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Abstract In this paper, we extend a recent proposed model
of two scalar and two vector fields to a hyperbolic inflation
scenario, in which the field space of two scalar fields is a
hyperbolic space instead of a flat space. In this model, one
of the scalar fields is assumed to be a radial field, while the
other is set as an angular field. Furthermore, both scalar fields
will be coupled to two different vector fields, respectively. As
a result, we are able to obtain a set of exact Bianchi type I
solutions to this model. Stability analysis is also performed to
show that this set of anisotropic solutions is indeed stable and
attractive during the inflationary phase. This result indicates
that the cosmic no-hair conjecture is extensively violated in
this anisotropic hyperbolic inflation model.

1 Introduction

Cosmic inflation [1–4] has been regarded as a leading
paradigm in modern cosmology. This result is due to the
fact that many of its theoretical predictions have been shown
to be highly consistent with the leading cosmic microwave
background radiation (CMB) probes such as the Wilkin-
son Microwave Anisotropy Probe (WMAP) [5] and the
Planck [6–8]. It is worth noting that the backbone of all
standard inflationary models [9] has been the cosmologi-
cal principle [10–13], whose statement is that our universe
is just simply homogeneous and isotropic on large scales
as described by the Friedmann–Lemaitre–Robertson–Walker
(FLRW) spacetime [14]. However, it is not straightforward
to verify the validity of this principle [10–13].

It is important to note that some CMB anomalies such as
the hemispherical asymmetry and the cold spot have been
detected by the WMAP and then confirmed by the Planck
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[15]. Remarkably, these anomalies are beyond the predic-
tions of all standard inflationary models. It appears that a
number of mechanisms, in accordance with the cosmologi-
cal principle, have been proposed in order to reveal the nature
of these anomalies [15]. For instance, there have been some
interesting ideas that the CMB statistical anisotropy could
be caused by instruments [16–18]. However, a follow-up
study has pointed out that they seem to be invalid [19]. As a
result, the physics behind the mentioned CMB anomalies has
remained unknown up to now [15]. All these results lead us
to think of a possibility that the cosmological principle might
no longer be valid in the early universe. If so, it might lead to
nontrivial deviations from the predictions of standard infla-
tionary models [20,21], which might also provide resolutions
to other problems. For example, it has been shown that the
Hubble tension might be an indication of the breakdown of
the FLRW cosmology [22].

Remarkably, a recent study has revealed an interesting
smoking gun evidence that the current universe might be
anisotropic, i.e., might violate the cosmological principle
[23]. This is indeed contrast to the statement of the so-called
cosmic no-hair conjecture proposed by Hawking and his col-
leagues long ago [24,25]. The no-hair conjecture states that
the late time universe would be homogeneous and isotropic,
i.e., would obey the cosmological principle, regardless of ini-
tial states of the universe, which might or might not violate
the cosmological principle. The no-hair conjecture is, how-
ever, very difficult to prove. It turns out that there have been a
number of partial proofs, e.g., see Refs. [26–32] for this con-
jecture since the first rigorous proof by Wald for the Bianchi
spacetimes with a cosmological constant, which are homoge-
neous but anisotropic [33,34]. Nevertheless, a general proof
for this conjecture has remained as a great challenge to physi-
cists and cosmologists for several decades. It is worth noting
that if the cosmic no-hair conjecture is valid, it would only be
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valid locally, i.e., inside of the future event horizon, according
to the studies by Starobinsky and the other people [35–39].

Besides the proofs mentioned above, counterexamples to
the cosmic no-hair conjecture have been proposed in differ-
ent frameworks such as higher order models of gravity [40–
44], the Lorentz Chern–Simons model [45], and the Galileon
models [46–48]. However, many of them have been shown
to be invalid due to their instability during an inflationary
phase [49–52]. Recently, the first vivid counterexample to
the cosmic no-hair conjecture has been constructed success-
fully by Kanno, Soda, and Watanabe (KSW) [53,54]. As a
result, this counterexample is nothing but a stable and attrac-
tive Bianchi type I inflationary solution of a supergravity-
motivated model, which involves a special coupling between
scalar and vector fields of the form f 2(φ)FμνFμν [54].
Consequently, a number of extensions of the KSW model
have been proposed in order to either examine the valid-
ity of the cosmic no-hair conjecture or investigate the cor-
responding CMB imprints of anisotropic inflation [55–97].
For interesting reviews on the KSW anisotropic inflation,
see Refs. [98,99]. It should be noted that the existence of the
time-dependent function f (φ) does break down the confor-
mal invariance of electromagnetic field. Therefore, the KSW
anisotropic inflation might have a close connection with the
origin of large-scale galactic electromagnetic fields in the
present universe as suggested by Refs. [100,101]. In other
words, the appearance of the late time large-scale galactic
electromagnetic fields might be a reasonable evidence for the
existence of the anisotropic inflationary universe. Moreover,
if the KSW anisotropic inflation is stable and viable, then the
unavoidable appearance of the late time large-scale galactic
electromagnetic fields might be an additional smoking gun
evidence for the breaking of the cosmological principle not
only in the early universe but also in the late time universe.

Recently, we have proposed a multi scalar and vector fields
model, which generalizes many previous extensions of the
KSW model [82]. In this paper, two scalar fields are allowed
to non-minimally couple to two vector fields, respectively.
Furthermore, this model has been shown to admit an exact
Bianchi type I power-law solution, which turns out to be
stable and attractive during its inflationary phase. In addi-
tion to our model, a recent interesting paper [83] has pro-
posed a different multi-scalar-field extension of the KSW
model, which is based on an interesting novel type of infla-
tion called a hyperbolic inflation [102]. Basically, the hyper-
bolic inflation model contains two scalar fields, whose two-
dimensional field space is hyperbolic instead of a conven-
tional flat one [103]. One of the scalar fields is referred to as
a radial field, while the other one is called an angular field. In
this type of inflation, the inflaton, described by the radial field,
never slow-rolls and instead orbits the bottom of the poten-
tial, buoyed by a centrifugal force [102]. Consequently, many
follow-up works have been done to investigate extensively

cosmological aspects of this hyperbolic inflation [104–106].
It is noted that only the radial field is non-minimally coupled
to a vector field in an anisotropic hyperbolic inflation model
proposed in Ref. [83]. Naturally, one can ask if the angular
field is also non-minimally coupled to a vector field. Appar-
ently, this scenario is similar to our recent model proposed in
Ref. [82]. This motivates us to study in this paper a non-trivial
combination of these two extensions of the KSW model. In
particular, we will investigate whether an anisotropic hyper-
bolic inflation [83] will appear in a model of two scalar and
two vector fields [82]. Stability analysis will be performed to
check if the obtained inflationary solution violates the cosmic
no-hair conjecture.

As a result, this paper will be organized as follows: (i) A
brief introduction of this study has been presented in Sect. 1.
(ii) A basic setup of hyperbolic model with two scalar fields
coupled to two vector fields will be introduced in Sect. 2.
(iii) Anisotropic power-law solutions will be figured out in
Sect. 3. (iv) Then, the stability of the obtained solutions will
be analyzed using the dynamical system method in Sect. 4.
(v) Finally, concluding remarks will be written in Sect. 5.

2 The model

In this paper, we would like to study a non-trivial combination
of the KSW model [53,54] and the hyperbolic inflation [102],
which was proposed in Ref. [83] such as

S =
∫

d4x
√−g

[
1

2
R − 1

2
Gab(φ

a, φb)∂μφa∂μφb

−V (φa, φb) − 1

4
fab(φ

a, φb)Fa
μνF

bμν

]
, (2.1)

where the reduced Planck mass Mp has been set to be one for
convenience. It is noted that Fa

μν = ∂μAa
ν −∂ν Aa

μ is the field
strength of vector field Aa

μ. In addition, Gab is a metric of
scalar field space. It should be noted that fab has been called
a gauge kinetic function within the supergravity theory [54].
However, ones have regarded fab, in analogy to Gab, as a
metric of vector field space [83]. Both of these metrics have
been assumed to be functions of scalar fields in Ref. [83].
In this paper, the scalar field and vector field spaces will be
assumed to be two-dimensional as

ds2
G = dφ2 + ωL2 sinh2

(
φ

L

)
dψ2, (2.2)

ds2
f = f 2

1 (φ)dφ2 + f 2
2 (ψ)dψ2, (2.3)

respectively. As a result, the corresponding metrics turn out
to be

Gab = diag

[
1, ωL2 sinh2

(
φ

L

)]
, (2.4)
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fab = diag
[
f 2
1 (φ), f 2

2 (ψ)
]
, (2.5)

respectively. Here L > 0 is the curvature scale (length) of
the hyperbolic space [102], while ω = ±1. Interestingly, the
existence of ω does not affect on the value of the curvature of
scalar field space, which is always equal to −2/L2 < 0. In
other words, the scalar field space is always hyperbolic with
negative curvature regardless of the value of ω.

It should be noted that we have renamed φ1 = φ and φ2 =
ψ for convenience. It is noted that φ is called a radial field,
while ψ is called an angular field. It is also noted that f1(φ)

and f2(ψ) are arbitrary functions of φ and ψ , respectively.
In addition, we will assume in this paper that V (φ1, φ2) =
V1(φ) + V2(ψ), in contrast to Ref. [83] where only V1(φ)

is introduced. It is noted that the configuration of the scalar
field space has been proposed in Refs. [83,102], while the
configuration of the vector field space follows our recent
paper [82], in which two scalar fields are allowed to non-
minimally coupled to two vector fields, respectively.

As a result, the above action (2.1) now reduces to the
following form,

S =
∫

d4x
√−g

[
1

2
R − 1

2
∂μφ∂μφ

− ω

2
L2 sinh2

(
φ

L

)
∂μψ∂μψ − V1(φ) − V2(ψ)

− f 2
1 (φ)

4
FμνF

μν − f 2
2 (ψ)

4
FμνFμν

]
, (2.6)

which acts as a hyperbolic generalization of a recent multi-
field extension of the KSW model [82]. In this action, F1

μν ≡
Fμν = ∂μAν − ∂ν Aμ is the field strength of the first vector
field A1

μ ≡ Aμ, while F2
μν ≡ Fμν = ∂μAν − ∂νAμ is the

field strength of the second vector field A2
μ ≡ Aμ. Note that

ψ will be a phantom-like scalar field if ω is equal to −1
[107–111].

As a result, varying the action (2.6) with respect to the met-
ric gμν will lead to the corresponding Einstein field equation
of this model given by

Rμν − 1

2
Rgμν − ∂μφ∂νφ − ωL2 sinh2

(
φ

L

)
∂μψ∂νψ

+ gμν

[
1

2
∂σ φ∂σ φ + ω

2
L2 sinh2

(
φ

L

)
∂σ ψ∂σ ψ

+V1 + V2 + 1

4

(
f 2
1 F2 + f 2

2 F2
)]

− f 2
1 Fμγ Fν

γ − f 2
2 FμγFν

γ = 0. (2.7)

Additionally, the corresponding equations of motion of two
vector fields, i.e., Aμ and Aμ, are defined to be

∂μ

[√−g f 2
1 Fμν

]
= 0, (2.8)

∂μ

[√−g f 2
2 Fμν

]
= 0, (2.9)

respectively. On the other hand, the corresponding equations
of motion of two scalar fields, i.e., φ and ψ , turn out to be

�φ − ω

2
L sinh

(
2φ

L

)
∂σ ψ∂σ ψ − ∂φV1 − 1

2
f1
(
∂φ f1

)

× F2 = 0, (2.10)

ωL2 sinh2
(

φ

L

)
�ψ + ωL sinh

(
2φ

L

)
∂σ φ∂σ ψ − ∂ψV2

− 1

2
f2
(
∂ψ f2

)F2 = 0, (2.11)

respectively. It is noted that ∂φ ≡ ∂/∂φ, ∂ψ ≡ ∂/∂ψ , and
� ≡ 1√−g

∂μ

(√−g∂μ
)
. In this paper, we would like to fig-

ure out anisotropic hyperbolic solutions to this model. To do
this task, we will consider the Bianchi type I metric, which
is considered as the simplest homogeneous but anisotropic
spacetime having the following form [53,54]

ds2 = −dt2 + exp [2α(t) − 4σ(t)] dx2 + exp [2α(t)

+2σ(t)]
(
dy2 + dz2

)
, (2.12)

where σ(t) is assumed to be a deviation from the spatial
isotropy, which is governed by α(t). This assumption corre-
sponds to a sufficient condition that σ(t) should be much
smaller than α(t) during an inflationary phase. In accor-
dance with the Bianchi type I metric having the y − z
rotational symmetry as shown in Eq. (2.12), the configu-
ration of two vector fields, Aμ and Aμ, will be consid-
ered as Aμ = (0, Ax (t) , 0, 0) and Aμ = (0,Ax (t) , 0, 0).
Additionally, both scalar fields will be regarded as homoge-
neous ones, i.e., they will only be functions of cosmic time,
φ = φ(t) and ψ = ψ(t).

As a result, the corresponding solutions of vector field
equations, i.e., Eqs. (2.8) and (2.9), turn out to be

Ȧx = pA f −2
1 exp[−α − 4σ ], (2.13)

Ȧx = qA f −2
2 exp[−α − 4σ ], (2.14)

respectively. Here, pA and qA are integration constants.
Thanks to these solutions, the field equations (2.7), (2.10),
and (2.11) can be rewritten explicitly as follows

α̇2 = σ̇ 2 + 1

3

[
φ̇2

2
+ ω

2
L2 sinh2

(
φ

L

)
ψ̇2 + V1 + V2

+1

2

(
p2
A f −2

1 + q2
A f −2

2

)
exp[−4α − 4σ ]

]
, (2.15)

α̈ = −3α̇2 + V1 + V2
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+ 1

6

(
p2
A f −2

1 + q2
A f −2

2

)
exp[−4α − 4σ ], (2.16)

σ̈ = −3α̇σ̇ + 1

3

(
p2
A f −2

1 + q2
A f −2

2

)
exp[−4α − 4σ ],

(2.17)

φ̈ = −3α̇φ̇ + ω

2
L sinh

(
2φ

L

)
ψ̇2 − ∂φV1

+ p2
A f −3

1 (∂φ f1) exp[−4α − 4σ ], (2.18)

ψ̈ = −3α̇ψ̇ − 2

L
coth

(
φ

L

)
φ̇ψ̇ − 1

ωL2 sinh2
(

φ
L

)

×
[
∂ψV2 − q2

A f −3
2 (∂ψ f2) exp[−4α − 4σ ]

]
. (2.19)

It turns out that we now have five equations for four variables,
α, σ , φ, and ψ . However, it should be noted that Eq. (2.15)
is nothing but the Friedmann equation, which just plays as a
constraint field equation. On the other hand, the time evolu-
tion of the spatial isotropy α will be described by Eqs. (2.16),
while that of the spatial anisotropy σ will be determined by
Eq. (2.17).

3 Power-law solutions for anisotropic hyperbolic
inflation

It turns out that the above field equations are difficult to be
solved to give a power-law inflation [112,113] due to the
existence of hyperbolic functions such as sinh(φ/L) and
coth(φ/L). However, as suggested in Ref. [83] it is possi-
ble to figure out power-law solutions in the regime φ � L .
It is due to the result that the hyperbolic functions can be
approximated as exponential functions in this regime,

sinh

(
φ

L

)
� cosh

(
φ

L

)
� 1

2
exp

(
φ

L

)
; sinh

(
2φ

L

)

� 1

2
exp

(
2φ

L

)
; coth

(
φ

L

)
� 1. (3.1)

In this paper, we would like to figure out power-law solutions
by choosing the following ansatz [54,67,82,83]

α(t) = ζ log t; σ(t) = η log t; φ(t) = ξ log t + φ0;
ψ(t) = ψ0t

p, (3.2)

together with the compatible potential and coupling func-
tions, whose forms are given by [82,83]

V1(φ) = V01 exp[λφ], (3.3)

V2(ψ) = V02ψ
n, (3.4)

f1(φ) = f01 exp[ρφ], (3.5)

f2(ψ) = f02ψ
m, (3.6)

here φ0, ψ0, ξi , V0i , f0i , λ, ρ, n, and m are all non-vanishing
parameters. As a result, the scale factors are now of power-
law functions as

exp[2α − 4σ ] = t2ζ−4η; exp[2α + 2σ ] = t2ζ+2η. (3.7)

As a result, the value of ζ and η will tell us how fast the
expansion of our universe is. In particular, it appears that
ζ − 2η > 0 and ζ + η > 0 are two sufficient constraints for
expanding universe, while ζ − 2η � 1 and ζ + η � 1 are
two sufficient constraints for inflationary universe [54,67].

As a result, a set of algebraic equations is defined, in the
regime φ � L , from the above field equations to be

ζ 2 = η2 + 1

3

[
ξ2

2
+ ω

2
u0 p

2 + u1 + u2 + 1

2
(v1 + v2)

]
,

(3.8)

− ζ = −3ζ 2 + u1 + u2 + 1

6
(v1 + v2) , (3.9)

− η = −3ζη + 1

3
(v1 + v2) , (3.10)

− ξ = −3ζ ξ + ω

L
u0 p

2 − λu1 + ρv1, (3.11)

p (p − 1) = −3ζ p − 2

L
ξp − 1

ωu0
(nu2 − mv2) , (3.12)

where additional variables ui and vi have been introduced as

u0 = 1

4
L2ψ2

0 exp

(
2φ0

L

)
, (3.13)

u1 = V01 exp[λφ0], (3.14)

u2 = V02ψ
n
0 , (3.15)

v1 = p2
A f −2

01 exp[−2ρφ0], (3.16)

v2 = q2
A f −2

02 ψ−2m
0 . (3.17)

It is noted that the following constraints,

ξ

L
+ p = 0, (3.18)

λξ = −2, (3.19)

np = −2, (3.20)

ζ + η + 1

2
ρξ = 1

2
, (3.21)

ζ + η + 1

2
mp = 1

2
, (3.22)

have been used to define the above set of algebraic equations.
As a result, the last two constraints shown in Eqs. (3.21) and
(3.22) imply that an useful relation

ρξ = mp. (3.23)
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Furthermore, this relation can be simplified to

ρ

λ
= m

n
= κ1, (3.24)

with the help of the other constraints shown in Eqs. (3.19)
and (3.20). Consequently, it appears that

nρ = mλ = κ2. (3.25)

Here κ1 and κ2 are additional constants. On the other hand,
both constraint equations (3.21) and (3.22) imply that

ζ = κ1 − η + 1

2
. (3.26)

According to our recent paper [82], we introduce two addi-
tional variables

u = u1 + u2, (3.27)

v = v1 + v2, (3.28)

for convenience. As a result, u and v can be figured out from
two equations, (3.9) and (3.10), as

u = ζ (3ζ − 1) − v

6
, (3.29)

v = 3η (3ζ − 1) , (3.30)

respectively. As a result, we can further simplify Eq. (3.12)
as

− p = −3ζ p + p2 − 1

ωu0
(nu2 − mv2) , (3.31)

with the help of the constraint (3.18). Furthermore, combin-
ing this equation with Eq. (3.11) will lead to

(3ζ − 1) (mξ + ωu0ρp) = −κ2u + mρv, (3.32)

with the help of the relation ρL = −m derived from Eqs.
(3.18) and (3.23). As a result, plugging the u and v defined
in Eqs. (3.29) and (3.30) into Eq. (3.32) leads to the corre-
sponding equation of ζ ,

(3ζ − 1) [6nλ (κ2 + 2mρ) ζ − nλ (2κ1 + 1) (κ2 + 6mρ)

−8 (ωu0λρ + mn)] = 0, (3.33)

which can be solved to give a non-trivial solution of ζ ,

ζ = nλ (2κ1 + 1) (κ2 + 6mρ) + 8 (ωu0λρ + mn)

6nλ (κ2 + 2mρ)
. (3.34)

As a result, this solution does satisfy Eq. (3.8) derived
from the Friedmann constraint equation, regardless of non-
vanishing value of u0. It turns out that this solution is similar
to that found in a non-hyperbolic inflation model [82], in
which V2(ψ) = V02 exp[λ2ψ], f2(ψ) = f02 exp[ρ2ψ], and
ψ = ξ2 log t +ψ0. To be more specific, there is a correspon-
dence that n ∼ λ2 and m ∼ ρ2 between the two solutions
of two different models, one is hyperbolic and the other is
non-hyperbolic [82].

Given the solution of ζ , the corresponding η is defined to
be

η = κ2nλ (2κ1 + 1) − 4 (ωu0λρ + mn)

3nλ (κ2 + 2mρ)
. (3.35)

For the value of L , it appears from Eq. (3.18) that

L = −n

λ
= −m

ρ
, (3.36)

with the help of Eqs. (3.23) and (3.24). As a result, the positiv-
ity of L implies that all n and m should be negative definite
since ρ and λ are both assumed to be positive definite. It
appears that if |m| ∼ ρ as well as |n| ∼ λ then L ∼ O(1).
On the other hand, if ρ � |m| as well as λ � |n| then L � 1.

Now, we would like to see whether these solutions repre-
sent inflationary one. As a result, the inflationary constraints,
ζ + η � 1 and ζ − 2η � 1 can be easily fulfilled if ρ � λ

along with |m| � |n|. Consequently, we have the following
approximations as

ζ � κ1 � 1, (3.37)

η � 1

3
, (3.38)

u � 3κ2
1 , (3.39)

v � 3κ1. (3.40)

In conclusion, an exact power-law solution of anisotropic
hyperbolic inflation having a small spatial anisotropy,
�/H ≡ σ̇ /α̇ = η/ζ � 1/(3κ1) � 1, has been figured out in
the regime that φ � L . More interestingly, this solution turns
out to be similar to that found in the recent non-hyperbolic
two scalar and two vector fields model [82]. Now, we would
like to compare the present inflationary solution with the
solutions found in Ref. [83]. It appears that, when V2(ψ) and
f2(ψ) are removed altogether, the corresponding anisotropic
hyperbolic inflation for one scalar-vector coupling has been
given by [83]

ζ0 = 1

3

(
2

Lλ
+ 1

)
, (3.41)

η0 = 1

6
+ ρ

λ
− 2

3Lλ
, (3.42)

where L now acts as a free parameter. Therefore, it is clear
that ζ0 � ρ/λ � ζ � 1 as well as η0 ∼ 1/6 during
an inflationary phase, provided that ρ/λ ∼ 2/(3Lλ). This
result implies that the existence of the potential V2(ψ) and
the additional coupling between the angular and second vec-
tor fields, i.e., f 2

2 (ψ)F2, does not modify significantly the
value of scale factors of the metric. In the next section, we
will see whether this solution is stable or not. Additionally,
we will numerically examine whether it is attractive or not.
This is an important task in order to check the validity of the
cosmic no-hair conjecture.
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4 Stability analysis

In this section, we would like to investigate the stability of the
obtained anisotropic power-law hyperbolic inflationary solu-
tion. It should be noted that in the present model both V2(ψ)

and f2(ψ) have been assumed as power-law functions of ψ .
Hence, we should define the corresponding suitable dynam-
ical variables, which might not be introduced in the previous
paper, where both V2(ψ) and f2(ψ) are exponential func-
tions of ψ [82]. Fortunately, this issue can be easily handled
thanks to some earlier works investigating dynamical sys-
tems for cosmological models having power-law potentials
of scalar field [114]. As a result, we will define, hinted by
Refs. [54,82,83,108,114], the corresponding dimensionless
dynamical variables as follows

X = σ̇

α̇
; Y1 = φ̇

α̇
; Y2 = L

2
exp

(
φ

L

)
ψ̇

α̇
, (4.1)

Z1 = pA f −1
1

α̇
exp[−2α − 2σ ], (4.2)

Z2 = qA f −1
2

α̇
exp[−2α − 2σ ], (4.3)

W1 =
√
V1

α̇
; W2 =

√
V2

α̇
, (4.4)

U1 = λ̄

λ̄ + 1
; U2 = ρ̄

ρ̄ + 1
, (4.5)

where λ̄ and ρ̄ are defined as

λ̄ = 2

L
exp

(
−φ

L

)
∂ψV2

V2
; ρ̄ = 2

L
exp

(
−φ

L

)
∂ψ f2
f2

. (4.6)

Here, W1, W2, U1, and U2 are auxiliary dynamical vari-
ables, which help us to have a complete dynamical sys-
tem [108,114]. It is noted that the definition of λ̄ and ρ̄ for
non-hyperbolic models should not involve 2L−1 exp (−φ/L)

[114]. It is clear that if both V2(ψ) and f2(ψ) are exponen-
tial functions of ψ as proposed in a non-hyperbolic inflation
model [82] then both λ̄ and ρ̄ will be constant. Consequently,
both U1 and U2 will also be constant and therefore cannot
be dynamical variables. That is a reason why we did not
introduce them in the previous paper [82].

As a result, we are able to have the following autonomous
equations for the present model,

dX

dα
= σ̈

α̇2 − α̈

α̇2 X, (4.7)

dY1

dα
= φ̈

α̇2 − α̈

α̇2 Y1, (4.8)

dY2

dα
= L

2
exp

(
φ

L

)
ψ̈

α̇2 +
(
Y1

L
− α̈

α̇2

)
Y2, (4.9)

dZ1

dα
= −

[
2 (X + 1) + ρY1 + α̈

α̇2

]
Z1, (4.10)

dZ2

dα
= −

[
2 (X + 1) + U2

1 −U2
Y2 + α̈

α̇2

]
Z2, (4.11)

dW1

dα
=
(

λ

2
Y1 − α̈

α̇2

)
W1, (4.12)

dW2

dα
=
(

U1

1 −U1

Y2

2
− α̈

α̇2

)
W2, (4.13)

dU1

dα
= −

(
1 −U1

U1

Y1

L
+ Y2

n

)
U 2

1 , (4.14)

dU2

dα
= −

(
1 −U2

U2

Y1

L
+ Y2

m

)
U 2

2 , (4.15)

where α plays as a new time coordinate related to the cos-
mic time t as dα = α̇dt . As a result, using the field
equations obtained in the previous section, i.e., Eqs. (2.16),
(2.17), (2.18), and (2.19), we will write down the explicit
autonomous equations of dynamical system as follows

dX

dα
= X

[
3
(
X2 − 1

)+ 1

2

(
Y 2

1 + ωY 2
2

)+ 1

3

(
Z2

1 + Z2
2

)]

+ 1

3

(
Z2

1 + Z2
2

)
, (4.16)

dY1

dα
= Y1

[
3
(
X2 − 1

)+ 1

2

(
Y 2

1 + ωY 2
2

)+ 1

3

(
Z2

1 + Z2
2

)]

+ ω

L
Y 2

2 + ρZ2
1 − λW 2

1 , (4.17)

dY2

dα
= Y2

[
3
(
X2 − 1

)+ 1

2

(
Y 2

1 + ωY 2
2

)+ 1

3

(
Z2

1 + Z2
2

)]

− 1

L
Y1Y2 + 1

ω

U2

1 −U2
Z2

2 − 1

ω

U1

1 −U1
W 2

2 , (4.18)

dZ1

dα
= Z1

[
3
(
X2 − 1

)+ 1

2

(
Y 2

1 + ωY 2
2

)

+1

3

(
Z2

1 + Z2
2

)− 2X − ρY1 + 1

]
, (4.19)

dZ2

dα
= Z2

[
3
(
X2 − 1

)+ 1

2

(
Y 2

1 + ωY 2
2

)

+1

3

(
Z2

1 + Z2
2

)− 2X − U2

1 −U2
Y2 + 1

]
, (4.20)

dW1

dα
= W1

[
3X2 + 1

2

(
Y 2

1 + ωY 2
2

)+ 1

3

(
Z2

1 + Z2
2

)+ λ

2
Y1

]
,

(4.21)

dW2

dα
= W2

[
3X2 + 1

2

(
Y 2

1 + ωY 2
2

)+ 1

3

(
Z2

1 + Z2
2

)

+ U1

1 −U1

Y2

2

]
, (4.22)

dU1

dα
= −

(
1 −U1

U1

Y1

L
+ Y2

n

)
U2

1 , (4.23)

dU2

dα
= −

(
1 −U2

U2

Y1

L
+ Y2

m

)
U2

2 . (4.24)

123
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It is noted that the useful relation,

W 2
1 + W 2

2 = −3
(
X2 − 1

)
− 1

2

(
Y 2

1 + ωY 2
2

)

−1

2

(
Z2

1 + Z2
2

)
, (4.25)

which is obtained from the Friedmann equation (2.15), has
been used to derive the above dynamical system. Now, we
would like to seek anisotropic fixed points with X �= 0 to
this dynamical system and study their attractive property.
Mathematically, fixed points of the dynamical system, which
can be isotropic or anisotropic, are solutions of the following
set of equations,

dX

dα
= dY1

dα
= dY2

dα
= dZ1

dα
= dZ2

dα
= dW1

dα

= dW2

dα
= dU1

dα
= dU2

dα
= 0. (4.26)

As a result, two equations, dU1/dα = dU2/dα = 0, give us
a relation

m

n
= U2 (U1 − 1)

U1 (U2 − 1)
, (4.27)

provided a requirement that U1 �= 0 and U2 �= 0. Further-
more, this relation can be reduced to a relation between U1

and U2 as

U2 = mU1

(m − n)U1 + n
. (4.28)

As a result, a relation between Y1 and Y2 can be figured out
from two equations, dW1/dα = dW2/dα = 0, as

Y2 = λ (1 −U1)

U1
Y1, (4.29)

along with an equation

3X2 + 1

2

(
Y 2

1 + ωY 2
2

)
+ 1

3
Z2 = −λ

2
Y1. (4.30)

Here, Z2 = Z2
1 + Z2

2 as an additional variable introduced for
convenience. Additionally, another relation between Y1 and
Y2 can be figured out from two other equations, dZ1/dα =
dZ2/dα = 0, as

Y2 = ρ (1 −U2)

U2
Y1, (4.31)

along with a relation between X and Y1 defined as

2X +
(

λ

2
+ ρ

)
Y1 + 2 = 0, (4.32)

with the help of Eq. (4.30). Here, it is noted that all W1, W2,
Z1, and Z2 have been regarded as non-vanishing variables,
similar toU1 andU2 as well as Y1 and Y2. Interestingly, three
relations shown in Eqs. (4.27), (4.29), and (4.31) imply that

ρ

λ
= m

n
= κ1, (4.33)

nρ = mλ = κ2, (4.34)

which are nothing but that shown in Eqs. (3.24) and (3.25) in
the previous section for the power-law solutions. Addition-
ally, it appears from the equations,dW1/dα = dW2/dα = 0,
that

L = −n

λ
= −m

ρ
, (4.35)

with the help of Eqs. (4.29) and (4.31). This relation is iden-
tical to that shown in Eq. (3.36) in the previous section for
the power-law solutions. It is straightforward to have from
the relation (4.27) that

U2

1 −U2
= κ1

U1

1 −U1
. (4.36)

As a result, two equations, dY1/dα = dY2/dα = 0, imply
an equation,

(
λ

2
Y1 + 3

){[
ω

λ̄2
nλρ + m

]
Y1 + κ2

}
−
(κ2

6
+ mρ

)
Z2

= 0, (4.37)

with the help of Eqs. (4.25), (4.29), (4.30), (4.33), (4.34), and
(4.36). It is noted that we have used the result that

λ̄ = U1

1 −U1
. (4.38)

Now, the equation dX/dα = 0, leads to an equation,

(
λ

2
Y1 + 3

)
X − 1

3
Z2 = 0. (4.39)

For convenience, we will rewrite Eq. (4.32) as

2X + λ

(
κ1 + 1

2

)
Y1 + 2 = 0. (4.40)

Up to now, we have derived three equations of three variables
X , Y1, and Z , Eqs. (4.37), (4.39), and (4.40). As a result,
solving these equations gives us a non-trivial solution,

X = 2
[
κ2λλ̄2 (2κ1 + 1) − 4

(
ωnλρ + mλ̄2

)]
λλ̄2 (2κ1 + 1) (κ2 + 6mρ) + 8

(
ωnλρ + mλ̄2

) ,
(4.41)

Y1 = −12λ̄2 (κ2 + 2mρ)

λλ̄2 (2κ1 + 1) (κ2 + 6mρ) + 8
(
ωnλρ + mλ̄2

) ,
(4.42)

123
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Z2 = 18
[
κ2λλ̄2 (2κ1 + 1) − 4

(
ωnλρ + mλ̄2

)] {
λλ̄2 [2mρ (6κ1 + 1) + κ2 (2κ1 − 1)] + 8

(
ωnλρ + mλ̄2

)}
[
λλ̄2 (2κ1 + 1) (κ2 + 6mρ) + 8

(
ωnλρ + mλ̄2

)]2 , (4.43)

where we have ignored the isotropic fixed points correspond-
ing to X = 0. It is noted that two types of isotropic fixed
points, which have been found in Ref. [83], can be easily
derived from the above dynamical system. Indeed, by setting
Y1 �= 0, W1 �= 0, and Y2 = W2 = U1 = U2 = Z1 = Z2 = 0
we can obtain the corresponding isotropic slow-roll inflation;
while Y1 �= 0, W1 �= 0, and W2 = U1 = U2 = Z1 = Z2 = 0
but Y2 �= 0 will lead to the corresponding isotropic hyper-
bolic inflation. Interestingly, one more isotropic fixed point
can also be figured out in the present model, which corre-
sponds to U2 = Z1 = Z2 = 0 along with Y1 �= 0, Y2 �= 0,
W1 �= 0, W2 �= 0, and U1 �= 0. In fact, it is a generalised
isotropic hyperbolic inflation with

Y1 = − λλ̄2

ωλ2 + λ̄2
; Y2 = λ

λ̄
Y1. (4.44)

In addition to the above anisotropic fixed point, it should be
noted that another anisotropic fixed point with X �= 0, which
is nothing but the anisotropic slow-roll inflation [54,83], can
be derived in this paper by setting Y2 = W2 = U1 = U2 =
Z2 = 0. However, it will not be our current interest because
of the fact that it is not equivalent to the anisotropic power-
law solution found in the previous section. One can now ask
if the anisotropic fixed point shown in Eqs. (4.41), (4.42),
and (4.43) is equivalent to the anisotropic power-law found
in the previous section. In order to answer this question, we
will rewrite X , Y1, and Z2 as

X = 2 [κ2nλ (2κ1 + 1) − 4 (ωu0λρ + mn)]

nλ (2κ1 + 1) (κ2 + 6mρ) + 8 (ωu0λρ + mn)
, (4.45)

Y1 = −12n (κ2 + 2mρ)

nλ (2κ1 + 1) (κ2 + 6mρ) + 8 (ωu0λρ + mn)
, (4.46)

Z2 = 18 [κ2nλ (2κ1 + 1) − 4 (ωu0λρ + mn)] {nλ [2mρ (6κ1 + 1) + κ2 (2κ1 − 1)] + 8 (ωu0λρ + mn)}
[nλ (2κ1 + 1) (κ2 + 6mρ) + 8 (ωu0λρ + mn)]2 , (4.47)

with the help of useful relations,

λ̄ = n√
u0

; ρ̄ = m√
u0

, (4.48)

here u0 has been defined in Eq. (3.13). Now, it is clear that
this anisotropic fixed point is absolutely equivalent to the
anisotropic power-law solution found above. Indeed, one
can easily check that X = η/ζ with ζ and η have been
shown in Eqs. (3.34) and (3.35), respectively. As a result,

the anisotropic fixed point can be approximated during the
inflationary phase with ρ � λ, |m| � |n|, and κ1 � 1 as

X � 1

3κ1
� 1; Y1 � − 2

ρ
; Y2 � − 2

m

√
u0, (4.49)

Z2 � 9X � 1; W 2
1 + W 2

2 � 3, (4.50)

U1 = n

n + √
u0

; U2 = m

m + √
u0

, (4.51)

here we have assumed that u0 ∼ O(1). It appears that Z2 �
1 implies that Z1 � 1 along with Z2 � 1. Additionally, the
result W 2

1 +W 2
2 � 3 indicates that 0 < W1, W2 <

√
3. Next,

we will investigate the stability of the obtained anisotropic
fixed point, similar to our previous paper [82]. In particular,
we will perturb the dynamical system around the fixed point
as follows

dδX

dα
� − 3δX, (4.52)

dδY1

dα
� − 3δY1 + 2ω

L
Y2δY2 + 2ρZ1δZ1 − 2λW1δW1,

(4.53)

dδY2

dα
� − Y2

L
δY1 −

(
Y1

L
+ 3

)
δY2

+ 1

ω

[
2Z2U2

1 −U2
δZ2 +

(
Z2

1 −U2

)2

δU2

]

− 1

ω

[
2W2U1

1 −U1
δW2 +

(
W2

1 −U1

)2

δU1

]
, (4.54)

dδZ1

dα
� − Z1 (2δX + ρδY1) , (4.55)

dδZ2

dα
� − Z2

[
2δX + U2

1 −U2
δY2 + Y2

(1 −U2)
2 δU2

]
,

(4.56)

dδW1

dα
� λ

2
W1δY1, (4.57)

dδW2

dα
� W2

[
U1

2 (1 −U1)
δY2 + Y2

2 (1 −U1)
2 δU1

]
, (4.58)

123
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dδU1

dα
� −U 2

1

(
1 −U1

U1

δY1

L
+ δY2

n
− Y1

U 2
1

δU1

L

)
, (4.59)

dδU2

dα
� −U 2

2

(
1 −U2

U2

δY1

L
+ δY2

m
− Y1

U 2
2

δU2

L

)
. (4.60)

Taking exponential perturbations [82],

δX = A1 exp[τα]; δY1 = A2 exp[τα]; δY2 = A3 exp[τα],
(4.61)

δZ1 = A4 exp[τα]; δZ2 = A5 exp[τα]; δW1 = A6 exp[τα],
(4.62)

δW2 = A7 exp[τα]; δU1 = A8 exp[τα]; δU2 = A9 exp[τα],
(4.63)

we are able to write the above perturbed equations as a homo-
geneous linear system of Ai with i = 1 − 9. Furthermore,
this system can be written as a homogeneous matrix equation
as follows

M

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

A1

A2

A3

A4

A5

A6

A7

A8

A9

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= 0, (4.64)

where the matrix M is given by

M ≡

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−3 − τ 0 0 0 0 0 0 0 0
0 −3 − τ 2ω

L Y2 2ρZ1 0 −2λW1 0 0 0

0 −Y2
L −

(
Y1
L + 3

)
− τ 0 2Z2U2

ω(1−U2)
0 2W2U1

ω(U1−1)
−1
ω

(
W2

1−U1

)2
1
ω

(
Z2

1−U2

)2

−2Z1 −ρZ1 0 −τ 0 0 0 0 0
−2Z2 0 Z2U2

U2−1 0 −τ 0 0 0 −Y2Z2
(1−U2)

2

0 λ
2W1 0 0 0 −τ 0 0 0

0 0 W2U1
2(1−U1)

0 0 0 −τ Y2W2
2(1−U1)

2 0

0 U1(U1−1)
L

−U2
1

n 0 0 0 0 Y1
L − τ 0

0 U2(U2−1)
L

−U2
2

m 0 0 0 0 0 Y1
L − τ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (4.65)

Mathematically, this homogeneous linear system will admit
non-trivial solutions, i.e., there is at least one non-vanishing
solution Ai �= 0, if and only if

det M = 0. (4.66)

As a result, this equation can be written as an equation of τ

as

τ 3 (τ +3) (mτ −2)
(
a4τ

4+a3τ
3+a2τ

2+a1τ + a0
) = 0,

(4.67)

where the coefficients, ai (i = 0 − 4), are given by

a4 = ωu0m
5, (4.68)

a3 = 6ωu0m
5, (4.69)

a2 � 2m5
(
m2Z2

2 + ωu0ρ
2Z2

1

)
, (4.70)

a1 � 6m5
(
m2Z2

2 + ωu0ρ
2Z2

1

)
, (4.71)

a0 � 2m7ρ2Z2
1 Z

2
2 < 0, (4.72)

thanks to the approximations of the anisotropic fixed points.
Here, we have only kept the leading terms of the coefficients
ai (i = 0−2) due to a set of the corresponding constraints for
the anisotropic inflationary solution, ρ � λ and |m| � |n|
as well as λ > 0, ρ > 0 and n < 0, m < 0, for simplicity.
It turns out that besides five non-positive roots, τ1,2,3 = 0,
τ4 = −3 < 0, and τ5 = 2/m < 0, four other non-trivial
roots of Eq. (4.67) are derived from the equation

F(τ ) ≡ a4τ
4 + a3τ

3 + a2τ
2 + a1τ + a0 = 0. (4.73)

It turns out that if ω = +1 > 0 then all coefficients
ai (i = 0 − 4) become negative provided that u0 > 0.
Mathematically, Eq. (4.73) with all negative coefficients ai
(i = 0−4) no longer admits any positive roots τ > 0, mean-
ing that the corresponding anisotropic power-law hyperbolic
inflationary solution is indeed stable against field perturba-
tions. However, if ω = −1 < 0, i.e., ψ is the phantom-
like scalar field, then a4 > 0 while a0 < 0. Consequently,
Eq. (4.73) will admit at least one positive root τ > 0. This

fact can be easily verified by an observation that the curve
F(τ ) with F(0) = a4 < 0 and F(τ � 1) ∼ a4τ

4 > 0
will cross the positive horizontal τ -axis at least one time at
τ = τ∗ > 0. The existence of positive τ∗ implies that the
corresponding anisotropic power-law hyperbolic inflation-
ary solution is indeed unstable. This result is consistent with
our previous models [67,68,82], in which the phantom field
has been shown to favor the cosmic no-hair conjecture by
causing unstable mode(s) to the corresponding anisotropic
power-law inflationary solutions.

123
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Fig. 1 Attractor behavior of the anisotropic fixed point with ω = +1, u0 = 2, λ = 0.1, ρ = 50, n = −0.2, and m = −100. These two plots
clearly show that three different trajectories corresponding to different initial conditions all tend to converge to the anisotropic fixed point

It should be noted that, we are able to numerically show the
attractor property of the anisotropic fixed point with ω = +1
(see Fig. 1 for details). This result acts as a strong confirma-
tion of the stability of the anisotropic power-law hyperbolic
inflationary solution. It should be noted that if the angular
field ψ is the phantom-like scalar field, i.e., ω = −1, the
corresponding anisotropic fixed point will be unattractive as
expected since all trajectories tend to converge to the isotropic
fixed point corresponding to X = Z = 0. These results are
also consistent with our previous study [82].

5 Conclusions

Motivated by a recent paper [83], we have proposed a hyper-
bolic generalization of our recent model, which acts as a novel
multifield extension of the KSW model [82]. In this gener-
alization, the field space of two scalar fields are assumed to
be a hyperbolic space instead of a conventional flat space
[102]. One of the scalar fields, φ, is the radial field and the
other, ψ , is the angular field. Both of them are massive and
coupled to vector fields. As a result, we have obtained a set
of Bianchi type I power-law solutions to this model in the
regime φ � L , similar to Ref. [83]. Furthermore, we have
shown that this solution can be used to present an anisotropic
inflationary solution if ρ � λ along with |m| � |n|, pro-
vided that both λ and ρ are positive, while both n and m are
negative. Stability analysis based on the dynamical system
method has been performed to verify that this anisotropic
inflationary solution is indeed stable and attractive, similar

to the solutions obtained in the non-hyperbolic (flat) model
[82]. However, if the angular field, ψ , is the phantom-like
one with ω = −1, the corresponding anisotropic inflation-
ary solution will be unstable as expected. It should be noted
that this present paper is solely devoted to seek anisotropic
inflationary solutions and investigate their stability in order
to deal with the cosmic no-hair conjecture. Detailed investi-
gations on the CMB imprints [87–95] of this model will be
presented elsewhere. We hope that our present paper would
be useful to studies of the early time universe.
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