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Abstract We propose supertwistor realisations of (p, q)

anti-de Sitter (AdS) superspaces in three dimensions and
N -extended AdS superspaces in four dimensions. For each
superspace, we identify a two-point function that is invari-
ant under the corresponding isometry supergroup. This two-
point function is a supersymmetric extension (of a function)
of the geodesic distance. We also describe a bi-supertwistor
formulation for N -extended AdS superspace in four dimen-
sions and harmonic/projective extensions of (p, q) AdS
superspaces in three dimensions.

Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . 1
2 (p, q) AdS superspace in three dimensions . . . . . 2

2.1 Algebraic background . . . . . . . . . . . . . . 2
2.2 Supertwistor realisation of (p, q) AdS superspace 3
2.3 G-invariant two-point function on AdS(3|p,q) . 4

3 N -extended AdS superspace in four dimensions . . 4
3.1 Algebraic background . . . . . . . . . . . . . . 4
3.2 Supertwistor realisation of AdS4|4N . . . . . . 4
3.3 Anti-de Sitter space . . . . . . . . . . . . . . . 5
3.4 OSp(N |4;R)-invariant two-point function on

AdS4|4N . . . . . . . . . . . . . . . . . . . . . 5
3.5 Poincaré coordinate patch in AdS4|4N . . . . . 5

4 Bi-supertwistor construction for AdS4|4N . . . . . 6
5 Harmonic/projective AdS superspaces . . . . . . . . 7
6 Conclusion . . . . . . . . . . . . . . . . . . . . . . 7
A Compactified (p, q) Minkowski superspace in two

dimensions . . . . . . . . . . . . . . . . . . . . . . 8
References . . . . . . . . . . . . . . . . . . . . . . . . 8

a e-mail: sergei.kuzenko@uwa.edu.au
b e-mail: g.tartaglino-mazzucchelli@uq.edu.au (corresponding author)

1 Introduction

Propagators in maximally symmetric spacetimes (see, e.g.,
[1–6] and references therein) make use of a unique two-point
function which is invariant under the corresponding isome-
try group. Such a two-point function is readily constructed
if one makes use of the well-known embedding formalisms
for de Sitter and anti-de Sitter spaces. Off-shell supersym-
metric field theories in AdSd are naturally formulated in
appropriate AdS superspaces for d ≤ 5. In order to develop
quantum supergraph techniques in such a superspace, it is
useful to work with an embedding formalism. In this let-
ter we propose supertwistor formulations for the following
superspace types: (i) (p, q) anti-de Sitter (AdS) superspace
in three dimensions; and (ii) N -extended AdS superspace in
four dimensions.

Since the work by Ferber [7], supertwistors have found
numerous applications in theoretical and mathematical
physics. In particular, supertwistor realisations of compact-
ified N -extended Minkowski superspaces have been devel-
oped in four [8–10] and three [11,12] dimensions and their
harmonic/projective extensions [11–19].1 Recently, super-
twistor formulations for conformal supergravity theories in
diverse dimensions have been proposed [21,22]. Unlike in
Minkowski space, not much is known about supertwistor
realisations of AdS superspaces in diverse dimensions, to the
best of our knowledge, although (super)twistor descriptions
of (super)particles in AdS have been studied in the literature
[23–32]. Our goal in this paper is to fill the gap. Of course, for
theories in AdS it is always possible to use the standard coset
space formalism, see, e.g., the famous Metsaev-Tseytlin con-
struction of the type IIB superstring action in AdS5×S5 [33].
However, manifest symmetry is one of the main virtues of
(super)twistor techniques.

1 Similar ideas were applied in Ref. [20] to develop supertwistor real-
isations of the 2n-extended supersphere S3|4n , with n = 1, 2, . . . , as a
homogeneous space of the three-dimensional Euclidean superconfor-
mal group OSp(2n|2, 2).
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This paper is organised as follows. In Sect. 2 we present the
supertwistor realisations of (p, q) AdS superspace in three
dimensions. Section 3 is devoted to the four-dimensional N -
extended case which is then extended to a bi-supertwistor
construction in Sect. 4. Section 5 is devoted to super-
twistor constructions of harmonic/projective AdS super-
spaces in three dimensions, while Sect. 6 contains conclud-
ing comments for our paper. In the Appendix we describe
a supertwistor realisation of two-dimensional compactified

Minkowski superspace M
(2|p,q)

.

2 ( p, q) AdS superspace in three dimensions

The (p, q) AdS superspaces in three dimensions (3D) were
introduced in [34] as backgrounds of the off-shell 3D N -
extended conformal supergravity [35,36] with covariantly
constant and Lorentz invariant torsion. In this paper we will
restrict our attention to the conformally flat (p, q) AdS super-
spaces2

AdS(3|p,q) = OSp(p|2;R) × OSp(q|2;R)

SL(2,R) × SO(p) × SO(q)
, (2.1)

which may be viewed as maximally supersymmetric solu-
tions of (p, q) AdS supergravity theories [37] (even though
these theories are intrinsically formulated in components
without auxiliary fields and can be recast in superspace only
on the mass shell).3 The superspaces (2.1) with p + q ≤ 4
naturally originate as maximally supersymmetric solution
of various off-shell AdS supergravity theories. In particu-
lar, AdS(3|1,0) corresponds to N = 1 AdS supergravity [39].
The superspaces AdS(3|1,1) and AdS(3|2,0) correspond to the
off-shell formulations for N = 2 AdS supergravity given in
[36,40].

As demonstrated in [34], the isometry group of AdS(3|p,q)

is

G = OSp(p|2;R) × OSp(q|2;R) ≡ GL × GR. (2.2)

The same supergroup is also the superconformal group
of compactified Minkowski superspace in two dimensions,

M
(2|p,q)

, with its bosonic body beingM
2 = S1×S1, the com-

pactified two-dimensional Minkowski space.4 Our embed-
ding formalism for AdS(3|p,q) is constructed in terms of 2D
supertwistors.

2 In the case (p, q) = (N , 0) there also exist non-conformally flat AdS
superspaces if N ≥ 4 [34]. They will be discussed elsewhere.
3 The coset spaces (2.1) were briefly discussed in [38].
4 The supertwistor realisation of M

(2|p,q)
is given in Appendix A.

2.1 Algebraic background

We introduce two types of pure supertwistors, (i) a left super-
twistor

TL = (TA) =
(
Tα

TI

)
, α = 1, 2, I = 1, . . . , p ; (2.3)

and (ii) a right supertwistor

TR = (TA) =
(
Tα

TI

)
, α = 1, 2, I = 1, . . . , q. (2.4)

In the case of even left supertwistors, Tα is bosonic and
TI is fermionic. In the case of odd left supertwistors, Tα is

fermionic while T I is bosonic. The even and odd left super-
twistors are called pure. We introduce the parity function
ε(T ) defined as: ε(T ) = 0 if T is even, and ε(T ) = 1 if T
is odd. Then the components TA of a pure left supertwistor
have the following Grassmann parities

ε(TA) = ε(T ) + εA (mod 2), (2.5)

where we have defined

εA =
{

0 A = α

1 A = I
.

Analogous definitions are introduced for the right super-
twistors.

A pure left supertwistor is said to be real if its components
obey the reality condition

(TA)∗ = (−1)ε(T )εA+εA TA. (2.6)

Real right supertwistors are similarly defined. The space of
complex (real) even left supertwistors is naturally identified
with C

2|p (R2|p), while the space of complex (real) odd left
supertwistors may be identified with C

p|2 (Rp|2).
We introduce graded antisymmetric supermatrices JL and

JR defined by

JL = (JA B) =
(

εL 0

0 i1p

)
,

εL = (
εαβ

) =
(

0 1
−1 0

)
, (2.7)

and similarly for JR. Here 1p denotes the unit p× p matrix.
Associated with JL and JR are graded symplectic inner prod-
ucts on the spaces of pure left and right supertwistors, respec-
tively. For arbitrary pure left supertwistors T and S, their
inner product is

〈T |S〉JL := T sT
JLS, (2.8)

where the row vector T sT is defined by

T sT := (
Tα,−(−1)ε(T )TI

) = (TA(−1)ε(T )εA+εA ) (2.9)
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and is called the super-transpose of T . The above inner prod-
uct is characterised by the symmetry property

〈T1|T2〉JL = −(−1)ε(T1)ε(T2)〈T2|T1〉JL . (2.10)

If T1 and T2 are real supertwistors, their inner product obeys
the reality relation(
〈T1|T2〉JL

)∗ = −〈T2|T1〉JL . (2.11)

We recall that the supergroup OSp(p|2;C) consists of
those even (2|p) × (2|p) supermatrices

g = (gA
B), ε(gA

B) = εA + εB, (2.12)

which preserve the inner product (2.8) under the action

TL = (TA) → g · TL = (gA
BTB). (2.13)

Such a transformation maps the space of even (odd) super-
twistors onto itself. The condition of invariance of the inner
product (2.8) under (2.13) is

gsT
JLg = JL, (2.14a)

where gsT is the super-transpose of g defined by

(gsT)AB := (−1)εAεB+εB gB
A. (2.14b)

The subgroup GL ≡ OSp(p|2;R) ⊂ OSp(p|2;C) consists
of those transformations which preserve the reality condition
(2.6), which means(
gA

B
)∗ = (−1)εAεB+εA gA

B ⇐⇒ g† = gsT. (2.15)

In conjunction with (2.14), this reality condition is equivalent
to

g†
JLg = JL. (2.16)

Analogous definitions are introduced for the right supergroup
GR ≡ OSp(q|2;R) ⊂ OSp(q|2;C).

2.2 Supertwistor realisation of (p, q) AdS superspace

In order to obtain a supertwistor realisation of (p, q) AdS
superspace, we introduce a space L(p,q). By definition, it
consists of all pairs (PL,PR), where

PL = (XA
μ), μ = 1, 2 (2.17a)

is a left real even two-plane, and

PR = (YA
μ), μ = 1, 2 (2.17b)

is a right real even two-plane, with the additional property

PsT
L JLPL = PsT

R JRPR. (2.18)

A few comments are in order. The statement that PL is even
real, means that the two supertwistors Xμ

L are even and real.

The property of PL being a two-plane means that5

det(Xα
μ) �= 0. (2.19)

Similar statements hold for the right planes. In the space
L(p,q) we introduce the following equivalence relation

(PL,PR) ∼ (PLM,PRM), M ∈ GL(2,R). (2.20)

The supergroup (2.2) acts on L(p,q) by the rule

(gL, gR)(PL,PR) := (gLPL, gRPR),

(gL, gR) ∈ OSp(p|2;R) × OSp(q|2;R). (2.21)

This action is naturally extended to the quotient space
L(p,q)/ ∼. The latter proves to be a homogeneous space
of OSp(p|2;R) × OSp(q|2;R). It turns out that

AdS(3|p,q) = L(p,q)/ ∼ . (2.22)

The equivalence relation (2.20) allows us to choose a
gauge

PR = (YA
μ) =

(
δα

μ

i θIμ

)
, PL = (XA

μ) =
(

xα
μ

i θI
μ

)
.

(2.23a)

Then the condition (2.18) turns into

xTε x = ε − i
(
θT

L θL − θT
RθR

)
. (2.23b)

This equation provides the embedding of AdS(3|p,q) into
R

2,2|2p+2q . In the non-supersymmetric case, p = q = 0,
(2.23b) is equivalent to

x ∈ Sp(2,R) ∼= SL(2,R), (2.24)

which is the standard realisation of AdS3.
Instead of using the gauge (2.23a), one can choose the

alternative gauge condition

PL = (XA
μ) =

(
δα

μ

i ϑI
μ

)
, PR = (YA

μ) =
(

yαμ

i ϑI
μ

)
.

(2.25a)

Then the condition (2.18) turns into

yTε y = ε − i
(
ϑT

RϑR − ϑT
L ϑL

)
. (2.25b)

5 More precisely, the body of the matrix (Xα
μ) must be a nonsingular

matrix. See [41] for the necessary information about infinite dimen-
sional Grassmann algebra �∞ and supermatrices.
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2.3 G-invariant two-point function on AdS(3|p,q)

Let Z = (PL,PR) and Z̃ = (P̃L, P̃R) be two points of
L(p,q). We introduce the following two-point function6

ω(Z , Z̃) = 1

2
tr

{
P̃sT

L JLPL

(
P̃sT

R JRPR

)−1}
. (2.26)

By construction, it is invariant under the group action (2.21).
The two-point function is also well defined on the quotient
space (2.22). Indeed, given two sets of equivalent points

(PL,PR) ∼ (PLM,PRM), (P̃L, P̃R)∼(P̃L M̃, P̃R M̃),

(2.27)

with M, M̃ ∈ GL(2,R), we have

P̃sT
L JLPL ∼ M̃TP̃sT

L JLPLM,

P̃sT
R JRPR ∼ M̃TP̃sT

R JRPRM, (2.28)

and therefore the two-point function (2.26) does not change.
It is instructive to evaluate (2.26) in the non-supersymmetric
case, p = q = 0. Assuming the gauge condition (2.23a), we
then have

x =
(
x0 + x1 x2 + x3

x2 − x3 x0 − x1

)
,

(x0)2 + (x3)2 − (x1)2 − (x2)2 = 1, (2.29)

and therefore

w(x, x̃) = x̃0x0 + x̃3x3 − x̃1x1 − x̃2x2. (2.30)

3 N -extended AdS superspace in four dimensions

The supergroup OSp(N |4;R) is the isometry group of four-
dimensional N -extended AdS superspace

AdS4|4N = OSp(N |4;R)

SO(3, 1) × SO(N )
. (3.1)

Here we describe a supertwistor realisation of this super-
space. Our embedding formalism for AdS4|4N is constructed
in terms of 3D supertwistors.

It should be pointed out that AdS4|4 was introduced in [42–
44]. It is a maximally supersymmetric solution of N = 1
supergravity with a cosmological term, see [39,41] for a
review. The description of AdS4|8 as a maximally super-
symmetric solution of N = 2 supergravity with a cos-
mological term was given in [45–47]. The conformal flat-
ness of AdS4|4 was established by Ivanov and Sorin [44]
and then reviewed in textbooks [39,41]. The superconfor-
mal flatness of AdS4|4N was demonstrated in [38]. Ref. [48]
described alternative conformally flat realisations for AdS4|4

6 Due to the relations (2.18) and (2.19), the combination P̃sT
R JRPR is

nonsingular.

and AdS4|8 which are based on the use of Poincaré coordi-
nates.

3.1 Algebraic background

A supertwistor is a column vector

T = (TA) =
(
Tα̂

Ti

)
, (Tα̂) =

(
fα
gβ

)
,

α, β = 1, 2 i = 1, . . . ,N . (3.2)

Pure supertwistors are defined similarly to Sect. 2. Specif-
ically the components TA of a pure supertwistor have the
following Grassmann parities

ε(TA) = ε(T ) + εA (mod 2), (3.3)

where we have defined

εA =
{

0 A = α̂

1 A = i
.

We choose the graded antisymmetric supermatrix

J = (JAB) =
(
J 0

0 i1N

)
,

J = (
J α̂β̂

) =
(

0 12

−12 0

)
, (3.4)

which allows us to define a graded symplectic inner product
on the space of pure supertwistors by the rule: for arbitrary
pure supertwistors T and S, the inner product is

〈T |S〉J := T sT
J S, (3.5)

3.2 Supertwistor realisation of AdS4|4N

We denote by EN the space of all real even supertwistors.
Next we introduce a complex frame in EN

T μ̂ = (Tμ, T̄ μ̇), Tμ = (TA
μ), T̄ μ̇ = (T̄A

μ̇).

μ, μ̇ = 1, 2. (3.6a)

Here the supertwistor T̄ μ̇ is the complex conjugate of Tμ.
We require the elements of the frame to obey the conditions:

εμν〈Tμ|T ν〉J �= 0 ; (3.6b)

〈Tμ|T̄ ν̇〉J = 0. (3.6c)

We denote FN the space of all complex frames (3.6).
It is not difficult to construct explicit examples of complex

frames (3.6). Let Uμ and Vμ be real even supertwistors with
the properties

〈Uμ|U ν〉J = 〈Vμ|V ν〉J = 0, (3.7a)

〈Uμ|V ν〉J = −〈Vμ|U ν〉J = δμν. (3.7b)
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Such supertwistors originate as even vector-columns of an
arbitrary group element g ∈ OSp(N |4;R). Then we define
the complex even supertwistors

Tμ := Uμ + iεμσV σ , T̄ μ̇ := Uμ − iεμσV σ , (3.8)

for which the properties (3.6) hold.
In the space of frames FN , we introduce the following

equivalence relation

Tμ ∼ T νRν
μ, R ∈ GL(2,C). (3.9)

The supergroup OSp(N |4;R) acts on FN by the rule

g(Tμ, T̄ μ̇) = (gTμ, gT̄ μ̇), g ∈ OSp(N |4;R). (3.10)

This action is naturally extended to the quotient space
FN / ∼. The latter proves to be a homogeneous space of
OSp(N |4;R). It turns out that

AdS4|4N = FN / ∼ . (3.11)

3.3 Anti-de Sitter space

In order to prove (3.11), it suffices to consider the non-
supersymmetric case, N = 0. Then we have

Tα̂
μ̂T

β̂
ν̂Tγ̂

σ̂ T
δ̂
ρ̂εμ̂ν̂σ̂ ρ̂ = �ε

α̂β̂γ̂ δ̂

= −�
(
J
α̂β̂

J
γ̂ δ̂

+ Jα̂γ̂ Jδ̂β̂ + J
α̂δ̂
J
β̂γ̂

)
, (3.12)

for some � �= 0. We know that

〈Tμ|T ν〉J = κεμν, 〈T̄ μ̇|T̄ ν̇〉J = κ̄εμ̇ν̇ , (3.13)

for some complex parameter κ �= 0. Making use of (3.6a),
(3.12) and (3.13), we deduce that

κ̄Tα̂
μT

β̂μ
+ κ T̄α̂

μ̇T̄
β̂μ̇

= −�J
α̂β̂

. (3.14)

It is useful to introduce the traceless part of the antisymmetric
bi-twistor Tα̂

μT
β̂μ

,

T〈α̂μT
β̂〉μ =Tα̂

μT
β̂μ

− 1

2
J
α̂β̂

κ, J α̂β̂T〈α̂μT
β̂〉μ =0. (3.15)

Then the relation (3.14) is equivalent to the two identities:

κ̄T〈α̂μT
β̂〉μ + κ T̄〈α̂ μ̇T̄

β̂〉μ̇ = 0, (3.16a)

� = −κκ̄. (3.16b)

Making use of the equivalence relation (3.9) allows us to
choose a gauge

κ = −κ̄ = i�, (3.17)

for a fixed real parameter �. Then (3.16a) turns into the reality
condition

T〈α̂μT
β̂〉μ = T̄〈α̂ μ̇T̄

β̂〉μ̇. (3.18)

Associated with T〈α̂μT
β̂〉μ is the real 5-vector

Xâ := 1

2
(J�â)

α̂β̂T〈α̂μT
β̂〉μ = 1

2
(J�â)

α̂β̂Tα̂
μT

β̂μ
. (3.19)

Here �â are real 4 × 4 matrices which obey the anti-
commutation relations

{�â, �b̂} = 2ηâb̂14, ηâb̂ = diag (− + + + −),

â = 0, 1, 2, 3, 4 ≡ a, 3, 4. (3.20)

These matrices constitute a Majorana representation of
the gamma-matrices for pseudo-Euclidean space R

3,2. The
explicit realisation of �â is given, e.g., in [12]. Making use
of the completeness relation

(J �â)α̂β̂ (J �â)
γ̂ δ̂ = −J α̂β̂ J γ̂ δ̂ + 2(J α̂γ̂ J β̂δ̂ − J α̂δ̂ J β̂γ̂ ),

(3.21)

we obtain

Xâ Xâ = −�2. (3.22)

The above twistor description of AdS4 is equivalent to the
bispinor formalism introduced in [49].

3.4 OSp(N |4;R)-invariant two-point function on
AdS4|4N

Let T μ̂ and T̃ μ̂ be arbitrary points of FN . The following
two-point function

ω(T, T̃ ) := 〈T̄ μ̇|T̃ ν〉J〈T̄μ̇|T̃ν〉J
〈T̄ σ̇ |T̄σ̇ 〉J〈T̃ ρ |T̃ρ〉J

(3.23)

is clearly OSp(N |4;R)-invariant. It is also invariant under
equivalence transformations

Tμ → T νRν
μ, T̃μ → T̃ ν R̃ν

μ, R, R̃ ∈ GL(2,C),

(3.24)

and therefore the two-point function is defined on the quotient
space (3.11).

In the non-supersymmetric case, N = 0, (3.23) is simply
related to the AdS4 two-point function Xâ X̃â . In the gauge
(3.17), we obtain

Xâ X̃â = −�2 + 〈T̄ μ̇|T̃ ν〉J〈T̄μ̇|T̃ν〉J. (3.25)

3.5 Poincaré coordinate patch in AdS4|4N

Let us consider an open subset of AdS4|4N such that the
upper 2 × 2 block in

Tμ =
⎛
⎜⎝

Tα
μ

T βμ

TIμ

⎞
⎟⎠ (3.26)
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is nonsingular. Then we can use the gauge freedom (3.9) to
impose the condition (3.17) and choose Tα

μ ∝ δα
μ. Now,

imposing the conditions (3.6c), (3.13) and (3.17), we obtain
the general solution

Tμ = 1√
z(−)

⎛
⎜⎝

δα
μ

−xβμ

(−) + i
2 (�z(−) + θ2)εβμ

i
√

2 θI
μ

⎞
⎟⎠ , (3.27a)

T̄ μ̇ = 1√
z(+)

⎛
⎜⎝

δα
μ̇

−xβμ̇

(+) − i
2 (�z(+) − θ̄2)εβμ̇

i
√

2 θ̄I
μ̇

⎞
⎟⎠ , (3.27b)

where we have denoted

xαβ

(±) = xαβ ± iθI
(αθ̄I

β) , xαβ =
(
x0 − x2 −x1

−x1 x0 + x2

)
,

(3.28a)

z(±) = z ± 1

2�
(θ − θ̄ )2 , θ2 = θI

αθIα, θ̄2 = θ̄I
αθ̄Iα.

(3.28b)

The real coordinates z > 0 and xa = (x0, x1, x2)

parametrise AdS4 in the Poincaré patch. They are related
to the embedding coordinates Xâ , eq. (3.22), as follows

Xâ = (Xa, X3, X4)

= 1

z

(
xa ,

1 − x2 − (�z)2

2
,

1 + x2 + (�z)2

2

)
,

x2 = xaxa . (3.29)

In the non-supersymmetric case, N = 0, the relations (3.27)
reduce to those given in [49].

Using the Poincaré coordinates introduced, it is easy to
show that the OSp(N |4;R)-invariant two-point function
(3.23) is not unique in the N > 0 case. In addition to (3.23),
we can introduce the following two-point functions

ω(−)(T, T̃ ) := 〈Tμ|T̃ ν〉J〈Tμ|T̃ν〉J
〈T σ |Tσ 〉J〈T̃ ρ |T̃ρ〉J

,

ω(+)(T, T̃ ) := 〈T̄ μ̇|˜̄T ν̇〉J〈T̄μ̇|˜̄T ν̇〉J
〈T̄ σ̇ |T̄σ̇ 〉J〈˜̄T ρ̇ |˜̄T ρ̇〉J

, (3.30)

which are OSp(N |4;R)-invariant. They are also invariant
under arbitrary equivalence transformations (3.24). As fol-
lows from (3.27), ω(−)(T, T̃ ) depends on the chiral variables
x(−), z(−) and θ at each point T and T̃ , whilst ω(+)(T, T̃ )

depends on the antichiral variables x(+), z(+) and θ̄ . This
means that ω(−)(T, T̃ ) and ω(+)(T, T̃ ) are distinct. The three
two-point functions (3.23) and (3.30) coincide only if the
Grassmann variables θ and θ̄ are switched off.

This non-uniqueness is not surprising, since correlation
functions could depend on the type of supersymmetric mul-

tiplets and shortening conditions of local operators.7 The
chirality condition is the simplest half-BPS constraint. With
extended supersymmetry, other constraints can be imposed.
The detailed classification goes beyond the scope of the
present paper, though we expect the next two sections to
provide techniques required to tackle such an analysis.

4 Bi-supertwistor construction for AdS4|4N

Along with the supertwistor realisation of compactified
N -extended Minkowski superspaces in four dimensions,

M
4|4N

, there also exists the so-called bi-supertwistor realisa-
tion for the same superspace which was introduced by Siegel
[52,53] (see [18] for a modern description). Here we describe
its extension to AdS4|4N .

It should be mentioned that the bi-supertwistor construc-

tion of M
4|4N

was called “superembedding formalism” in
[54–56]. Indeed, this construction may be viewed as a specific
example of a general (super)embedding approach reviewed
in [57] in application to superbranes. This construction was
advocated in [54–56,58,59] as a powerful alternative tech-
nique to compute correlation functions in conformal field
theories, which is in a sense complementary to the more tra-
ditional superspace approaches pursued in [60–63].

Given a point in FN , we associate with it the graded anti-
symmetric matrices

XAB := −2
TAμTBμ

〈T ν |Tν〉J = −(−1)εAεB XBA, (4.1a)

X̄ AB := −2
T̄Aμ̇T̄Bμ̇

〈T̄ ν̇ |T̄ν̇〉J
= −(−1)εAεB X̄ BA. (4.1b)

These supermatrices are invariant under arbitrary equiva-
lence transformations

Tμ → T νRν
μ, R ∈ GL(2,C), (4.2)

7 Here it is instructive to recall the following well-known results in
N -extended Minkowski superspace M

4|4N parametrised by Cartesian
coordinates zA = (xa, θα

i , θ̄ iα̇ ), where i = 1, . . . ,N . This super-
space possesses a one-parameter family of supersymmetric vector two-
point functions [50,51], ζ a(λ)(z, z

′) = (x − x ′)a − i(θ − θ ′)iσ a θ̄ ′i +
iθ ′
iσ

a(θ̄ − θ̄ ′)i − λi(θ − θ ′)iσ a(θ̄ − θ̄ ′)i , where λ is a parameter. For
any two values of the parameter, λ1 and λ2, the two-point function
ηabζ

a
(λ1)(z, z

′)ζ b
(λ2)(z, z

′) is super-Poincaré invariant, with ηab being the
Minkowski metric. We note that ζ a(0)(z, z

′) is real, whilst ζ a(1)(z, z
′) is

antichiral with respect to z and chiral with respect z′.
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and therefore they may be used to parametrise AdS4|4N . The
bi-supertwistors (4.1) have the following properties:

X[AB XCD} = 0, (4.3a)

(−1)εB X ABJ
BC XCD = XAD, (4.3b)

J
BAXAB = 2, (4.3c)

(−1)εB X ABJ
BC X̄CD = 0. (4.3d)

Making use of the results of [18], the bi-supertwistor for-
mulation for AdS4|4N defined by (4.3) may be shown to be
equivalent to the supertwistor one described in Sect. 3.

5 Harmonic/projective AdS superspaces

The supertwistor realisations of AdS(3|p,q) and AdS4|4N ,
which have been described in Sects. 2 and 3 , make use of
even supertwistors. In order to formulate AdS analogues of
the harmonic [64,65] and projective [66–68] superspaces,
odd supertwistors must be taken into account. The corre-
sponding technical details are analogous to the 3D and 4D
flat-superspace constructions of Refs. [12,17] which built on
earlier works [13,14,16]. This is why we provide such AdS
formulations only in three dimensions.

Here we consider particular members of the family of
3D (p, q) AdS superspaces, specifically AdS(3|N ,0) ≡
AdS3|2N . For a fixed N = p + q, the specific fea-
ture of AdS(3|N ,0) and AdS(3|0,N ) is that the correspond-
ing R-symmetry subgroup of the isometry group (2.2) is
maximal and coincides with the R-symmetry subgroup
of the N -extended superconformal group OSp(N |4;R),
which is SO(N ).8 Superspace AdS3|2N can be extended to
AdS3|2N × X

N
1 , where the internal space X

N
1 is realised in

terms of left complex odd supertwistors9

�L =
(

ρα

ζI

)
, ζI �= 0, (5.1)

which are subject to the constraints

PsT
L JL�L = 0, �sT

L JL�L = 0, (5.2)

and are defined modulo the equivalence relation

�L ∼ c�L, c ∈ C \ {0}. (5.3)

8 The superspaces AdS(3|N ,0) and AdS(3|0,N ) are related to each other
by a parity transformation.
9 One can also consider superspaces AdS3|2N × X

N
m , for any integer

m ≤ [N/2], with [N/2] being the integer part of N/2. Space X
N
m is

realised in terms of m left odd complex supertwistors �i , with i =
1, . . . ,m, such that (i) the bodies of �i are linearly independent; (ii)
the �i obey the constraints PsT

L JL�i
L = 0 and �i

L
sT
JL�

j
L = 0; and

(iii) the �i are defined modulo the equivalence relation �i ∼ � j D j
i ,

with D ∈ GL(m,C).

In the gauge (2.25), the above constraints take the form:

ρα = ζIϑI
βεβα, ζI ζI = iραεαβρβ. (5.4)

For N > 2 the internal manifold X
N
1 proves to be a sym-

metric space,

X
N
1 = SO(N )

SO(N − 2) × SO(2)
, N > 2. (5.5)

In the N = 3 case, the internal space X
3
1 is CP1, while for

N = 4 one obtains X
4
1 = CP1 × CP1, see [12] for the

details.
It is obvious that the above construction naturally extends

to the case of (p, q) AdS superspaces with p ≥ q > 0.
Technical details will be skipped.

6 Conclusion

In this paper we have presented supersymmetric extensions
of the twistor descriptions of AdS3 and AdS4. Specifically,
we have proposed supertwistor realisations of (p, q) AdS
superspaces in three dimensions andN -extended AdS super-
spaces in four dimensions. In the three-dimensional case, we
have also presented harmonic/projective superspace formu-
lations of (p, q) AdS supersymmetry, and these results can
be readily extended to four dimensions.

One of the main results of our paper is the construction of
manifestly supersymmetric two-point functions in AdS(3|p,q)

and AdS4|4N . In Minkowski backgrounds, the embedding
approach is known to be a powerful framework for decipher-
ing the structure of correlation functions in conformal field
theories – see, e.g., [54–56,58,59,69]. Analogously, it is of
interest for several applications to study n-point correlation
functions in AdS by employing symmetry arguments, see,
e.g., [49] and references therein for a recent discussion in
the non-supersymmetric case. The results of our work open
new avenues to perform manifestly supersymmetric studies
of correlation functions in AdS3 and AdS4. We aim to look
into this direction in the near future.
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A Compactified ( p, q) Minkowski superspace in two
dimensions

For completeness, in this appendix we describe a super-
twistor realisation of 2D compactified Minkowski super-

space M
(2|p,q)

. This superspace will be identified with

M
(2|p,q) = �(p,q)/ ∼ . (A.1)

Here �(p,q) is the space of real even supertwistor pairs
(TL, TR), where TL and TR are left and right even real super-
twistors of the form (2.3) and (2.4), respectively, with non-
zero bosonic parts,

TL := (Tα) �= 0, TR := (Tα) �= 0. (A.2)

The equivalence relation in (A.1) is defined by

(TL, TR) ∼ (ρLTL, ρRTR), ρL, ρR ∈ R − {0}. (A.3)

The supergroup (2.2) acts on �(p,q) by the rule

(gL, gR)(TL, TR) := (gLTL, gRTR),

(gL, gR) ∈ OSp(p|2;R) × OSp(q|2;R). (A.4)

This action is naturally extended to the quotient space
�(p,q)/ ∼. The latter proves to be a homogeneous space
of OSp(p|2;R) × OSp(q|2;R).

Let us define one-forms

ωL = −T sT
L JLdTL, ωR = −T sT

R JRdTR. (A.5)

They have the following properties: (i) ωL and ωR are invari-
ant under the action ofOSp(p|2;R)×OSp(q|2;R); and (ii)
ωL and ωR scale under point-dependent (local) equivalence
transformations,

ωL → ρ2
LωL, ωR → ρ2

RωR. (A.6)

Therefore we can define a superconformal metric onM
(2|p,q)

by the rule

ds2 = ωLωR. (A.7)

In order to get a better feeling for the above construction,
let us consider the non-supersymmetric case, p = q = 0.
The elements of � = �(0,0) are all possible pairs (TL, TR) =
(Tα, Tα), where the real two-component spinors Tα and Tα

are non-zero. The freedom to perform equivalence transfor-
mations (A.3) can be partially fixed by imposing the condi-
tions

(T1̄)
2 + (T2̄)

2 = 1, (T1)
2 + (T2)

2 = 1. (A.8)

In this gauge, the equivalence relation (A.3) reduces to Tα ∼
−Tα and Tα ∼ −Tα . It is seen that the quotient space �/ ∼
is S1 × S1.

Instead of imposing the conditions (A.8), we can intro-
duce inhomogeneous (North-chart) coordinates for the one-
spheres,

TL =
(
xL

1

)
, TR =

(
xR

1

)
. (A.9)

Then the one-forms (A.6) take the form

ωL = dxL, ωR = dxR, (A.10)

and the metric (A.7) becomes ds2 = dxLdxR. Given a group
element

gL =
(
a b
c d

)
∈ GL = Sp(2,R) ∼= SL(2,R), (A.11)

it acts on TL, eq. (A.9), by the fractional linear transformation

xL → axL + b

cxL + d
�⇒ dxL → dxL

(cxL + d)2 . (A.12)

Given a group element gR ∈ GR = Sp(2,R), it generates
a similar fractional linear transformation of xR. Under the
action of (gL, gR) ∈ GL × GR, the metric ds2 = dxLdxR

scales.
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