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Abstract We investigate gravitational collapse of a spher-
ically symmetric thin shell in the Einstein–Gauss–Bonnet
(EGB) gravity. Under the recently proposed 4D limit, we
find that the collapsing shell will be bounced back at a small
radius, without forming a singularity. This bouncing behav-
ior is similar to those of a test particle and a homogeneous
spherical dust star, in accordance with the expectation that
the Gauss–Bonnet term will modify the small scale behavior
of the Einstein gravity. We analyze the causal structure of
the dynamic spacetime that represents the bouncing process,
finding that the thin shell has an oscillation behavior on the
Penrose diagram, which means that the thin shell results in
a novel type of black hole with respect to observers outside
the event horizon that the collapse forms. We also find that
the weak cosmic censorship conjecture holds in this model.
Further implications of such a regular gravitational collapse
are discussed.

1 Introduction

The EGB theory is one of the most promising candidates
for modified gravity theory. In the past several decades,
higher dimensional EGB gravity has been extensively stud-
ied, and it has been showed that the Gauss–Bonnet term yields
richer phenomena than Einstein theory. On the other hand,
the Gauss–Bonnet invariant makes no contribute to four-
dimensional field equations because it is currently a total
derivative in gravitational action.

Recently, a novel proposal for four-dimensional EGB
gravity has been published [1]. By rescaling the GB cou-
pling constant α → α

D−4 , and take D → 4 limit at equation
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of motion (EOM) level, the Gauss–Bonnet term generates
non-trivial dynamics. Remarkably, the simple strategy cir-
cumvent the Lovelock’s theorem and be free from Ostrograd-
sky instability. On the basis of this approach to gravitational
physics, a new branch of static spherically symmetric black
hole solutions was obtained in [1], which was also given by
the gravity theory with conformal anomaly [2], though α has
different meanings in these contexts. As a result of that pro-
posal, the solution has regained widespread attention, and
various properties of the 4D EGB solutions were consid-
ered within a short period time. For example, gravitational
collapse was considered in [3], the generalization of the orig-
inal solution [1] was studied in [4–8], black hole thermaldy-
namics was investigated in [9,10], gravitational lensing and
shadow were considered in [5,6,11–13], quasinormal modes
and stability were showed in [14–16], the electromagnetic
radiation properties of thin accretion disk around black hole
were explored in [17], while the Hawking radiation and black
hole evaporation were showed in [18,19] respectively.

As research progresses, the validity of 4D EGB gravity
is being questioned [20–27]. For example, in this scheme,
the field equations are actually ill defined in terms of general
spacetime geometry [25,26], and the scheme also results in
divergence of black hole entropy [27]. However, it is neces-
sary to note that the scheme works well in certain geome-
tries, such as those with spherical symmetry, and provides a
well-defined action [4] in those cases. As a result, it is rea-
sonable to treat the 4D EGB gravity with certain symmetry
as an effective theory, allowing us to investigate the effect
of higher-order curvature correction in four dimensions and
shedding light on the validity of the underlying theory. On
the other hand, the model presented in this paper also can be
regarded as an effective model of gravity theory with con-
formal anomaly [2] from which the spherically symmetric
solution of 4D EGB gravity can be deduced. In other words,
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the model is worth studying even in the absence of a complete
theory of 4D EGB gravity.

Gravitational collapse is one of the central issues in grav-
itational physics, as it is intimately connected to a number
of significant issues, including the formation of black hole,
cosmic censorship, and black hole thermal dynamical laws.
As a simple model, the final fate of spherically symmetric
gravitational collapse of a dust fluid has been extensively
studied in four and higher dimensions [28–31] for Einstein’s
gravity, which demonstrates that the property of singularity
depends on dimensionality and initial data, while the results
also hold for Gauss–Bonnet gravity [32–35], therefore it is
worthwhile to consider the gravitational collapse in 4D EGB
gravity. The spherical thin shell is an excellent toy model for
studying the gravitational collapse process, which has been
considered by several authors [36–39] and used to test many
significant gravity-related conjectures, such as cosmic cen-
sorship conjecture.

In this paper, we investigate the motion of a spherically
collapsing dust thin shell in EGB gravity. It shows that when
the gravitational mass M and rest massm are within a certain
parameter range, the collapsing thin shell on the Penrose dia-
gram exhibits oscillating behavior in four dimensions. Then,
using the method described in [40,41], we examine the thin
shell’s oscillating behavior on the Penrose diagram. Due to
the fact that the thin shell would not collapse to form a black
hole as a result of this behavior, it is critical to note that
the bouncing behavior is not an effect observable to out-
side observers. The thin shell’s motion in higher dimensions
is also analyzed. Furthermore, the weak cosmic censorship
conjecture is tested and turns out to hold in this model.

The paper is organized as follows: in Sect. 2, we introduce
the bouncing behavior of collapsing dust stars in 4D EGB
gravity. Then we are motivated to study collapsing shells
and obtain the EOM of spherical thin shells in D dimensions
in Sect. 3. In Sect. 4, we study in detail the EOM of thin
shells both in four and higher dimensions. In Sect. 5, we
test the weak cosmic censorship in this model. Finally, some
concluding remarks will be presented in Sect. 6.

2 Dust collapse in the novel 4D EGB gravity

In this section, we review the process of gravitational collapse
in four-dimensional EGB gravity and show that collapsing
dust stars exhibit bouncing behavior. Actually, dust collapse
in 4D EGB gravity has been studied in [3], but they focused
on the marginally bound collapse of dust stars and did not
consider the bouncing behavior. Because the surface of a dust
star follows geodesics of test particles with respect to the
external spacetime (4D EGB black hole) [3], we concentrate
on the geodesics rather than directly analyzing the collapsing
dust star’s trajectory.

We first introduce the 4D EGB gravity. Consider D ≥ 5
dimensional EGB theory which has action

SM = 1

16πGd

∫
dDx

√−g (R + αLGB) ,

where the Gauss–Bonnet term LGB is defined by

LGB = R2 − 4RabR
ab + Rabcd Rabcd .

For this theory, the spherically symmetric vacuum solution
has given by Boulware and Deser [42],

ds2 = −H(r)dt2 + dr2

H(r)
+ r2d�2

D−2, (1)

where d�2
D−2 is the line element of the unit SD−2 and

H(r) = 1 + r2

2α̃

(
1 −

√
1 + 16α̃M

(D − 2)r D−1

)
,

where α̃ = (D − 3)(D − 4)α.
The recent proposal of 4D EGB gravity [1] extends (1) to

D = 4 and gives four dimensional EGB vacuum solution,
namely

ds2 = −F(r)dt2 + dr2

F(r)
+ r2

(
dθ2 + sin2 θdφ2

)
, (2)

where

F(r) = 1 + r2

2α

(
1 −

√
1 + 8αM

r3

)
,

then F(r) = 0 gives the event horizons of 4D EGB black
hole, namely

r± = M ±
√
M2 − α. (3)

Notice that (2) is well-defined when r → 0, whereas
a straight-forward calculation demonstrates that the scalar
Rabcd Rabcd diverge as Mα

r3 when r → 0, implying that r = 0
is a real singularity.

Following that, we will reveal the existence of bouncing
behavior for a test particle which is freely falling in 4D EGB
gravity. In this section, we restrict ourselves to non-extremal
cases, where both r+ and r− in (3) exist and have different
values.

The radial geodesic equation is given by

grr

(
dr

dτ

)2

+ gtt

(
dt

dτ

)2

= −1. (4)

Considering the conserved quantities associated with the
Killing vectors ∂t , there is

E = −pt = −gtt p
t = −gtt

dt

dτ
. (5)
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Combine (4) with (5), we obtain

(
dr

dτ

)2

= E2 − F(r), (6)

which tells us that the physical region of trajectory of test
particles should be confined in E2 − F(r) ≥ 0. Due to the
fact that F(r → 0) = 1, test particles with E ∈ [0, 1) must
be bounced back before reaching r = 0.

By analyzing geodesics of test particles in a 4D EGB
black hole background, we conclude that there exist bouncing
behavior for collapsing dust stars. We then ask, is the bounc-
ing behavior a universal phenomena for self-gravitational
collapsing system in 4D EGB theory? To explore this issue
further, we are motivated to investigate the collapsing thin
spherical shell in this theory.

3 The equation of motion of thin shell in D dimensions

In this paper, the model is based on a D dimensional spheri-
cally symmetric spacetime M that is split into two segments
by a timelike hypersurface 	 with two sides denoted 	±.
The hypersurface can then be treated as the boundary of each
half of the spacetime. By varying the action, the generalized
Israel junction condition [43] on 	 is obtained, which has
been rigorously re-derived recently by expressing the field
equations in terms of distributions [44]. Note that the hyper-
surface describes the path of a thin spherical shell. Our goal
in this section is to derive the shell’s EOM under the equa-
tion of state and junction condition. To begin, we consider D
dimensional EGB theory with a spherically symmetric thin
shell, whose action is given by

S = SM + Smatter = 1

16πGD

∫
M
dDx

√−g (R + αLGB)

−
∫

	

dD−1x
√−hL	

m , (7)

where hab is the induced metric on 	.
As in the Einstein case, a surface term must be added to

(7) to obtain a well-defined variational problem. The corre-
sponding term is

S	 = − 1

8πGD

∫
	±

dD−1x
√−h

(
K + 2α

(
J − 2ĜabKab

))
,

where Ĝab is the Einstein tensor related to hab, J is the trace
of Jab which defined as

Jab = 1

3
(2KKacK

c
b

+Kcd K
cd Kab − 2KacK

cd Kdb − K 2Kab),

where K is the trace of extrinsic curvature, and the extrinsic
curvature of thin shell is given by1

Kab = hμ
a h

ν
b∇μnν, (8)

where nν is the normal vector of the thin shell.
As an aid to derive junction conditions, we introduce

Gaussian normal coordinates in the neighborhood of 	. The
metric gμν has the following form

ds2 = dω2 + habdx
adxb = dω2 − n2(ω, τ)dτ 2

+
D−2∑
i=1

r2 (ω, τ)(
1 + 1

4

∑D−2
j=1 x2

j

)2 dx
2
i . (9)

Note that the extrinsic curvature of surfaces ω = constant
is Kab = − 1

2∂ωhab. Substituting the metric ansatz (9) into
Stot = S + S	 , then Stot reduces to the following form

Sreduced = AD−2

16πGD

∫
dωdτ(D − 2)nr D−3

(
− 2∂2

ωr

+(−3 + D)
ψ

r
+ 4α̃

r2

(
− ψ∂2

ωr + 1

2r
(−5 + D)

×
(1

2
− (∂ωr)

2 − ṙ2

n2

(
ψ + 7ṙ2

6n2

)
+ 1

2
(∂ωr)

4
)))

+ AD−2

8πGD

∫
	±

dτ(D − 2)nr D−3∂ωr

(
1 + 2α̃

r2

×
(

ψ + 2

3
(∂ωr)

2
) )

−
∫

	

dD−1x
√−hL	

m , (10)

where AD−2 = 2π
D−1

2


[ D−1
2 ] is the area of unit SD−2, ṙ denotes

∂τ r and

ψ = 1 − ṙ2

n2 − (∂ωr)
2 .

Varying the reduced action (10), one can obtain junction
condition

(D − 2)

n2

[
Ki
i

(
1 + 2α̃

(
1

r2 + ṙ2

n2r2 − 1

3

(
Ki
i

)2
))]+

−
= −8πGDS

ττ < +∞, (11)

where [X ]+−
.= X+ − X− (we have chosen the normal vector

of 	 to be outward-pointing, i.e pointing from the inside of
shell to outside) and the energy-momentum tensor is defined
by

Sab = 2√−h

δSmatter

δhab
.

Note that Ki
i = 1

D−2 H
i j Ki j , where Hi jdxi dx j = hab

dxadxb + n2(ω, τ)dτ 2.

1 μ, ν are the indexes of coordinates of spacetime, while a, b are the
indexes of coordinates of 	.
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Suppose the velocity of an comoving observer on the
radial collapsing thin shell to be ua = (∂τ )

a , where τ is
the proper time of the observer, then the metric of the shell
has the form

ds2
D−1 = −dτ 2 + r2(τ )d�2

D−2. (12)

Assuming that the shell satisfies pressureless condition,
its surface energy momentum has

Sab = σ(τ)uaub, (13)

where σ denotes surface density. From the conservation
equations (D−1)∇bSba = 0, where (D−1)∇b is the derivative
operator on 	, we obtain

σ̇

σ
+ (D − 2)

ṙ

r
= 0. (14)

The rest mass of shell is defined as m = σ AD−2r D−2 and
(14) would implies m is a constant.

Since we consider a thin shell, vacuum condition holds in
inner and outside of the shell, therefore the metric of bulk is
given by

ds2 = − f (r)dt2 + dr2

f (r)
+ r2d�2

D−2, (15)

where

f (r) ≡ f−(r) = 1,

f (r) ≡ f+(r) = 1 + r2

2α̃

(
1 −

√
1 + 16α̃M

(D − 2)r D−1

)
.

Because both sides must have the same induced metric on
the shell, then we have

ds2
	 =

(
− f±(r)ṫ2 + 1

f±(r)
ṙ2

)
dτ 2 + r2(τ )d�2

D−2,

where

− f±(r)ṫ2 + 1

f±(r)
ṙ2 = −1. (16)

The equation (16) means if we know the r(τ ), then we would
obtain t (τ ) so that the spherical shell’s motion r(t) is clear
for observer at infinity.

Now we define the hypersurface 	 as r = r(τ ), which
describes the motion of thin shell, then its tangent vector ua

can be written by bulk coordinates as

ua = ṫ(∂t )
a + ṙ(∂r )

a

and its normal vector na has

na = nt
(

∂

∂t

)a

+ nr
(

∂

∂r

)a

.

Combine nana = 1 with uana = 0, we can obtain

nr = ±
√

f (r) + ṙ2, (17)

where ± determine the direction of na . More specifically, we
write nr outside and inside the shell as

nro = ±
√

f+(r) + ṙ2,

nri =
√

1 + ṙ2.

Due to the fact that the interior spacetime is flat, nai points to
increasing r in our convention, which implies that nri should
be positive.

Then, from (8), (12), (15), one can obtain

Ki
i = r−1nr , (18)

and, when combined with (11), (12), (13), we conclude the
EOM of shell

(D − 2)

8πGDr

( (
nri − nro

) + 2α̃

3r2

(
3(1 + ṙ2)(nri − nro)

+ (
nro

)3 − (
nri

)3 )) = Sττ = σ. (19)

For simplicity, we choose the following units for the rest
mass of shell

8πGD

(D − 2)AD−2
= 1,

then equation (19) becomes

r D−3( (
nri − nro

) + 2α̃

3r2

(
3(1 + ṙ2)(nri − nro)

+(nro)
3 − (nri )

3)) = m, (20)

while we have (nri )
2 = 1 + ṙ2 in our case, therefore (20) can

be written as

r D−3((nri − nro) + 2α̃

3r2

(
nro

((
nro

)2 − 3
(
nri

)2
)

+2
(
nri

)3 )) = m. (21)

Notice that α̃ has units [L2]. We replace r → α̃
1
2 r,m →

α̃
D−3

2 m, M → α̃
D−3

2 M and have dimensionless equation

r D−3((nri − nro) + 2

3r2

(
nro

((
nro

)2 − 3
(
nri

)2
)

+2
(
nri

)3 )) = m, (22)

while f+(r) = 1 + r2

2 (1 −
√

1 + 16M
(D−2)r D−1 ). In following

sections, we always take EOM and f+(r) the form which
regard {r,m, M} as dimensionless parameters when we refer
to EOM and f+(r) in specific dimensions.

4 Analysis of collapsing thin shells’ EOM

In this section, we will analyze the EOM of spherical shells.
The existence of bounce behavior at small radius is firstly
shown for our spherically symmetric model based on 4D
EGB gravity, and then the trajectories with bounce behavior
are classified into three types based on their difference on

123



Eur. Phys. J. C (2022) 82 :183 Page 5 of 11 183

the Penrose diagram. Finally, we will examine the trajectory
of thin shells and show that the bouncing behavior is absent
in higher dimensions. For D = 4, we make rescaling α →

1
D−4α, which corresponds to α̃ = (D − 3)α.

4.1 The bouncing process in D = 4

Let us begin by demonstrating the central point of this paper,
namely the existence of bouncing behavior for a dust thin
shell. In this subsection, we restrict to non-extremal cases.
Equation (22) can be re-written as

ṙ6 +
(

3

2
r2 + 3 − M2

m2

)
ṙ4 +

(
3

4
r2 + 1

)2

− 9W 2

64m2

+
((

3

4
r2 + 2

)2

− 1 − 3MW

4m2

)
ṙ2 = 0, (23)

where

W = m2r + 1

18

(
−1 +

√
1 + 8M

r3

)
r5

+4

9
M

(
6 +

(
3 +

√
1 + 8M

r3

)
r2

)
.

Equation (23) is a cubic equation of ṙ2. According to the
discriminant of the cubic algebraic equation, there is a unique
real solution to (23), which can be written as

ṙ2 = V (r,m, M),

V (r,m, M) =
(

−q

2
+

√(q
2

)2 +
( p

3

)3
) 1

3

+
(

−q

2
−

√(q
2

)2 +
( p

3

)3
) 1

3

+ M2

3m2 − 1

2
r2 − 1,

(24)

where

p = − M4

3m4 + (2 + r2)M2

m2 − 3WM

4m2 − 3

16
r4,

q = − 9W 2

64m2 +
(−2M3 + 3m2M(2 + r2)

)
W

8m4 − 2M6

27m6

+ (2 + r2)M4

3m4 − (16 + 16r2 + 5r4)M2

16m2 − r6

32

and V (r,m, M) ≥ 0 corresponds to the physical allowable
region of the spherical shell trajectory. For illustrating the
existence of the bouncing process, without loss of generality,
we numerically solve V (r) = 0 for M = 5 with different
m to see the number of turning points in the trajectory of
spherical shell, see Fig. 1.

To determine the trajectory of bouncing process more
specifically, we would follow the analysis method described
in [40,41]. Due to the fact that

√
f+ + ṙ2 ≥ 0 in Eq. (22)

Fig. 1 For M = 5, the solutions of the equation V (r) = 0 are plotted
over the range m = 5 to m = 20, with the intervals �m = 0.2. Note
that the distance between horizons has been scale down to make it easier
to display turning points

requires turning points to be located within the interval sat-
isfying f+ ≥ 0, since f+ < 0 in r− < r < r+, there are no
turning points for thin shells in this interval. Supposing the
trajectory of a spherical shell has two turning points which
locate at 0 < r1 < r− and r2 > r+ respectively, we will
always refer to an oscillating trajectory as such in this paper.
We now classify such trajectories into four types on the Pen-
rose diagram. The construction of the Penrose diagram for
4D EGB black hole (2) is given in the Appendix, where also
contains an illustration of the sign of nro on the diagram.
To explain the classification rules, suppose a thin shell that
starts in region I+ in Fig. 5, then the worldline of the shell
will pass region I I+ to reach the minimum r1 < r−. How-
ever, there are two possible ways to reach the minimum: by
entering region I I I+ or by entering region I I I−. We then
define the following two distinct types of trajectories: type I ,
which oscillates between regions I+ and I I I+, and type I I ,
which oscillates between regions I+ and I I I−. Similarly,
for a shell that begins in region I−, its worldline will pass
through region I I+ and then enter region I I I+ or I I I− in
order to reach minimum r1, resulting the other two types of
trajectories: type I I I , which oscillates between regions I−
and I I I+, and type I V , which oscillates between regions I−
and I I I−. For instance, the trajectories of type I and type I V
on the Penrose diagram are shown in Fig. 2. The four possi-
ble oscillation types and the sign of nro in each corresponding
region are listed in Table 1.

Now we ask such a question: which type of trajectory will
an oscillating shell with specific mass parameters follow? To
begin answering the question, we use type I trajectory as an
example to illustrate our method. Notice that the position of

123



183 Page 6 of 11 Eur. Phys. J. C (2022) 82 :183

Fig. 2 The different types of
the oscillating shell’s trajectory
on Penrose diagram are plotted

(a) (b)

Table 1 The four possible types of oscillation trajectories on the Pen-
rose diagram, as well as each corresponding region as, are listed

Types 0 < r ≤ r− r ≥ r+

I I I I+; nro > 0 I+; nro > 0

II I I I−; nro < 0 I+; nro > 0

III I I I+; nro > 0 I−; nro < 0

IV I I I−; nro < 0 I−; nro < 0

the turning points of the trajectory is decided by (22) with
ṙ = 0. Specifically, the position of turning points with nro > 0
is determined by g(r) = 0, where

g(r) = r
(

1 − √
f+

)
+ 2

3r

(√
f+(−3 + f+) + 2

)
− m.

(25)

Similarly, the position of turning points with nro < 0 is
decided by h(r) = 0, where

h(r) = r
(

1 + √
f+

)
+ 2

3r

(
−√

f+(−3 + f+) + 2
)

− m.

(26)

Supposing the trajectory of an oscillating shell with mass
parameters {m1, M1} belongs to type I trajectory whose
two zero points with nro > 0. That means g(r) = 0 with
{m1, M1} must have one zero point at 0 < r < r− and

r > r+ respectively, then analyzing the function g(r) will
reveal that the existence of such zero points distribution of
g(r) is equivalent to satisfying 1 < M1 < m1 < M−

1 , where

M−
1 = 7

3 M1 − 1
3

√
M2

1 − 1. Finally, we conclude that the

trajectory of an oscillating shell with 1 < M1 < m1 < M−
1

is classified into type I trajectory. Similar analysis can be
done for other type trajectories. The following is a detailed
analysis:

The derived function of g(r) and h(r) are given by

g′(r) = 1 − √
f+ + 1

r2

(
f
− 1

2+ u

(
f+ − 1 − 3Mr

u

)

−2

3

(√
f+ ( f+ − 3) + 2

) )
,

h′(r) = 1 + √
f+ − 1

r2

(
f
− 1

2+ u

(
f+ − 1 − 3Mr

u

)

−2

3

(√
f+ ( f+ − 3) − 2

) )
,

where u = 2( f+ − 1) − r2. Then, by examining the sign of
the derived functions, one can determine the monotonicity of
g(r) and h(r) at various radial radius values, as illustrated in
Table 2. In order to analyze the existence of zero points of
g(r) and h(r), we list boundary asymptotic behavior of these
curves
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Table 2 The properties of the derivative functions g(r)′ and h(r)′ at
{r |r > r+ ∪ r− > r > 0} are listed

Function 0 < r ≤ r− r ≥ r+

g′(r) > 0 < 0

h′(r) < 0 > 0

g(r → 0) = −(m − M) +
√

2M
3
2 r

1
2

3
+ O (r) , (27)

g(r → +∞) = −(m − M) + M2

2r
+ O

(
r−2

)
, (28)

h(r → 0) = 8

3r
+ (−m − M) + O

(
r

1
2

)
, (29)

h(r → +∞) = 2r + (−m − M) + O
(
r−1

)
. (30)

(a). For m > M , the sign of g(r) and h(r) at their bound-
aries can be determined by their boundary asymptotic behav-
ior. Combine with the monotonicity of the function g(r) and
h(r) in {r |r > r+ ∪ r− > r > 0}, the number of zero points
for g(r) and h(r) in {r |r > r+ ∪r− > r > 0} depends on the
sign of their values at horizons, there are four possibilities
when there are two turning points for trajectory of thin shell
and they show as

{M,m} = A ∪ B ∪ C ∪ D, (31)

where

A = {M,m|m > M ∩ g(r±) > 0}
= {M,m|M ≥ 1 ∩ M < m < M−},

B = {M,m|m > M ∩ h(r±) < 0}
= {M,m|M ≥ 1 ∩ m > M+},

C = {M,m|m > M ∩ h(r−) < 0 ∩ g(r+) > 0} = ∅,

D = {M,m|m > M ∩ h(r+) < 0 ∩ g(r−) > 0}
= {M,m|M > 1 ∩ M− < m < M+},

where M+ = 7M
3 + 1

3

√
M2 − 1. As a result, we conclude

that the trajectory of an oscillating shell with mass parame-
ters A/B/D is type I/IV/III, while type II trajectory is absent.
To illustrate the classification in mass parameters’space in a
more intuitive manner, we plot the Fig. 3a. Particularly, at
the mass parameter {M = 1,m = 7

3 }, we also find that the
EOM can describe a static configuration of the spherical shell
which is an extremal black hole for an outside observer. The
shell locates exactly at the radial position of the horizon, as
illustrated in Fig. 3b.

Until now, we have classified the oscillating thin shell on
the Penrose diagram into three cases, which means that we
can infer the interval of the oscillating shell’s mass parameter
simply by observing its trajectory on the Penrose diagram.
Physically, what we are actually interested in is the type I
trajectory, whose mass parameters correspond to the region

A in Fig. 3. This is because it is observable for the asymptotic
observer in region I+ on the Penrose diagram, which is not
the case for type I I I, I V trajectory, see Fig. 2.

(b). For m ≤ M , we have g(r → 0) > 0 and g(r →
+∞) > 0. Due to the monotonic property and asymptotic
behavior of g(r) in {r |r > r+ ∪ r− > r > 0}, one can
deduce that g(r) has no zero points, implying that the tra-
jectory of a spherical shell dose not have any turning points
with nro > 0. Additionally, it also can be demonstrated that
the trajectory of the spherical shell in this mass interval
does not have any turning points with nro < 0. If we have
such turning point, it is equivalent to the mass parameters
are either {M,m|h(r+) < 0} = {M,m|M � 1 ∩ m >
7M
3 − 1

3

√
M2 − 1} or {M,m|h(r−) < 0} = {M,m|M �

1 ∩ m > 7M
3 + 1

3

√
M2 − 1}, which intersect with m ≤ M

is the empty set, therefore we infer that the turning point of
a shell’s trajectory with nro < 0 is absent. Thus far, we have
proved that the trajectory of a shell with m ≤ M does not
have turning points, ie. the collapsing spherical shell with
m ≤ M will eventually collapse into a singularity.

4.2 Collapsing shells in higher dimensions

Now we turn our attention to the trajectory of a thin shell
in higher dimensions. In this case, the position of horizon is
determined by r D−5

(
1 + r2

) = 4M
D−2 . Due to the fact that the

left-hand side of this equation is monotonically increasing
from zero to infinity for D > 5, there is unique solution,
implying the existence of single horizon. When D = 5, the
existence of horizon depends on the sign of 4

3 M − 1, and
there exist single horizon when M > 3

4 , which is the case
here.

Physically, we believe that the existence of bouncing
behavior in four dimensions is due to its unique causal struc-
ture in comparison to that of higher dimensions. Indeed,
because the Gauss–Bonnet term modifies the small scale
behavior of the Einstein gravity, and the turning point of
spherical shells in higher dimensions is located outside the
horizon of outer spacetime, it is reasonable to speculate that
the property of turning points for spherical shells’ trajectory
in high dimensions should be the same to that of Einstein
case. To substantiate the argument, we provide a detailed
analysis of the EGB case in five dimensions.

In this subsection, we are interested in the trajectory of
shell with nro > 0 in r > rH . To determine the location of
the turning point of the shell’s trajectory, which is given by

r2
((

1 − √
f+

)
+ 2

3r2

(√
f+(−3 + f+) + 2

))
= m,

is equivalent to find the zero points of

G(r) = r2
(

1 − √
f+

)
+ 2

3

(√
f+ (−3 + f+) + 2

)
− m,
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(a) (b)

Fig. 3 a The classifications of bouncing processes by different mass
parameters’ regions. b the V (r) profile of {M = 1,m = 7

3 }, which cor-
responds to the intersection of region A, B, D of left diagram. It shows

that the spherical shell locate at r = 1, where the position of horizon of
extremal black hole is

whose derived function is given by

G ′(r) = 2r
(

1 − √
f+

)

+ 1√
f+r

(
( f+ − 1)(2( f+ − 1) − r2) − 8

3
M

)
,

and asymptotic behavior at infinity is

G(r → +∞) =
(

−m + 2

3
M

)
+ 2

9
M2r−2 + O

(
r−3

)
.

By analyzing the derivative function, we can see that G(r)
decreases monotonically in the interval r > rH , indicating
that a zero point for G(r) exists in this interval if and only if
the mass parameters satisfy

{m, M} = {G(rH ) > 0 ∩ G(+∞) < 0}
=

{
2

3
M < m ≤ 1

3
(1 + 4M)

}
. (32)

However, we cannot conclusively determine which type of
turning point exists in this case, is it an expanding shell with
mass parameters (32), which is unable to escape its own grav-
itational pull, or is it a collapsing shell that bounces back to
infinity? Nonetheless, we can numerically identify the type
of turning point for certain mass parameters. Transforming
(22) in five dimensions and obtain

ṙ6 +
(

3

2
r2 + 3 − 4M2

9m2

)
ṙ4 +

(
3

4
r2 + 1

)2

− 9Q2

64m2

+
((

3

4
r2 + 2

)2

− 1 − MQ

2m2

)
ṙ2 = 0, (33)

where

Q = m2 + 1

18

(
−1 +

√
1 + 16M

3r4

)
r6

+ 8

27
M

(
6 +

(
3 +

√
1 + 16M

3r4

)
r2

)
.

As with the four-dimensional case, there exists a unique
real solution for (33), denoted by ṙ2 = U (r,m, M) =
V (r, m

r , 2M
3r ), where U (r,m, M) ≥ 0 corresponds to the

physically allowable region of the spherical shell trajectory.
Without loss of universality, we take M = 5 with different m
which satisfy (32) to solve U (r) = 0 to determine the loca-
tion of the spherical shell’s turning point, denoted by rtp,
and study the sign of U ′(rtp) to see the force at this position,
see Fig. 4. As illustrated in Fig. 4, the spherical shell’s force
direction at these turning points is pointing to decreasing r ,
implying that the spherical shell with these mass parameters
cannot escape its own gravitational pull.

In summary, collapsing thin shells exhibit novel bouncing
behavior in four dimensions, but not in higher dimensions,
as confirmed by the detailed analysis in five dimensions. The
bouncing behavior is indeed caused by the α term in four
dimensions, whose effect is similar to that of electrical charge
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Fig. 4 The location of turning points for M = 5 with m from 3.4 to
7 with �m = 0.1 is plotted. Note that U ′(r)|r=tp only has numerical
meaning in the vertical direction

somehow, despite the fact that it contributes to Einstein’s
theory as a pure gravitational correction.

5 Weak cosmic censorship for thin shells

The cosmic censorship has been tested by thin shells for
many years. As we know, there is always a horizon for M >

0 in Schwarzchild spacetime, however in 4D EGB gravity,
we can deduce from Eq. (3) that only M ≥ α makes the
appearance of horizon, whereas M < α, which we refer to an
underweight spacetime, later describes spacetime with naked
singularity. Thus, one might reasonably ask whether a shell
with an underweight exterior (M < α) can implode past the
horizons of an existing non-extremal black hole (M > α).
If this occurs, a naked singularity forms and weak cosmic
censorship is violated. Now, we’re going to construct this
scenario to test the cosmic censorship conjecture.

In this section, we are concentrated on the asymptotically
flat region, where nr > 0 is always true. For our purposes,
we will consider such a gravitational collapse process for
a spherical shell, whose interior and exterior geometry are
given by the spherical symmetric solution (2). Let Mi and
Mo denote the interior and exterior mass parameters, respec-
tively, we will have

Fi (r) = 1 + r2

2α

(
1 −

√
1 + 8αMi

r3

)
,

Fo(r) = 1 + r2

2α

(
1 −

√
1 + 8αMo

r3

)
.

In this case, we specify Mi > α and Mo < α. The motion of a
spherical shell follows the Eq. (20), which we have obtained
previously. We transform (20) in four dimensions and obtain

r(nri − nro)

×
(

1 + 2α

3r2

(
3(1 + ṙ2) − (

(nro)
2 + nron

r
i + (nri )

2))) = m,

(34)

where

nri =
√
Fi (r) + ṙ2, nro =

√
Fo(r) + ṙ2.

Since F(r) decreases monotonically from M = 0 to M =
+∞, we have Fo(r) > Fi (r) and nro > nri . Due to the facts
0 < nri < nro <

√
1 + ṙ2, the left-hand side of (34) has

r(nri − nro)

(
1 + 2α

3r2

(
3(1 + ṙ2) − (

(nro)
2 + nron

r
i + (nri )

2)))

< r(nri − nro) < 0, (35)

which indicates that m in (34) should be negative. How-
ever, because the weak energy condition in (13) implies that
σ(τ) > 0, which is identified with m > 0, the hypotheti-
cal process is unphysical. In other words, it cannot violate
the cosmic censorship via thin shells’ dynamics in 4D EGB
gravity, implying that the weak cosmic censorship conjecture
holds. Moreover, the preceding analysis also can be used to
test the third law of black hole dynamics, which states that no
extremal black hole forms. The only modification required
for the preceding discussion is to replace the outer spacetime
with M = α. In that case, the third law still applies.

6 Concluding remarks

In this paper, we have considered the gravitational collapse
of a spherical dust thin shell in EGB gravity. The EOM for
the thin shell in D dimensions has been derived. Based on 4D
EGB gravity, we are motivated by the trajectory of a collaps-
ing dust star and discover novel bouncing behavior for the
thin shell at small scale. It is worth noting that the bouncing
process is consistent with the fact that the higher curvature
corrections to GR modifies the small scale property of Ein-
stein’s gravity. The EOM is analyzed in four dimensions and
the oscillating shell is classified using the Penrose diagram.
The analysis of EOM in higher dimensions is also included,
where it is found that the collapsing thin shell cannot be
bounced back (i.e. the singularity always forms). Finally, we
test the weak cosmic censorship conjecture and find that it
still holds in our model. However, some questions remain
unanswered. Is the oscillation behavior still true for more
realistic cases, such as thick shells, shells with more realistic
equations of state and general (non-)spherical stars? Can dis-
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sipation during the collapse be taken into account? What will
happen then? These questions will be left for future works.
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Appendix: the Penrose diagram of 4D EGB black hole

The Penrose diagram is a crucial tool for analyzing space-
time in GR. We now construct the Penrose diagram of the
spherically symmetric vacuum solution for 4D EGB gravity
(2).

In this section, we are interested in the non-extremal case.
In this case, the metric (2) is singular when r = 0, r±. Cutting
the spacetime manifold into three disconnected regions in
the coordinates {t, r, θ, φ}, the regions are 0 < r < r−,
r− < r < r+ and r+ < r < +∞, respectively. Given
that we are considering the connected spacetime manifold,
we initially choose the region r+ < r < +∞, later named
region I+, to represent the external field. It can be showed
the region is extensible.

Let’s introduce null coordinates U, V in region I+, which
denotes

V = exp(t + r∗), U = − exp(r∗ − t),

where the tortoise coordinate r∗ is defined by r∗ =∫
dr F(r)−1. Note that we have

lim
r→+∞r∗ = +∞, lim

r→r+
r∗ = −∞,

lim
r→r−

r∗ = +∞, lim
r→0

r∗ = c,

where c is a constant.
Using the coordinates {U, V, θ, φ}, the metric (2) takes

the form

ds2 = F(r) exp(−2r∗)dUdV + r2
(
dθ2 + sin2 θdφ2

)
.

(36)

One can prove (36) is no longer singular at r = r+. This
indicates the singularity r = r+ is the result of a bad choice
of coordinates, rather than a real singularity.

Next we use the arctangent to bring U, V into a finite
coordinate value and define

V ′ = arctan V, U ′ = arctanU. (37)

For region I+, its corresponding ranges given by

0 < V ′ <
π

2
, −π

2
< U ′ < 0,

and because r = r+ is non-singular, it is naturally extend the
region I+ across r = r+ to a new region which is isometric
to the region r− < r < r+ of the 4D EGB solution (2), either
along the direction of ∂U ′ or ∂V ′ . For the direction of ∂U ′ , the
new region called region I I+ is parameterized by

0 < V ′ <
π

2
, 0 < U ′ <

π

2
.

Together with r = r+, region I+ and I I+, we obtain Penrose
diagram of the region r− < r < +∞ for (2).

Similarly, one can find that r− is also not a real singularity,
allowing one to extend region r− < r < r+ to region 0 < r <

r−, which we labeled as region I I I+. Extend the diagram
in the direction ∂U or ∂V indefinitely, as in the RN case,

Fig. 5 The Penrose diagram of a four-dimensional EGB vacuum solu-
tion with M > α is ploted
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we would obtain the extended Penrose diagram of 4D EGB
solution, see Fig. 5.

Finally, we introduce a timelike hypersurface to illus-
trate the meaning of the sign of nro on the Penrose diagram.
According to our convention, its normal vector nao points
from inside to outside, as illustrated by the arrow in Fig. 5.
The sign of nro depends on the direction of nao pointing. If nao
points to larger r , then we have nro > 0, while nao points to
smaller r means nro < 0. Notice that the sign of nro varies
from region to region. For instance, in region I+, nao always
points to larger r , indicating that nro > 0, whereas in region
I I I−, nao always points to smaller r , implying that nro < 0.
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