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Abstract A new family of (2+1)-dimensional black holes
are investigated in the background of Born–Infeld type the-
ories coupled to a Riemannian curved spacetime. We know
that both the scale and dual invariances are violated for these
nonlinear electromagnetic theories. In this set-up, first we
consider a pure magnetic source in a model of exponential
electrodynamics and find a magnetically charged (2 + 1)-
dimensional black hole solution in terms of magnetic charge
q and nonlinearity parameter β. In the second case we con-
sider a pure electric source of gravity in the framework of
arcsin electrodynamics and derive the associated (2 + 1)-
dimensional black hole solution in terms of electric charge
Q and the parameter β. The asymptotic behaviour of the
solutions at infinity as well as at r → 0 in both the frame-
works is discussed. The asymptotic expressions of curva-
ture invariants in the case of exponential electrodynamics
shows that there exists a finite value of curvature at the origin,
while in arcsin electrodynamics, the corresponding asymp-
totic behaviour shows that there is a true curvature singularity
at the centre of the charged object. Furthermore, thermody-
namics of the resulting charged black holes within the context
of both the models is studied. It is shown that the thermody-
namic quantities corresponding to these objects satisfy the
first law of black hole thermodynamics.
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1 Introduction

Black holes which are the most important prediction of Ein-
stein’s general theory of relativity, are way more than only
mathematical objects [1]. It is widely believed that only a not-
yet-complete quantum gravity theory is capable to tackle the
problem of black hole’s singularity in a proper way. How-
ever, different phenomenological approaches have been con-
sidered in the literature for solving this problem (see Ref. [2]
for a review). One approach is to study the theory of grav-
ity in the framework of nonlinear electrodynamics (NED).
The main motivation of studying NED was to remove cer-
tain difficulties which appeared in the standard Maxwell’s
theory of electro-magnetism. Due to the property of remov-
ing divergences in electro-magnetic phenomenon, NED can
be applicable to the theory of gravity to handle the problems
of singularity and divergences of physical quantities in black
holes. In addition to this, black hole solutions of gravitational
field equations can also be derived by making the assump-
tion of nonlinear electromagnetic field as a source of gravity
[3–14].

Different mathematical models for NED, with various
motivations, in the framework of gravity have been inves-
tigated [15–22]. All these models give predictions about the
finiteness of electromagnetic energy and potentials unlike
linear Maxwell’s theory [23–27]. Among these models, the
Born–Infeld NED is special in that it was formulated for
obtaining finite electric field at the centre of charged parti-
cles. In addition to solving the problem of central singularity
NED also yields electrically charged regular black hole solu-
tions in Einstein’s theory. The spherically symmetric solu-
tions which are derived with the help of NED are asymptotic
to the Reissner–Nordström (RN) solution [6]. This approach
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of using NED for removing singularities and for determina-
tion of charged solutions is also successful in the analysis
of (2 + 1)-dimensional black holes [28]. Recently, (2 + 1)-
dimensional black holes attracted much attention for many
reasons, e.g., the absence of propagating degrees of freedom
due to which they possess very simple mathematical struc-
ture. Since they also possess special mass and charge depen-
dence, the (2+1)-dimensional black holes make a good test-
ing ground for the usual four-dimensional black holes. The
first example of (2+1)-black holes in this regard is the well-
known Bañados–Teitelboim–Zanelli (BTZ) black hole [29].
The (2+1)-dimensional nonlinear electrically charged black
holes also possess the same physical characteristics such as
Hawking radiation, event horizon and thermodynamics that
are commonly found in the usual four-dimensional black
holes [30–32]. The solution found in Ref. [33] is another
example of (2 + 1)-dimensional black holes. This solution
is determined in the framework of Einstein’s theory coupled
to a restricted class of NED where Maxwell’s invariant has
a power 3/4. In the same way, (2 + 1)-dimensional black
holes are also studied in the presence of NED [34–36] where
the power of Maxwell’s invariant is taken as an arbitrary real
rational number k. (For more discussions related to (2 + 1)-
dimensional black holes and NED, the reader is referred to
Refs. [37–41].) Recently, the new NED models such as arcsin
electrodynamics and modified Born–Infeld electrodynamics
have also been used and static spherically symmetric elec-
trically charged solutions are determined [42–45]. Further,
exponential NED [46] was used for the computation of mag-
netically charged black hole solutions. Besides the black hole
solutions of Einstein gravity, the d-dimensional black holes
in modified gravities have also been investigated within this
context. For instance, nonsingular black holes [47,48] have
been studied under this process. Similarly, topological Love-
lock black holes with pure magnetic sources have been stud-
ied as well [49,50].

Although the exponential and arcsin NED models belong
to the family of Born–Infeld type theories, however, there
also exist some differences among them. It was shown that
magnetically and electrically charged black hole solutions in
the framework of these models are asymptotic to RN solu-
tion. The Born–Infeld model shows this property of deriving
asymptotic solutions but some aspects of this model have
different features than the exponential and arcsin electrody-
namics models. For example, the exponential electrodynam-
ics model [46] does not admit electrically charged solutions
since the Lagrangian density of this model makes the electric
field and electric potential unbounded while within the set-
up of the Born–Infeld model electrically charged solutions
are possible to derive. There are issues of causality in Born–
Infeld electrodynamics while in exponential and arcsin NED
theories both the causality and unitarity principles are satis-
fied. The effect of vacuum birefringence occurs in quantum

electrodynamics due to quantum corrections in Heisenberg
Lagrangian [51]. This effect cannot be observed in Maxwell
and Born–Infeld models but in the context of exponential [46]
and arcsin [44] models it is present. Similarly, the symmetry
of duality holds in Born–Infeld model but in our chosen mod-
els i.e. exponential and arcsin it is totally violated. In addition
to this, exponential electromagnetic field can drive the uni-
verse to accelerate, however, no such effects occur in Born–
Infeld electrodynamics [52]. Moreover, it should be noted
that the energy conditions in all these models are satisfied
and in the weak field limit Maxwell’s theory can be recovered
from all these models of NED. In this work we are consider-
ing exponential and arcsin nonlinear electromagnetic fields
as sources of gravity and study (2 + 1)-dimensional black
holes in Einstein’s theory.

The study of thermodynamic properties is also one of
the important issue in the subject of black hole physics.
Like Maxwell’s theory, thermodynamics of black holes has
gained much interest in the context of NED theories as well.
For instance, thermodynamics and phase transitions of black
holes are studied in the background of exponential electro-
dynamics [46,47]. Similarly, thermodynamic properties of
higher dimensional black holes in the presence of power-
Maxwell electromagnetic source [53] have also been stud-
ied. In Ref. [34] local thermodynamic stability of electri-
cally charged (2 + 1)-dimensional black holes is studied by
employing the technique introduced in Ref. [54]. In this paper
we also study thermodynamics of our resulting nonlinearly
charged (2 + 1)-dimensional black holes.

The layout of the paper is as follows. In the next sec-
tion, we investigate the family of new magnetically charged
(2 + 1)-dimensional black holes in Einstein’s theory cou-
pled to exponential electrodynamics. In this set-up metric
functions are calculated and their asymptotic behaviour at
both infinity and r = 0 are discussed. We also prove that
energy conditions are satisfied for this model. The asymp-
totic expressions of curvature invariants at infinity as well as
at r = 0 are also calculated. In Sect. 3, thermodynamics of the
resulting magnetically charged solution is studied. Section 4
is devoted to the analysis of electrically charged black holes
within the context of gravity and arcsin electrodynamics and
Sect. 5 studies their thermodynamic properties. Finally, the
last section is devoted to some concluding remarks.

2 (2+ 1)-dimensional black holes in exponential
electrodynamics

The action function describing (2+1)-dimensional Einstein’s
gravity in the presence of NED is given by [34]

I =
∫

d3x
√−g

[
1

2π

(
R − 2

3
�

)
+ L

]
, (2.1)
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where the Lagrangian density of electromagnetic field is

L(F) = −F exp (−βF), (2.2)

and F = FμνFμν = (B2 − E2)/2, β is the nonlinearity
parameter and should be taken positive, Fμν is the electro-
magnetic field tensor, and B and E denote the magnetic and
electric fields. Variation of action (2.1) with respect to the four
potential Aμ yields the equations of motion corresponding
to NED as

∂μ

[√−gFμν
(
1 − βF) exp (−βF)

]
= 0. (2.3)

Similarly, by varying (2.1) with respect to the metric tensor
gμν , we can obtain gravitational field equations as

Rν
μ − 1

2
δν
μR + 1

3
�δν

μ = πT ν
μ , (2.4)

where Rν
μ is the Ricci tensor, R is the Ricci scalar, � is the

cosmological constant and T νμ represents the matter tensor
of NED given by

Tμν = exp (−βF)

[
(βF − 1)FμλFν

λ + Fgμν

]
. (2.5)

The trace of the above matter tensor is

T = −4βF2 exp (−βF), (2.6)

which clearly shows the breaking of conformal invariance
in this theory. However, by applying the limit β → 0, this
trace vanishes which implies that Maxwell’s theory can be
recovered in this limit.

In order to derive the circularly symmetric magnetically
charged (2 + 1)-black hole solution, first we choose the pure
magnetic field such that E = 0. This implies that Maxwell’s
invariant would be equal to F = B2/2 = q2/2r4 [46],
where q represents the magnetic charge. Now, the line ele-
ment ansatz in (2 + 1)-dimensional spacetime can be taken
as

ds2 = −ψ(r)dt2 + dr2

ψ(r)
+ r2dθ2. (2.7)

Using the Lagrangian density (2.2) of NED, the compo-
nents of matter tensor (2.5) can be calculated as follows:

T 0
0 = q2

2r4 exp

(
− βq2

2r4

)
, (2.8)

T 1
1 = T 2

2 = exp

(
− βq2

2r4

)[
q2

r2ψ(r)

(
q2β

2r4 − 1

)
+ q2

2r4

]
.

(2.9)

From the line element (2.7), the 00-component of Einstein’s
equations (2.4) gives

1

2r

dψ

dr
+ �

3
= πq2

2r4 exp

(
− βq2

2r4

)
. (2.10)

Solving the above differential equation yields

ψ(r) = D + r2

3l2
− qπ

3
2

√
β2

3
2

E

(
q
√

β√
2r2

)
, (2.11)

where we choose � = −1/ l2, l being a real parameter and
E(x) is the error function. The constant D can be related
to mass of the gravitating object at infinity by using the
Brown–York formalism [33,46,53]. With the use of quasilo-
cal mass formulation, a static circularly symmetric (2 + 1)-
dimensional line element takes the form [34]

ds2 = − f (r)2dt2 + dr2

g(r)2 + r2dθ2. (2.12)

This yields the quasilocal mass MQL in the form

MQL = lim
rb→∞ 2 f (rb)[gr (rb) − g(rb)]. (2.13)

In the above expression, gr (rb) stands for an arbitrary non-
negative reference function which allows the zeros of the
energy in the spacetime. The value rb denotes the radius of
some spacelike hypersurface. From the form of our line ele-
ment (2.7), it can be clearly seen that

f (r) = g(r) =
√√√√D + r2

3l2
− qπ

3
2

√
β2

3
2

E

(
q
√

β√
2r2

)
, (2.14)

and

gr (r) =
√√√√ r2

3l2
− qπ

3
2

√
β2

3
2

E

(
q
√

β√
2r2

)
. (2.15)

Thus, by substituting the above Eqs. (2.14) and (2.15) in
Eq. (2.13) the metric function (2.11) for choosing M > 0
becomes

ψ(r) = −M + r2

3l2
− qπ

3
2

√
β2

3
2

E

(
q
√

β√
2r2

)
. (2.16)

The asymptotic expression of the above metric function in
the vicinity of infinity can be obtained as

ψ(r) = −M + r2

3l2
− πq2

2r2 + πβq4

12r6 + O(r−10). (2.17)

This shows that at infinity the spacetime is not Minkowskian
and the solution (2.16) reduces to that of Einstein-Maxwell
theory when β → 0. Similarly the asymptotic value of the
metric function when r → 0 is calculated as

ψ(r) = −M + r2

3l2
− qπ

3
2

√
β2

3
2

+ exp

(
− βq2

2r4

)

×
[
πr2

2β
− πr6

2β2q2 + O(r10)

]
. (2.18)
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Note that in calculating the above expansion we used the
relation

E(x) = 1 − 1√
π

�(1/2, x2), (2.19)

where �(s, x) refers to the incomplete Gamma function. The
asymptotic expansion (2.18) shows that the metric function is
finite at the centre r = 0. This behaviour of metric functions
is a consequence of the nonlinear electromagnetic nature of
Lagrangian density (2.2). It should also be noted that the limit
β → 0 cannot be taken for (2.18) and hence the apparent
singularity in this case is fake.

The weak energy condition (WEC) would be fulfilled if
and only if the energy density ρ = T 0

0 and principle pressures
pm = −Tm

m (there is no summation in the index m) satisfy

ρ ≥ 0, ρ + pm ≥ 0, m = 1, 2. (2.20)

The satisfaction of WEC ensures that any local observer mea-
sures the non-negative energy density. It is also worthwhile
to note that the above WEC is equivalent to the Tμνζ

μζ ν for
any timelike vector ζμ [1,43,46]. Thus, from Eqs. (2.9) and
(2.20), one can easily verify that WEC holds for any value
of magnetic field B such that βB2 ≤ 2. Validity of the dom-
inant energy condition (DEC) [1,43,46] is governed by the
conditions

ρ ≥ 0, ρ + pm ≥ 0, ρ − pm ≥ 0, m = 1, 2. (2.21)

Again from Eq. (2.9) one can prove that DEC also holds
if β� ≤ 1 for the Lagrangian density (2.2). This shows
that speed of sound would be always less than the speed of
light. Similarly, validity of the strong energy condition (SEC)
[1,43,46] is given by

ρ + p1 + p2 ≥ 0. (2.22)

Using the energy–momentum tensor components one can
conclude that SEC holds for this model of electrodynamics
if the exponential magnetic field satisfies the inequality

B ≤
√

2

β
− ψ(r)

2r2β
. (2.23)

The satisfaction of SEC implies that there is no acceleration
of the universe in the model of nonlinear electromagnetic
field coupled to the gravitational field [43].

Now, we discuss the nature of singularity of our result-
ing solution described by Eqs. (2.7) and (2.16), for which
we will calculate the curvature invariants. It is possible to
find out the Ricci scalar from Einstein’s equations describ-
ing gravitational field i.e. Eq. (2.4) so that

R = − 2

l2
+ 2πq4β

r4 exp

(
− βq2

2r4

)
. (2.24)

This expression of the Ricci scalar implies that it is defined
and finite at r = 0. The finiteness of Ricci scalar shows

that at any point say r0 for which R(r0) = 0, one can find
the change in curvature around such a point. So one may
encounter a transition from negative curvature to positive.
One can also find the Kretschmann scalar K for the metric
(2.7) in the form

K = 2

r2

(
dψ

dr

)2

+
(
d2ψ

dr2

)2

. (2.25)

Now from Eq. (2.17) we have

dψ

dr
= 2r

3l2
+ q2π

r3 exp

(
− βq2

2r4

)
, (2.26)

and

d2ψ

dr2 = 2

3l2
− 3q2π

r4 exp

(
− βq2

2r4

)

−2q4βπ

r8 exp

(
− βq2

2r4

)
. (2.27)

Hence, the asymptotic expansion of Kretschmann scalar at
r → ∞ is given by

K = 4

3l4
− 4πq2

3l2r4 + (11π2q4l2 − 2πq4β)

l2r8 + O(r−11).

(2.28)

The expression of the Ricci scalar (2.24) and the above
expansion of Kretschmann scalar show that the spacetime
is not asymptotically flat since limr→∞ K(r) = 4/3l4. The
asymptotic expression of Kretschmann scalar in the vicinity
of r = 0 is given by

K = 4

3l4
− exp

(−q2β

2r4

)(
4πq2

3l2r4 + 8πβq4

3l2r8 + O(r11)

)

+ exp

(−q2β

r4

)(
4π2q8β2

r16

+12π2q6β

r12 + 11π2q4

r8 + O(r3)

)
, (2.29)

which is regular at the origin. Thus our resulting (2 + 1)-
dimensional black hole solutions within exponential electro-
dynamics, i.e., Eq. (2.16) describe a family of regular black
holes.

The event horizons can be obtained from the condition
ψ(r) = 0, which implies that

M = r2
h

3l2
− qπ

3
2

2
√

2β
E

(
q
√

β√
2r2

h

)
. (2.30)

Figure 1 shows clearly that there exists a critical value
rc below which no event horizon corresponding to the value
of M can exist as mass becomes negative. However, for all
values of rh greater than the critical value, there exist event
horizons associated with the positive value of mass M . Fig-
ure 2 shows the plot of metric function (2.16) for different
values of mass, magnetic charge and nonlinearity parameter.
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Fig. 1 Plot of function M from Eq. (2.30) for fixed value of l = 0.5
and different values of q and β

Fig. 2 Plot of function ψ(r) from Eq. (2.16) for fixed values of l = 0.5
and three different values of M , q and β

It can be clearly seen that the magnetic charge and parameter
β affect the horizon structure of (2 + 1)-dimensional black
hole.

3 Thermodynamics of magnetically charged black holes

Here we study thermodynamics of the black hole solutions
described by Eq. (2.16). For doing this we use an alternative
method to determine the local Hawking temperature with
the help of the Unruh effect in curved spacetime [55–57].
A similar analysis was also introduced in Ref. [58] for d-
dimensional black holes in the framework of Einstein-power-
Maxwell theory. In the Unruh effect the observer in the space-
time exterior to the black hole observes a thermal state with
local temperature defined as

TH (r) = 2

π
√−XaXa

dψ(rh)

drh
, (3.1)

which on using Eq. (2.16) becomes

TH (r) = 2

π
√

ψ(r)

[
2rh
3l2

+ q2π

r3
h

exp

(
− βq2

2r4
h

)]
. (3.2)

Here Xa represents a Killing vector field that generates the
outer horizon rh . This expression of local Hawking temper-
ature implies that at r → rh , TH (r) is undefined and at
r → ∞, it is zero. This behaviour of temperature is expected
since our resulting black hole solution (2.16) is not asymp-
totically flat, thus the local Hawking temperature vanishes at
infinity. By using the method described in Refs. [34,57], the
re-energized temperature can be obtained as

T∞ = 2

π

[
2rh
3l2

+ q2π

r3
h

exp

(
− βq2

2r4
h

)]
. (3.3)

By using the Brown–York quasilocal energy formalism [33,
46,53], we can express the internal energy of the system on
a constant t hypersurface as

� = −2

(√
ψ(rb) − rb√

3l

)
, (3.4)

where r = rb is a finite boundary of the black hole spacetime.
By varying the internal energy �(rb) with respect to rb and
q, one can easily arrive at the first law

d�(rb) = TH (rb)dS + �(rb)dq, (3.5)

where

TH (rb) = −1√
ψ(rb)

[
rh

6πl2
+ q2

4r3
h

exp

(
− βq2

2r4
h

)]
, (3.6)

is the Hawking temperature evaluated at rb, and S = 4πrh
in Eq. (3.5) is the entropy of the (2 + 1)-dimensional black
hole. The function

�(rb) = 1√
ψ(rb)

[
πq

2r2
b

exp

(
− βq2

2r4
b

)

+ π
√

π

2
√

2β
E

(
q
√

β√
2r2

b

)]
, (3.7)

is the magnetic potential difference between the boundary
of the black hole and at infinity. Similarly, the difference
between the potential at the event horizon and boundary rb
can also be calculated as

�(rb) = π

2
√

ψ(rb)

[
q

r2
b

exp

(
− βq2

2r4
b

)
+

√
π√
2β

E

(
q
√

β√
2r2

b

)

− q

r2
h

exp

(
− βq2

2r4
h

)
−

√
π√
2β

E

(
q
√

β√
2r2

h

)]
. (3.8)

Now, we compute the expression of heat capacity at a con-
stant magnetic charge q of our magnetically charged black
holes which are considered inside a box and bounded by
r = rb. The heat capacity is defined by

Cq = TH
∂S

∂TH
|q = 4πTH

∂TH
∂rh

|q . (3.9)
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Fig. 3 Plot of function Cq from Eq. (3.10) for fixed value of l = 0.5
and different values of q and β

Therefore, by using Eq. (3.6) in this we get

Cq =
πr5

h

(
8r4

h + 12l2q2π exp

(
− βq2

2r4
h

))

2r8
h + 6πq4βl2 exp

(
− βq2

2r4
h

)
− 9πq2l2r4

h exp

(
− βq2

2r4
h

) .

(3.10)

This represents the general expression for black hole’s heat
capacity for any value of nonlinear electrodynamics param-
eter β.

Figure 3 shows the plot of heat capacity for different values
of NED parameter β and magnetic charge q. One can see
that both the parameter β and magnetic charge q have effects
on the local thermal stability of black holes. The value of
rh at which the heat capacity is positive implies the black
hole of that horizon radius is stable and physical. Thus, we
conclude that the mentioned (2+1)-dimensional black holes
are enjoying thermal stability.

4 (2+ 1)-dimensional black holes in arcsin
electrodynamics

The action function for the model of nonlinear electrody-
namics coupled with general relativity in three dimensions is
written in the form (2.1). Here we will take the Lagrangian
density L(F) of the form

L(F) = − 1

β
arcsin (βF). (4.1)

The nonlinear electromagnetic field equations can be obtained
from variation of (2.1) with respect to Aμ as

∂μ

( √−gFμν√
1 − (βF)2

)
= 0. (4.2)

The gravitational field equations will have the same form as
(2.4), however, the matter tensor in this case will be written

Fig. 4 Plot of E(r) from Eq. (4.5) for fixed values of Q and β

as

T ν
μ = − FνλFμλ√

1 − (βF)2
− δν

μL. (4.3)

The trace of the above matter tensor can be worked out as

T = − 4F√
1 − (βF)2

+ 4

β
arcsin (βF). (4.4)

Hence, like the exponential electrodynamics, the scale invari-
ance is violated in arcsin electrodynamics too due to the
above non-zero trace of the matter tensor. It should be noted
that the trace (4.4) also vanishes in the limit β → 0 which
implies that the arcsin electrodynamics reduces to Maxwell’s
theory in the weak field limit. Since we are interested in
electrically charged black hole solution, therefore, we should
assume magnetic fieldB = 0 which makes Maxwell’s invari-
ant equal to F = −(E(r))2/2. Thus from Eq. (4.2) on using
the (2 + 1)-dimensional line element (2.7), it is straightfor-
ward to obtain the value of electric field as

E(r) =
√

2

Qβ

√√
r4 + β2Q4 − r2, (4.5)

where the integration constant Q represents the electric
charge.

The asymptotic expansion of electric field at r → ∞ is
given by

E(r) = Q

r
− Q5β2

8r5
+ O(r−7). (4.6)

Similarly, the asymptotic expansion of electric field at r = 0
becomes

E(r) =
√

2√
β

− r2

√
2Q2β

3
2

+ r4

4
√

2Q4β
5
2

+ O(r5). (4.7)

The electric potential A(r) can be easily obtained through
integration of Eq. (4.5) as

A(r) = 1

2
√

2

[
r
√

2

√√
r4 + β2Q4 − r2

123
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Fig. 5 Plot of function A(r) from Eq. (4.8) for fixed values of β and
Q

−Q2β log (

√
r4 + β2Q4 − r2)

]

+Q2β log [Q2β(Q2β + √
2r

√√
r4 + β2Q4 − r2)].

(4.8)

One can also find the asymptotic value of electric potential
at r → ∞ as

A(r) = Q log (r) + Q5β2

32r4 + O(r−6). (4.9)

Similarly, the asymptotic value at r → 0 becomes

A(r) = Q

2
log (βQ2) +

√
2r√
β

− r3

3
√

2Q2β
3
2

+ O(r5).

(4.10)

Eqs. (4.7) and (4.10) show that the electric field and potential
are both finite at the origin r = 0 unlike in Maxwell’s theory
where both of these quantities diverge at the origin. The finite-
ness of these quantities at the origin can also be observed from
Figs. 4, 5. This non-Maxwellian behaviour of electric field
and electric potential is due to the nonlinear electromagnetic
nature of Lagrangian density (4.1). Using this Lagrangian
density, the components of matter tensor (4.3) can be calcu-
lated as

T 0
0 = T 1

1 = 2E2√
4 − β2E4

− arcsin (βE2/2)

β
,

T 2
2 = − 1

β
arcsin (βE2/2). (4.11)

Hence, by choosing the value of electric field as (4.5) in the
above components one can show that WEC, SEC and DEC
are satisfied for this model in (2 + 1)-dimensional geometry.
Substitution of the metric ansatz (2.7) and the matter tensor

components (4.11) into field equations (2.4) yields

1

2r

dψ

dr
+ �

3
= π

[
2E2√

4 − β2E4
− arcsin (βE2/2)

β

]
. (4.12)

Upon solving the above differential equation, we can get the
metric function as

ψ(r) = D + r2

3l2
+ πr(Q2 + 2)

βQ2

√√
r4 + β2Q4 − r2

+πr2

β
arcsin

(
r2 −√

r4 + β2Q4

βQ2

)

+π tanh−1
(r√2

√√
r4 + β2Q4 − r2

Q2β

)

+Q2π

2
log

(√Q4β2 + 2r2(r2 −√
r4 + β2Q4)

Q2β + r
√

2
√√

r4 + β2Q4 − r2

)
,

(4.13)

where D is the integration constant and � = −1/ l2. Now
again with the help of quasilocal mass formalism, a static
circularly symmetric three-dimensional line element yields
a quasilocal mass MQL in the form (2.13). And so, from line
element (2.7) we obtain

f (r)2 = g(r)2 = D + r2

3l2
+ πr(Q2 + 2)

βQ2

×
√√

r4 + β2Q4 − r2 + πr2

β

× arcsin

(
r2 −√

r4 + β2Q4

βQ2

)

+π tanh−1
(r√2

√√
r4 + β2Q4 − r2

Q2β

)

+Q2π

2
log

(√Q4β2 + 2r2(r2 −√
r4 + β2Q4)

Q2β + r
√

2
√√

r4 + β2Q4 − r2

)
,

(4.14)

and

gr (r)
2 = r2

3l2
+ πr(Q2 + 2)

βQ2

√√
r4 + β2Q4 − r2

+πr2

β
arcsin

(
r2 −√

r4 + β2Q4

βQ2

)

+π tanh−1
(r√2

√√
r4 + β2Q4 − r2

Q2β

)

+Q2π

2
log

(√Q4β2 + 2r2(r2 −√
r4 + β2Q4)

Q2β + r
√

2
√√

r4 + β2Q4 − r2

)
.

(4.15)
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Thus, by using the above Eqs. (4.15) and (4.16) in Eq. (2.13),
the metric function (4.13) becomes

ψ(r) = −M + r2

3l2
+ πr(Q2 + 2)

βQ2

√√
r4 + β2Q4 − r2

+πr2

β
arcsin

(
r2 −√

r4 + β2Q4

βQ2

)

+π tanh−1

⎛
⎝r

√
2
√√

r4 + β2Q4 − r2

Q2β

⎞
⎠

+Q2π

2
log

⎛
⎝
√
Q4β2 + 2r2(r2 −√

r4 + β2Q4)

Q2β + r
√

2
√√

r4 + β2Q4 − r2

⎞
⎠.

(4.16)

The asymptotic expansion for the above metric function
when r → ∞ can be computed as

ψ(r) = −M + r2

3l2
+ √

2π

(
1 + Q2

2
+ Q2

2
√

2

× log

(
Q2

4

))
− πQ2 log(r)

+β2Q4π

16r4

(
Q2

6
+ 3 − √

2(Q2 + 2)

)
+ O(r−5).

(4.17)

The above expression shows that the black hole is not asymp-
totically flat at infinity. Similarly, the asymptotic behaviour
in the vicinity of r = 0 is given by the series expansion

ψ(r) = −M + π√
β

(√
2

Q
− Q√

2
+ Q2 + 2

Q

)
r

+
(

1

3l2
− π2

2β

)
r2 + O(r3). (4.18)

This shows that the metric function remains finite and regular
at the origin r = 0. It is possible to find out the Ricci scalar
from field equations (2.4) as

R = −πT − 4

3l2
= 4π

β
arcsin

(√
r4 + Q4β2 − r2

Q2β

)
− 4

3l2

−
4π

(√
r4 + Q4β2 − r2

)

β

√
Q4β2 −

(√
r4 + Q4β2 − r2

)2
. (4.19)

The asymptotic value of Ricci scalar at radial infinity is given
by

R = − 4

3l2
+ O(r−5). (4.20)

This clearly indicates that at r → ∞ the Ricci scalar is non-
zero which means that the spacetime is not asymptotically

flat. Similarly, the asymptotic value of Ricci scalar at r → 0
is calculated as

R = −2
√

2Qπ√
βr

− 4

3l2

+2π2

β
− 3

√
2πr

Qβ
3
2

+ 5πr3

6
√

2Q3β
5
2

+ O(r5). (4.21)

This expansion shows that the Ricci scalar possesses singu-
larity at r = 0. Thus, our resulting (2+1)-dimensional black
hole solution (4.16) has a true curvature singularity at r = 0.

5 Thermodynamics of electrically charged black holes

In order to study thermodynamics corresponding to (2 + 1)-
dimensional electrically charged black hole (4.16), we will
calculate important thermodynamic quantities. Following the
same technique as before we can obtain the local Hawking
temperature in this case as

TH (r) = 2

π
√

ψ(r)

⎡
⎣2rh

3l2

+2π

⎛
⎜⎜⎝

2rh(
√
r4
h + Q4β2 − r2

h )

√
βQ2

√
Q4β3 − (

√
r4
h + Q4β2 − r2

h )
2

− rh
β

arcsin

⎛
⎝
√
r4
h + Q4β2 − r2

h

Q2β

⎞
⎠
⎞
⎠
⎤
⎦ . (5.1)

Here also Xa is a Killing vector field which generates the
outer horizon rh . The event horizon equation ψ(r) = 0
implies that

M = r2
h

3l2
+ πrh(Q2 + 2)

βQ2

√√
r4
h + β2Q4 − r2

h

+πr2
h

β
arcsin

(r2
h −

√
r4
h + β2Q4

βQ2

)

+π tanh−1

⎛
⎜⎜⎝
rh

√
2

√√
r4
h + β2Q4 − r2

h

Q2β

⎞
⎟⎟⎠

+Q2π

2
log

⎛
⎜⎜⎝

√
Q4β2 + 2r2

h (r
2
h −

√
r4
h + β2Q4)

Q2β + rh
√

2

√√
r4
h + β2Q4 − r2

h

⎞
⎟⎟⎠.

(5.2)

Figure 6 shows the behaviour of M in terms of horizon
radius. Those values of rh which corresponds to the positive
values of M describes the horizons of black hole. Similarly,
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Fig. 6 Plot of mass M from Eq. (5.2) for specific value of l = 0.5 and
different values of Q and β

Fig. 7 Plot of metric function ψ(r) from Eq. (4.16) for specific value
of l = 1 and different values of M , Q and β

by choosing different values of mass M , electric charge Q
and nonlinearity parameter β, we have plotted the metric
function (4.16) in Fig. 7. Those values of r for which the
curve intersects the r -axis indicate the location of horizons.

The expression of local Hawking temperature (5.1) indi-
cates that at r → rh , it is undefined and at r → ∞ it is zero.
This behaviour is expected because the black hole solution
defined by (4.16) is not asymptotically flat, hence the tem-
perature vanishes at infinity. By using the same method as
described in Refs. [34,57], the re-energized temperature is
defined by

T∞ = 2

π

⎡
⎢⎢⎣2rh

3l2
+ 2π

⎛
⎜⎜⎝

2rh(
√
r4
h + Q4β2 − r2

h )

√
βQ2

√
Q4β3 − (

√
r4
h + Q4β2 − r2

h )2

−rh
β

arcsin

⎛
⎝
√
r4
h + Q4β2 − r2

h

Q2β

⎞
⎠
⎞
⎟⎟⎠

⎤
⎥⎥⎦ . (5.3)

Now, from the expression of internal energy (3.4) on a con-
stant t hypersurface, it is easy to obtain the first law of ther-
modynamics by varying the internal energy with respect to
rh and Q, so that

d�(rb) = TH (rb)dS + �(rb)dQ, (5.4)

where

TH (rb)

= 1√
ψ(rb)

⎡
⎢⎢⎣ rh

2β
arcsin

⎛
⎝
√
r4
h + β2Q4 − r2

h

βQ2

⎞
⎠− rh

6πl2

−
rh(

√
r4
h + β2Q4 − r2

h )

√
βQ2

√
Q4β2 − (

√
r4
h + β2Q4 − r2

h )2

⎤
⎥⎥⎦+ 1

2π
√

3l
,

(5.5)

denotes the Hawking temperature evaluated at the boundary
r = rb and S = 4πrh in Eq. (5.4) is the entropy. Furthermore,
the function

�(rb) = − πrbH1(Q, rb)

2
√

ψ(rb)H2(Q, rb)
, (5.6)

where

H1(Q, rb) = (2 + √
2)Q6(Q2 − 2)β3 + 4(1 − Q2)r3

b

×
(√

Q4β2 + r4
b − r2

b

) 3
2

+8βQ2r2
b

(√
Q4β2 + r4

b − r2
b

)

−4
(

1 + √
2
)

β2Q4rb

√√
Q4β2 + r4

b − r2
b

−2β2Q6rb

√√
Q4β2 + r4

b − r2
b

×
(√

2rb
Q2β

√√
Q4β2 + r4

b − r2
b − 1 − √

2

)
, (5.7)

and

H2(Q, rb) = βQ2
√

β2Q4 + r4
b

√√
Q4β2 + r4

b − r2
b

×
(
Q2β + √

2rb

√√
Q4β2 + r4

b − r2
b

)

+2Q log

⎛
⎜⎜⎝

√
Q4β2 + 2r4

b − 2r2
b

√
β2Q4 + r4

b

βQ2 + √
2rb

√√
Q4β2 + r4

b − r2
b

⎞
⎟⎟⎠, (5.8)

is the electric potential difference between the boundary
rb and infinity. Similarly, the electric potential difference
between horizon rh and boundary rb can be expressed as
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�(rb) = − πrbH1(Q, rb)

2
√

ψ(rb)H2(Q, rb)

+ 1

2
√

2

[√
2rh

√√
Q4β2 + r4

h − r2
h − Q2β

× log

(√
Q4β2 + r4

h − r2
h

)
+ Q2β log

×
[
Q2β

(
Q2β + √

2rh

√√
Q4β2 + r4

h − r2
h

)]]
.

(5.9)

Finally, the heat capacity in this case takes the form

CQ =
4π

[
rhT0 − rh

6πl2

]
[
T0 + T1 + 2r2

h T2 − 1
6πl2

] , (5.10)

where

T0(rh) = 1

2β
arcsin

(√Q4β2 + r4
h − r2

h

Q2β

)

−
√
Q4β2 + r4

h − r2
h

Q2
√

β

√
Q4β2 −

(√
Q4β2 + r4

h − r2
h

)2
,

(5.11)

T1(rh) =
r2
h

(√
Q4β2 + r4

h − r2
h

)

√
Q4β2 + r4

h

√
Q4β2 −

(√
Q4β2 + r4

h − r2
h

)2

×
(

2√
βQ2

− 1

β

)
, (5.12)

and vspace*-6pt

T2(rh) =

(√
Q4β2 + r4

h − r2
h

)3

√
Q4β2 + r4

h

√
βQ2

(
Q4β2 −

(√
Q4β2 + r4

h − r2
h

)2) 3
2

.

(5.13)

Equation (5.10) is the general expression for black hole’s heat
capacity for any value of nonlinear electrodynamics param-
eter β.

The behaviour of heat capacity for different values of
charge Q and NED parameter β is shown in Fig. 8. The
region where this quantity is positive guarantees local ther-
mal stability. It can also be seen that both the charge Q and
parameter β can affect the local thermodynamic stability and
are giving us stable solutions.

Fig. 8 Plot of function CQ from Eq. (5.10) for fixed value of l = 0.5
and different values of Q and β

6 Conclusion

There exist several models of NED which are useful in study-
ing the gravitational fields of highly massive objects such
as black holes. In recent decades, black holes of Einstein’s
theory and modified gravities have been studied within the
context of these NED models. In this paper, we have inves-
tigated (2 + 1)-dimensional black holes in the framework of
two different Born–Infeld type NED models. In the back-
ground of these NED models, the scale invariance has been
violated because the associated matter tensor possesses non-
zero trace. First, we derived magnetically charged (2 + 1)-
dimensional black hole solution in Einstein’s theory coupled
to exponential electrodynamics. It is shown that the consid-
eration of exponential electromagnetic field as a source of
gravity makes the metric function (2.16) regular and finite
at the origin r = 0. It is also shown that in the weak field
limit r → ∞ or β → 0, the metric function (2.16) describes
(2 + 1)-dimensional black hole with a Maxwellian magnetic
charge. The convergence of curvature invariants associated to
(2.16) shows that the black hole is regular and there is no true
curvature singularity at r = 0. In the second case, we derived
electrically charged (2 + 1)-dimensional black hole solu-
tion in Einstein’s theory coupled to arcsin electrodynamics.
In this case too, the gravitational field equations are solved
and the metric function (4.16) is derived. The asymptotic
behaviours of resulting metric function at both radial infinity
and at r = 0 are also discussed. Like the case of exponen-
tial electrodynamics, the arcsin electromagnetic source on
the right side of gravitational field equations makes the met-
ric function finite at the origin, which can be seen from the
asymptotic value (4.18). Moreover, the asymptotic expres-
sion of metric function at infinity shows that for large values
of r , the contributions of NED could be negligible and the
resulting solution reduces to Maxwellian electrically charged
(2+1)-dimensional black hole. The curvature invariant, i.e.,
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Ricci scalar was also calculated for the electrically charged
black hole. The series expansion of this curvature invariant
about r → ∞ shows that the object is not asymptotically
flat while the corresponding series expansion about r → 0
indicates that there exists an essential curvature singularity
at the central position.

The thermodynamic properties associated to the black
hole solutions derived within the backgrounds of exponential
and arcsin models of NED are also analysed. For doing this,
we have computed entropy, temperature and heat capacity for
both the black holes. It is shown that these quantities satisfy
the first law.

DataAvailability Statement This manuscript has no associated data or
the data will not be deposited. [Authors’ comment: This is a theoretical
work and there is no experimental data associated with it.]

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adaptation,
distribution and reproduction in any medium or format, as long as you
give appropriate credit to the original author(s) and the source, pro-
vide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indi-
cated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permit-
ted use, you will need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.
Funded by SCOAP3.

References

1. S.W. Hawking, G.F.R. Ellis, The Large Scale Structure of Space-
time (Cambridge University Press, Cambridge, 1973)

2. S. Ansoldi, Spherical black holes with regular center: a review
of existing models including a recent realization with Gaussian
sources. arXiv:0802.0330

3. E. Ayon-Beato, A. Garcia, Phys. Rev. Lett. 80, 5056 (1998)
4. E. Ayon-Beato, A. Garcia, Phys. Lett. B 464, 25 (1999)
5. E. Ayon-Beato, A. Garcia, Gen. Relativ. Gravit. 31, 629 (1999)
6. E. Ayon-Beato, A. Garcia, Phys. Lett. B 493, 149 (2000)
7. S. Fernando, D. Krug, Gen. Relativ. Gravit. 35, 129 (2003)
8. T.K. Dey, Phys. Lett. B 595, 484 (2004)
9. R.G. Cai, D.W. Pang, A. Wang, Phys. Rev. D 70, 124034 (2004)

10. M. Hassaine, C. Martinez, Phys. Rev. D 75, 027502 (2007)
11. M. Hassaine, C. Martinez, Class. Quantum Gravity 25, 195023

(2008)
12. M.H. Dehghani, H.R.R. Sedehi, Phys. Rev. D 74, 124018 (2006)
13. M.H. Dehghani, S.H. Hendi, A. Sheykhi, H.R. Sedehi, J. Cosmol.

Astropart. Phys. 02, 020 (2007)
14. S.H. Hendi, Phys. Rev. D 82, 064040 (2010)
15. M. Born, L. Infeld, Proc. R. Soc. A 144, 425 (1934)
16. H.H. Soleng, Phys. Rev. D 52, 6178 (1995)

17. S.H. Hendi, J. High Energy Phys. 1203, 065 (2012)
18. S.H. Hendi, Ann. Phys. 333, 282 (2013)
19. S.H. Hendi, Ann. Phys. 346, 42 (2014)
20. S.H. Hendi, H.R. Rastegar-Sedehi, Gen. Relativ. Gravit. 41, 1355

(2009)
21. S.H. Hendi, Phys. Lett. B 677, 123 (2009)
22. S.H. Hendi, Eur. Phys. J. C 69, 281 (2010)
23. H. Salazar, A. Garcia, J. Plebanski, Nuovo Cimento B 84, 65 (1984)
24. H. Salazar, A. Garcia, J. Plebanski, J. Math. Phys. (N.Y.) 28, 2171

(1987)
25. G.W. Gibbons, D.A. Rasheed, Nucl. Phys. B 454, 185 (1995)
26. S. Deser, G.W. Gibbons, Class. Quantum Gravity 15, L35 (1998)
27. E. Fradkin, A. Tseytlin, Phys. Lett. B 163, 123 (1985)
28. M. Cataldo, A. Garcia, Phys. Rev. D 61, 084003 (2000)
29. M. Bañados, C. Teitelboim, J. Zanelli, Phys. Rev. Lett. 69, 1849

(1992)
30. A. Ejaz, H. Gohar, H. Lin, K. Saifullah, S.-T. Yau, Phys. Lett. B

726, 827 (2013)
31. H. Lin, K. Saifullah, S.-T. Yau, Mod. Phys. Lett. A 30, 1550044

(2015)
32. U.A. Gillani, M. Rehman, K. Saifullah, J. Cosmol. Astropart. Phys.

2011, 016 (2011)
33. M. Cataldo, N. Cruz, S.D. Campo, A. Garcia, Phys. Lett. B 484,

154 (2000)
34. O. Gurtug, S.H. Mazharimousavi, M. Halilsoy, Phys. Rev. D 85,

104004 (2012)
35. M. Dehghani, Phys. Rev. D 94, 104071 (2016)
36. B. Eslam Panah, S.H. Hendi, S. Panahiyan, M. Hassaine, Phys.

Rev. D 98, 084006 (2018)
37. S.H. Hendi, Gen. Relativ. Gravit. 48, 50 (2016)
38. S.H. Hendi, M. Faizal, B. Eslam Panah, S. Panahiyan, Eur. Phys.

J. C 76, 296 (2016)
39. S.H. Hendi, B. Eslam Panah, S. Panahiyan, J. High Energy Phys.

2016, 029 (2016)
40. S.H. Hendi, B. Eslam Panah, S. Panahiyan, A. Sheykhi, Phys. Lett.

B 767, 214 (2017)
41. M. Dehghani, Phys. Lett. B 777, 351 (2018)
42. J.D. Brown, J.W. York, Phys. Rev. D 47, 1407 (1993)
43. S.I. Kruglov, Phys. Rev. D 94, 044026 (2016)
44. S.I. Kruglov, Ann. Phys. (Berl.) 528, 588 (2016)
45. S.I. Kruglov, Phys. Rev. D 92, 123523 (2015)
46. S.I. Kruglov, Ann. Phys. 378, 59 (2017)
47. A. Ali, K. Saifullah, Phys. Lett. B 792, 276 (2019)
48. S.H. Mazharimousavi, M. Halilsoy, Phys. Lett. B 796, 123 (2019)
49. A. Ali, K. Saifullah, Phys. Rev. D 99, 124052 (2019)
50. A. Ali, K. Saifullah, J. Cosmol. Astropart. Phys. 2021, 058 (2021)
51. W. Heisenberg, H. Euler, Z. Phys. 98, 714 (1936)
52. M. Novello, E. Goulart, J.M. Salim, S.E. Perez Bergliaffa, Class.

Quantum Gravity 24, 3021 (2007)
53. J.D. Brown, J. Creighton, R.B. Mann, Phys. Rev. D 50, 6394 (1994)
54. D.R. Brill, J. Louko, P. Peldan, Phys. Rev. D 56, 3600 (1997)
55. S.W. Hawking, Commun. Math. Phys. 43, 199 (1975)
56. W.G. Unruh, Phys. Rev. D 14, 3251 (1976)
57. H.A. Gonzalez, M. Hassaine, C. Martinez, Phys. Rev. D 80, 104008

(2009)
58. K.C.K. Chan, R.B. Mann, Phys. Rev. D 50, 6385 (1994)

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/0802.0330

	(2+1)-dimensional black holes of Einstein's theory with Born–Infeld type electrodynamic sources
	Abstract 
	1 Introduction
	2 (2+1)-dimensional black holes in exponential electrodynamics
	3 Thermodynamics of magnetically charged black holes
	4 (2+1)-dimensional black holes in arcsin electrodynamics
	5 Thermodynamics of electrically charged black holes
	6 Conclusion
	References




