
bipartition, with measurements carried out by Alice as a func-
tion of the squeezing parameter. Remark that the classical

Fig. 4 State ρM,I – Classical Correlations is the solid blue line, quan-
tum discord is the black (dotted) line and mutual information is the red
(dashed) line

Fig. 5 State ρM,I I – Classical Correlations is the solid blue line, quan-
tum discord is the black dotted line and mutual information is the red
dashed line

and quantum correlation differ quantitatively, while show-
ing a similar behavior. We plot the same, in Fig. 5, for the
Alice–AntiRob bipartition.

Finally, to discuss the results, it is very instructive to plot
all correlations measures (LAI, LII and mutual information)
for the two bipartitions together. Doing so, using different
colors for each bipartition we obtain the plot shown in Fig. 6.

There, the blue lines correspond to the bipartition between
the inertial observer and the right Rindler observer, with
the classical correlations and quantum discord characteriz-
ing respectively the locally accessible and locally inacces-
sible information for the inertial observer. The red lines are
the plots for the bipartition among the inertial observer and
the left Rindler observer and now the classical correlations
and quantum discord characterize respectively the locally
accessible and locally inaccessible information for the iner-
tial observer. The case of zero acceleration and hence zero
squeezing parameter is obviously the case in which we are
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Fig. 6 States ρM,I and ρM,I I compared – The state ρM,I is depicted by
the blue lines and ρM,I I by the red lines. Classical Correlations are the
solid lines, quantum discord are the dotted lines and mutual information
are dashed lines

considering just inertial observers. Hence we clearly see in
the plot that when there is a non-zero acceleration, compared
to the situation in which there is not, a trade-off of the corre-
lations occur.

8 Entanglement of formation

Entanglement of formation is a measure of entanglement for
mixed states that satisfies the basic requirements one would
expect of an entanglement measure [23]. If ρAB is such a
state, one defines the entanglement of formation to be

EF (ρAB) = inf{(|ψi 〉,pi )}
∑

i

pi S

(
TrA(|ψi 〉〈ψi |)

)

= inf{(|ψi 〉,pi )}
∑

i

pi S

(
TrB(|ψi 〉〈ψi |)

)
, (47)

where the infimum is taken over the set of all ensembles of
pure states that realize ρAB .

This measure has an operational interpretation that makes
it valuable for applications. Still, in the present case, it is
worth considering it because of its special connection to LAI
and LII [11–13].

This connection lies in the relation that if ρABC = |ψ〉〈ψ |
is a tripartite pure state, then the entanglement of formation
of the AB subsystem is connected to the LAI of the AC
subsystem by means of the equation

EF (ρAB) + J←(ρAC ) = S(ρA). (48)

By varying the subsystems one obtains other equations like
that [13]. This relation has been employed in [11] in order to
obtain an important monogamy relation between entangle-
ment of formation and quantum discord.

Fig. 7 State ρI,I I – Entanglement of formation

This relation has a very important impact on the interpre-
tation of what entanglement of formation is quantifying. By
rewriting the equation as

J←(ρAC ) = S(ρA) − EF (ρAB), (49)

and recalling that J←(ρAC ) is the information contained in
the correlations between A and C locally accessible to C by
measurements, and recalling that S(ρA) is the uncertainty
in the state of A, we see that when EF (ρAB) = 0, all the
information is locally accessible, and when EF (ρAB) > 0
the locally accessible information decreases. In that setting,
EF (ρAB) signals a correlation redistribution by which an
observer of C alone looses access to information contained
in the correlations of its state with that of the A subsystem.
This interpretation of EF (ρAB) demands no “entanglement
as a resource” argument, and is available even if the sub-
systems A and B are separated by a causal horizon and the
corresponding observers are forbidden classical communi-
cation.

Equation (48) immediately implies that if C is effectively
two-level, in the sense of Eq. (45), then the method of [7],
which we have outlined in the previous section, allows for
the numeric evaluation of J←(ρAC ), and hence of EF (ρAB).
The details of how this is done are presented in Appendix B.

For the concrete problem we are considering, the only
effectively two-level state is that of the subsystem probed by
the inertial observer alone, which corresponds to the mode
hR
k of the field. This allowed us the evaluation of J→(ρM,I )

and J→(ρM,I I ). Both LAIs, on the other hand, lead to the
same entanglement of formation, because the entanglement
of formation is symmetric, i.e. EF (ρI,I I ) = EF (ρI I,I ). The
obtained entanglement of formation is shown in Fig. 7 and we
notice that it matches the overall behavior of the negativity
computed in [6].
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We must stress that considering that the state ρI,I I is rela-
tively complex (c.f. Eq. (35)) it is remarkable that we are able
to compute the entanglement of formation, which is defined
by a very difficult optimization, by just optimizing over two
angles.

9 Bounds on the other informational quantities

The approach we presented here allowed us to evaluate the
entanglement of formation EF (ρI,I I ) of the state probed by
the two Rindler observers Rob and AntiRob, the LAI and LII
J→(ρM,I ) and D→(ρM,I ) for the state probed by Alice and
Rob and the LAI and LII J→(ρM,I I ) andD→(ρM,I I ) for the
state probed by Alice and Anti-Rob. This is not a complete
characterization of the correlations of the complete system,
as some of the measures cannot be evaluated by the method
we have employed. These are for each subsystem:

– Alice-Rob: entanglement of formation EF (ρM,I ), LAI
and LII with measurements in Rob’s side, J←(ρM,I ) and
D←(ρM,I );

– Alice–AntiRob: entanglement of formation EF (ρM,I I ),
LAI and LII with measurements in Rob’s side, J←(ρM,I I )

and D←(ρM,I I );
– Rob-AntiRob: LAI and LII with measurements in both

sides, J←(ρI,I I ),D←(ρI,I I ), J→(ρI,I I ) andD→(ρI,I I ).

It turns out, however, that even though we are not able
to evaluate these quantities, we can find bounds for most of
them, which gives an overall idea of their behavior. The only
quantities we are not able to bound employing this method are
the LAI and LII for both the Alice–Rob and Alice–AntiRob
subsystems, with measurements on Rob’s side. To explain
how we obtain these bounds, we start with the Rob-AntiRob
bipartition and with the evaluation of bounds on J←(ρI,I I ).
By definition, this quantity is upper bounded by S(ρI ). On the
other hand it has a lower bound in terms of the entanglement
of formation EF (ρI,I I ) [24,25]:

J←(ρI,I I ) ≥ S(ρI ) −
√
S(ρI )2 − EF (ρI,I I )2. (50)

Therefore we have both lower and upper bounds on the clas-
sical correlations of the quantum state probed by the two
Rindler observers

S(ρI ) −
√
S(ρI I )2 − EF (ρI,I I )2 ≤ J←(ρI,I I ) ≤ S(ρI ).

(51)

Given that employing the method we have described we
were able to numerically evaluate S(ρI ) and EF (ρI,I I ) we
can plot the lower and upper bounds and describe the region
where J←(ρI,I I ) should be. Clearly the exact same pro-
cedure can be done replacing I by I I and, given that the

Fig. 8 Bounds on J←(ρI,I I )

Fig. 9 Bounds on J→(ρI,I I )

entanglement of formation is symmetric under this exchange,
the same entanglement of formation that we have already
obtained is going to give us bounds for J→(ρI,I I ). We plot
both of these in Figs. 8 and 9.

Likewise, we can use this to obtain lower and upper bounds
on the LII D←(ρI,I I ). Indeed, we just need to take the
negative of inequality (51) and add the mutual information
I (ρI,I I ). Once this is done we get the bounds

S(ρI I ) − S(ρM ) ≤ D←(ρI,I I )

≤
√
S(ρI )2 − EF (ρI,I I )2 + S(ρI I ) − S(ρM ), (52)

and since we know how to numerically evaluate all the quan-
tities appearing in it, we can plot both bounds and find the
region in which this informational quantity lies. Again the
exact same procedure can be carried out exchanging I and
I I and the same entanglement of formation gives us knowl-
edge of lower and upper bounds on D→(ρI,I I ). Both these
LII’s are shown in Figs. 10 and 11.

Finally, we can also apply this idea to find bounds over
EF (ρM,I ) = EF (ρI,M ) and EF (ρM,I I ) = EF (ρI I,M ).
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Fig. 10 Bounds on D←(ρI,I I )

Fig. 11 Bounds on D→(ρI,I I )

Specifically using Eq. (48) we find

EF (ρM,I ) = S(ρI ) − J←(ρI,I I ), (53)

EF (ρM,I I ) = S(ρI I ) − J→(ρI,I I ). (54)

Therefore, taking the negative of inequality (51) and ad-
ding S(ρI ) we obtain an upper bound on EF (ρM,I ) and
then exchanging I ↔ I I we obtain also an upper bound
on EF (ρM,I I ) which are then shown in Figs. 12 and 13:

0 ≤ EF (ρM,I ) ≤
√
S(ρI )2 − EF (ρI,I I )2, (55)

0 ≤ EF (ρM,I I ) ≤
√
S(ρI I )2 − EF (ρI,I I )2. (56)

We close this section with a brief interpretation of the
results. By observing these bounds on the several informa-
tional quantities what we are able to see is that, concerning
the Rob–AntiRob bipartition, both the LAI and LII increase
with the acceleration of the these observers. The more they
are accelerated the more correlated they will perceive the
state and, viewing LAI as classical correlations and LII as
quantum correlations, this behavior is the same for both of

Fig. 12 Upper bound on EF (ρM,I )

Fig. 13 Upper bound on EF (ρM,I I )

them. An important aspect of those results is the fact that the
LAI is closely related to the capacity of the channel [26].
We observe that, in this case, the capacity of the channel to
communicate classical information is given by maximizing
the accessible information. Although we do not maximize
it specifically in regard of the message, we note that since
J←(ρI,I I ) 	= J→(ρI,I I ) the capacities from sending classi-
cal messages from I to I I and vice-versa are not necessar-
ily symmetric. We can immediately see that by maximizing
J←(ρI,I I ) and J→(ρI,I I ), the capacities C(I → I I ) and
C(I I → I ) are respectively given by the red curves in Figs. 8
and 9. Therefore, while for small acceleration, there is an
asymmetry in the capacities, as the acceleration is increased
both capacities tend to be equal. In general, both increase as
the counter-acceleration of the observers Rob and AntiRob
increases.

We can extend this discussion to understand the entangle-
ment behavior as the acceleration of the Rindler observers
goes to zero and infinity. These are captured by the squeez-
ing parameter also going to zero or infinity, respectively. If
we consider Eq. (32) we see that the state |1〉Rk′ has a separable
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α = 0 limit

|1〉Rk′ = |1〉Ik′ |0〉I Ik′ . (57)

That is expected, as we are in the inertial situation, with two
inertial observers and no causal horizon imparting a redis-
tribution of correlations. When α is small, we have a small
deviation of that situation. This behavior is reproduced in the
plots. In Fig. 6 we see that regarding the Alice–Rob biparti-
tion, at zero acceleration we get the results for two inertial
observers, whereas all correlation measures are zero for the
Alice–AntiRob bipartition. For small, but nonzero acceler-
ation we see that the results are just slight deviations from
the inertial calculations, since the curves are all seem to be
continuous.

In the infinite acceleration limit, the state is

|1〉Rk′ = lim
α→∞

1

cosh2 α

∞∑

n=0

√
n + 1|n + 1〉Ik′ |n〉I Ik′ , (58)

and therefore a highly entangled state. The limit normal-
ization implies that the summation be more relevant for n
larger than cosh2 α, involving highly excited states. Together
with Eq. (31) we obtain the limiting states corresponding to
Eqs. (33)–(35),

ρM,I ≈ lim
α→∞

1

2 cosh2 α

∞∑

n=0

|0n〉M,I
kk′ 〈0n|, (59)

ρM,I I ≈ lim
α→∞

1

2 cosh2 α

∞∑

n=0

|0n〉M,I I
kk′ 〈0n|, (60)

ρI,I I ≈ lim
α→∞

1

2 cosh2 α

∞∑

n,m=0

|nn〉I,I Ik′ 〈mm|. (61)

The pairs Alice–Rob, and Alice–AntiRob tend to be disentan-
gled at the limit of infinite acceleration. Therefore, although
the upper-limit for the entanglement of formation show an
increasing tendency in Figs. 12, and 13, the actual entan-
glement goes to zero. This occurs as a manifestation of the
monogamy of entanglement [27], and the consequence is
that the state (61), for the pair Rob–AntiRob, tends to a max-
imally entangled pure state in the same limit. These results
agree with the findings in Ref. [6], in terms of the negativity
measure of entanglement, and are reflected in the scaling of
the entanglement of formation shown in Figs. 7, 12, and 13.
Remark that quantum and classical correlation are signifi-
cantly different in nature, and therefore, it is not surprising
that they give different values at those limits of low and high
accelerations, as stressed out by comparing the entanglement
with the quantities plotted in Fig. 6.

10 Discussion and conclusions

We revisited the analysis of correlations of a two-mode state
of a massless Klein–Gordon field which, for two inertial
observers, Alice and Bob, is maximally entangled, when Bob
is replaced by the Rindler observers Rob and AntiRob on
respectively the right and left Rindler wedges. Our focus
has been on informational quantities: the locally accessible
and locally inaccessible information, and the entanglement
of formation directly connected to the previous two.

We built upon the method of [7] and evaluated both LAI
and LII for both the Alice–Rob and Alice–AntiRob bipar-
titions and found a correlation redistribution associated to
both quantities. Moreover, the ideas of [11–13] allowed us
to use these results to evaluate the entanglement of forma-
tion for the Rob–AntiRob bipartition. Given its relation to
LAI and LII we are led to interpret it as a quantifier of the
correlation redistribution. Our conclusion is that the causal
horizon affecting the Rindler observers impart a correlation
redistribution on the system when compared to the situation
on which it is probed by two observers that neither perceive
such causal horizon. Furthermore, the correlation redistribu-
tion imparted by the causal horizon appears to be quantified
by the entanglement across the horizon. In that sense, even
though such entanglement cannot be employed as a resource
for any quantum computation task because the Rob–AntiRob
bipartition is deprived of classical communication, the Entan-
glement of Formation is an important measure for quantifi-
cation of the information content in accelerated frames in a
consistent way.

Other than the quantities we could compute numerically,
namely, the LAI and LII for the bipartitions M, I and M, I I
with measurements on M and the entanglement of formation
of the bipartition I, I I there are other informational quanti-
ties that one would like to evaluate to have a complete pic-
ture of how the correlations are distributed in the system.
These would be the entanglement of formations EF (ρM,I )

and EF (ρM,I I ), the LAI and LII for the bipartitions M, I and
M, I I with now measurements being made either in I or I I
and the LAI and LII for the bipartition I, I I with measure-
ments in either side. While the method we have employed
does not allow for the numeric evaluation of these quanti-
ties exactly it did allow us to find bounds for most of them
which gives one overall idea of their behavior as a function
of the squeezing parameter. This was only possible because
of the tight connection between the entanglement monotone
employed, the entanglement of formation, with the afore-
mentioned informational quantities.

The overall method employed is perhaps of general inter-
est in quantum information. It shows that if we have a tri-
partite state with only one effectively two-level part, then we
can evaluate by optimizations over S2, the LAI and LII for
the bipartitions involving the two-level part and the entangle-

123



Eur. Phys. J. C (2022) 82 :152 Page 13 of 16 152

ment of formation for the complementary bipartition which
does not have the two-level part, no matter how complicated
their states might be. Finally, all the other EoF’s, LAI’s and
LII’s can be immediately bounded.
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AppendixA:Classical correlations for systemwith 2-level
part

Let ρAC be a bipartite state. The locally accessible informa-
tion by measurements in C is defined to be

J←(ρAC ) = max{1⊗�λ}

[
S(ρA) −

∑

λ

pλS(ρλ
A)

]
(A.1)

where the maximum is taken over all projective measurement
acting on the composite system which act trivially upon A,
1 ⊗ �λ is such a measurement acting just on C with proba-
bilities pλ and post-selected states ρλ

AC . Finally ρA and ρλ
A

are the states of A immediately before and immediately after
the measurement, the later being assumed the result was λ.

In that case one is able to interpret J←(ρAC ) as the max-
imum mean decrease in the von Neumann entropy of the
state of A when measurements are performed in C . Because
of this one calls J←(ρAC ) the locally accessible informa-
tion by measurements in C . In this notation the arrow always
points from the subsystem being measured to the subsys-
tem which we infer the decrease in von Neumann entropy.
It is worth mentioning that J←(ρAC ) satisfies the proper-
ties of classical correlations [22], that being another name
commonly given to this particular measure of correlations.

In general, like for the entanglement of formation, it is a
hard task to compute the locally accessible information for
a given states because of the optimization involved on its
definition. The situation is drastically different for the case
on which the state of C is a two-level state. In that case one
can show the optimization is effectively over S2 and that it is
possible to devise an algorithm to carry it out numerically. We
shall review this method now, which was successfully used
in [7] in the context of relativistic quantum information.

First one notices that it is always possible to write ρAC as

ρAC =
∑

a,b=0,1

Mab ⊗ |a〉〈b|, (A.2)

where Mab are operators on A. The projective measurements
on C which are relevant to the optimization are the ones in
the space spanned by the projectors |a〉〈b|. Thus the �λ are
hermitian operators in this subspace of the space of opera-
tors which are projectors �2

λ = �λ and which satisfies the
resolution of identity

∑

λ

�λ = 1. (A.3)

These conditions implies that for λ there are only two pos-
sible values, which we shall label λ = ±. Being 2 × 2 her-
mitian operators, the matrix representation of the �± can be
written as linear combinations of the Pauli matrices together
with the 2 × 2 identity. Abusing notation and denoting the
matrices of �± by �± as well, one shows that the desired
expression is

�± = 1

2
[1 ± x · σ ], x ∈ S2 (A.4)

This means that measurements on subsystem C are parame-
terized by two angles once we write

x = (cos φ sin θ, sin φ sin θ, cos θ). (A.5)

Now we first discuss the probabilities of the measurement.
The probabilities p±(x) can be obtained using the standard
expression

p±(x) = Tr �±(x)ρAC�±(x). (A.6)

Performing this computation using Eq. (A.4) one is led to the
result that

p± = 1 ± x3

2
Tr M00 ± x1 − i x2

2
Tr M10

± x1 + i x2

2
Tr M01 + 1 ∓ x3

2
Tr M11. (A.7)
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Once the measurement is enacted, the post-selected states,
ρ±
AC (x), still have a two-level part. This means that there is

a new set of operators M±
ab(x) such that we can write

ρ±
AC (x) =

∑

a,b=0,1

M±
ab(x) ⊗ |a〉〈b|. (A.8)

In that sense, the whole effect of the measurement on the
state is to shift the operators Mab to new operators M±

ab(x)
which depend on the obtained result as well as in the measure-
ment through the angle dependence. These operators can also
be obtained from the standard formula for the post-selected
states:

ρ±
AC (x) = 1

p±(x)
�±(x)ρAC�±(x). (A.9)

Using this formula, one can obtain the postselected oper-
ators M±

ab(x) which are given by

M±
00(x) = 1 ± x3

2
M00 ± x1 − i x2

2
M10,

M±
10(x) = ± x1 + i x2

2
M00 + 1 ∓ x3

2
M10,

M±
01(x) = 1 ∓ x3

2
M01 ± x1 − i x2

2
M11,

M±
11(x) = ± x1 + i x2

2
M01 + 1 ∓ x3

2
M11. (A.10)

In that case, the postselected states of A which are of
interest to compute the locally accessible information ends
up simply as

ρ±
A (x) = M±

00(x) + M±
11(x), (A.11)

or in terms of the initial operators Mab it is

ρ±
A (x) = 1 ± x3

2
M00 ± x1 − i x2

2
M10

± x1 + i x2

2
M01 + 1 ∓ x3

2
M11. (A.12)

Thus we observe that given the initial operators Mab spec-
ifying the state of the system prior to measurement, using the
above formulae we are able to compute for an arbitrary mea-
surement parameterized by x ∈ S2 the probabilities for the
two possible results as well as the post-selected states of the
subsystem A.

Now this reveals one algorithm for computing the locally
accessible information. Considering that the operator Mab

may live in one Hilbert space of arbitrary dimension – which
could as well be infinite – we work with an upper cutoff N
on the dimension of that Hilbert space which in practice one
makes as large as desired to get more accurate results. The
overall method one employs in practice is thus:

1. Define the matrices Mab. If they are operators acting on
some infinite-dimensional Hilbert space, we impose one
upper cutoff N on the number of basis elements of HA

entering the definition.
2. Use Eq. (A.10) to define the post-selected matrices

M±
ab(x) as functions of x ∈ S2. With them define p±(x)

the probabilities and ρ±
A (x) the post-selected states of A.

3. Compute the entropies S(ρA) and S(ρ±
A (x)) numerically,

obviously depending on the upper cutoff N introduced on
step (1). With them define the function

J←(ρAC ; x) = S(ρA) −
∑

λ=±
pλ(x)S(ρλ

A(x)), x ∈ S2.

4. Express x = (cos φ sin θ, sin φ sin θ, cos θ) and maxi-
mize the classical correlation, J←(ρAC ; x), in the two
angles or use another more convenient parameterization
of S2.

5. Increase the upper cutoff N until getting the desired pre-
cision in the results.

The idea behind this method, which is the parameteri-
zation of the measurements by points of a sphere, was used
successfully in [7] in the context of relativistic quantum infor-
mation in order to compute the quantum discord of a state of
this kind. The method looks like a logical implementation in
a general context of the idea presented there.

Appendix B: From J←(ρAC) to EF(ρAB)

We now explain how we go from locally accessible infor-
mation to entanglement of formation, which is the central
objective. The key idea is that the entanglement of formation
holds a particularly important relation to locally accessible
information when we consider tripartite pure states [11–13].
In that case, if ρABC is pure, we have the equation

EF (ρAB) + J←(ρAC ) = S(ρA) (B.13)

and other similar equations obtained by varying A, B and
C . Thus knowledge of J←(ρAC ) yields EF (ρAB) and vice
versa. One important point to mention is that, as already
pointed, by varying the subsystems we also have the com-
panion equation

EF (ρBA) + J←(ρBC ) = S(ρB), (B.14)

thus, even though the two locally accessible informations
J←(ρAC ) and J←(ρBC ) will in general differ, they can be
used by employing these equations to obtain the same entan-
glement of formation, as EF (ρAB) = EF (ρBA), since it is
symmetric with respect to exchange in the two subsystems.
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Of course we can use the definition of locally accessible
information on Eq. (B.13) to directly obtain one new formula
for entanglement of formation

EF (ρAB) = min{1⊗�λ}
∑

λ

pλS(ρλ
A). (B.15)

Thus, when ρABC is a tripartite pure state, we are able to
get EF (ρAB) by the above optimization over measurements
on ρAC which act just on the C subsystem.

It is now clear how the algorithm can be used for the
case in which ρC is a two-level state. We can use it to first
numerically optimize and obtain J←(ρAC ) or J←(ρBC ),
both of which will give the same entanglement of forma-
tion by employing Eq. (B.13) or we can adapt the algorithm
directly to this new equation and optimize for the entangle-
ment of formation directly.

When C is a two-level state, again the measurements
which are relevant are those whose projectors expand in its
two-dimensional basis and which can be written in terms of
Pauli matrices together with the 2×2 identity using Eq. (A.4).
This means that the optimization defining the entanglement
of formation is again an optimization over S2. Being explicit,
the recipe one would use in practice would then be:

1. Construct the state ρAC = TrB ρABC and write it in the
form

ρAC =
∑

a,b=0,1

Mab ⊗ |a〉〈b|

2. Define the matrices Mab. If they are operators acting on
some infinite-dimensional Hilbert space, we impose one
upper cutoff N on the number of basis elements of HA

entering the definition.
3. Use Eq. A.10 to define the post-selected matrices M±

ab(x)
as functions of x ∈ S2. With them define p±(x) the prob-
abilities and ρ±

A (x) the post-selected states of A.
4. Compute the entropies S(ρ±

A (x)) numerically, obviously
depending on the upper cutoff N introduced on step (1).
With them define the function

EF (ρAB; x) =
∑

λ=±
pλ(x)S(ρλ

A(x)), x ∈ S2.

5. Express x = (cos φ sin θ, sin φ sin θ, cos θ) and mini-
mize the entanglement of formation EF (ρAB; x) in the
two angles or use another more convenient parameteri-
zation of S2.

6. Increase the upper cutoff N until getting the desired pre-
cision in the results.

Clearly, in practice one ends up needing to resort to numer-
ical methods as such to compute the entanglement of forma-
tion, but the optimization over S2 is arguably simpler than the
original one which defines the entanglement of formation.
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