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Abstract Deformed relativistic kinematics have been con-
sidered as a way to capture residual effects of quantum grav-
ity. It has been shown that they can be understood geometri-
cally in terms of a curved momentum space on a flat space-
time. In this article we present a systematic analysis under
which conditions and how deformed relativistic kinematics,
encoded in a momentum space metric on flat spacetime, can
be lifted to curved spacetimes in terms of a self-consistent
cotangent bundle geometry, which leads to purely geometric,
geodesic motion of freely falling point particles. We com-
ment how this construction is connected to, and offers a new
perspective on, non-commutative spacetimes. From geomet-
ric consistency conditions we find that momentum space met-
rics can be consistently lifted to curved spacetimes if they
either lead to a dispersion relation which is homogeneous
in the momenta, or, if they satisfy a specific symmetry con-
straint. The latter is relevant for the momentum space metrics
encoding the most studied deformed relativistic kinematics.
For these, the constraint can only be satisfied in a momentum
space basis in which the momentum space metric is invariant
under linear local Lorentz transformations. We discuss how
this result can be interpreted and the consequences of relax-
ing some conditions and principles of the construction from
which we started.

1 Introduction

Due to a missing self-consistent theory of quantum gravity
(QG), and the unsolved tensions between quantizing gen-
eral relativity (GR) and the standard approaches of how to
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quantize physical field theories, models which try to cap-
ture expected features of the quantum nature of gravity have
been brought forward. Among them are modified relativistic
kinematics (MRKs), which describe the interaction of parti-
cles with QG effectively below the Planck scale [1–4]. Ver-
sions of MRKs have already been derived from fundamental
approaches to QG like Loop QG [5,6] and string theory [7].

The main idea behind MRKs is that high-energetic point
particles are able to probe smaller distances than low-
energetic particles. Assuming that the scale of quantum grav-
ity is a high-energy (small-distance) scale Λ, often identified
with the Planck scale, higher-energetic probe particles should
reveal more information about the physics at the QG scale
than low-energetic ones. Since classical gravity is described
by a curved spacetime, this idea can effectively be modeled
by a four-momentum dependent spacetime geometry. In gen-
eral, this structure is not necessarily local Lorentz invari-
ant; a statement which does not say anything about if, or if
not, the yet to be found fundamental theory of QG is local
Lorentz invariant. Similar approaches are known from the
study of particles and fields in media. Phenomenologically,
their behavior can be described by a non Lorentz invariant
background geometry, even though their interactions with the
fundamental constituents of the medium are governed by the
local Lorentz invariant standard model of particle physics.

Among the MRKs one distinguishes between two scenar-
ios: Lorentz invariance violation (LIV) and deformed rela-
tivistic kinematics (DRKs). In the LIV case, the informa-
tion about the MRKs are encoded in a, compared to GR,
modified dispersion relation, which is satisfied by parti-
cles propagating through spacetime. However, observers are
related to each other by local Lorentz transformations, and
the observer momenta obey the general relativistic dispersion
relation. Since the dispersion relation encodes the coupling
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between the physical systems and the space-time geometry,
this distinction between particles and observers violates the
weak equivalence principle, the fact that gravity couples in
the same way, universally, to all physical systems. In con-
trast, in the DRKs case, all physical systems (point parti-
cles and observers) satisfy the same dispersion relation, and,
most importantly, also a compatible deformed addition of
momenta is implemented [2]. Thus, for DRKs, the informa-
tion about the deviations from local Lorentz invariance are
not only encoded in a possibly deformed dispersion relations,
but also in the deformed observer transformations and in the
composition of momenta. This construction ensures a rela-
tivity principle compatible with a four momentum dependent
geometry of spacetime.

DRKs are often constructed by deforming the Poincaré
symmetry algebra transformations of special relativity act-
ing on Minkowski spacetime. A most prominent example of
such a deformation is the κ-Poincaré Hopf algebra [8], which
is interpreted as a symmetry principle that implements two
observer independent scales: a velocity, which corresponds
to the special relativistic speed of light (c) and, in addition, a
characteristic high-energy scale (Λ), usually identified with
the Planck energy. In this sense, physics obeying this symme-
try has also been named doubly special relativity (DSR) [9].
Instead of the algebraic approach to DRKs, and in particular
DSR, a geometric interpretation has been suggested, namely
that the deformed symmetries are encoded in a non-trivial
geometry of momentum space [3,4,10–12]. This works well
on flat spacetimes, but a self-consistent generalization to
curved spacetimes is still missing.

The step from flat to curved spacetime is highly impor-
tant, since the most promising observables to detect conse-
quences from DRKs come from cosmic messengers. One
well discussed effect is a time delay in time of arrival mea-
surements: high-energetic particles emitted simultaneously
from an astrophysical source at high redshift accumulate
DRK effects due to their long travel time [7,13–22]. This
leads to a possibly measurable deviation from the expected
time of arrival predicted by GR. But, in order to describe this
effect self-consistently, a consistent complete formulation of
DRKs on a curved spacetime is necessary.

A further important aspect in the formulation of DRKs on
curved spacetime is the definition of the trajectories of parti-
cles. Usually, these are defined from the Hamilton equations,
considering a deformed Hamilton function which encodes
the modified dispersion relation. However, as explained pre-
viously, the main ingredient of DRKs is the deformed com-
position law for the momenta constructed from a momentum
space metric. Whilst one way to construct momentum depen-
dent metrics on curved spacetime is to derive them from the
Hamilton function [20,23,24], a formalism known as Hamil-
ton geometry [25], the connection with a deformed addition
of momenta is not clearly worked out in this context yet.

An alternative approach is to start from a momentum space
metric on flat spacetime, instead of from a dispersion rela-
tion. Then, the deformed addition of momentum, as well as
the deformed observer transformations, can be understood as
the isometries of a maximally symmetric momentum space
[12]. For such a momentum space metric, the Hamiltonian
is defined as the square of the metric distance in momen-
tum space. The mathematical framework which covers this
approach is the geometry of generalized Hamilton spaces
[25], and first steps to implement DRKs on curved spacetime
in this framework have been made in [26,27]. In particular
several consistency conditions have been identified, but not
generally studied yet. Here we seek to investigate systemati-
cally which kind of curved spacetime geometries with curved
momentum spaces, collectively described as a cotangent bun-
dle geometry, are compatible with these consistency condi-
tions. We find that, among the geometries which emerge from
lifting DRKs from flat to curved spacetimes, only specific
classes satisfies all consistency conditions: those which have
a dispersion relation that is a homogeneous function of the
momenta, or, those which are linearly local Lorentz invariant.
One can construct more general self-consistent curved space-
times with curved momentum spaces geometry, but they then
either violate one of the conditions we started from, or go
beyond the DRKs usually discussed in the literature.

Another point that deserves discussion is the connection
between this kind of geometrical structure and the quantum
gravity framework. As discussed in [2], DSR theories have a
long standing history in the literature since their emergence
from quantum deformations of the Poincaré group [8,28–30],
whose physical interpretation is nicely summarized in [31].
Not long after that it was recognized in [32] that such a frame-
work could be rigorously derived from a top down approach
in 2+1 quantum gravity. The year after it was suggested that
DSR could be the outcome of an energy (rainbow) spacetime
[33], showing therefore a clear connection between a momen-
tum dependent spacetime and quantum gravity. A quantum
spacetime it is often described by a non-commutativity of
spacetime. Following the same line of thought of [34,35]
(see also [36]), we show how to connect our geometrical
setup with a space-time non-commutativity. Explicitly, start-
ing by a momentum dependent geometry and we can identify
the space-time coordinates with the generators of translations
in momentum space, leading to a non-commutative phase
space.

This differs from the construction of [37–39], where it is
extended the usual construction of κ-Poincaré Hopf algebras
when a cosmological constant in spacetime is considered,
and the approach followed in [40,41], where a manifold with
non-commutative coordinates was considered from the very
beginning. The construction proposed here has the advan-
tage that it is easily generalizable for any curved space-time
geometry.
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The structure of this article is as follows. We start by
recalling the geometric understanding of deformed relativis-
tic kinematics on flat spacetime and conjecture how to extend
the deformed relativistic kinematics to curved spacetime in
Sect. 2, including a discussion on the relation of this construc-
tion to non-commutative spacetimes in Sect. 2.2. Afterwards,
we introduce the geometry of the cotangent bundle and state
two physical principles, which we want to be satisfied by the
geometry in Sect. 3. Using the framework of the geometry
of the cotangent bundle we cast these principles in precise
mathematical constraints in Sect. 3.2. Then, in Sect. 3.3 we
study the consequences of the constraints on a perturbative
model which is polynomial in the momenta, as they are often
employed in the study of DRKs, and find that the perturba-
tion of a space-time metric to a momentum space metric
must satisfy an index symmetry constraint in order to yield a
consistent geometry. Finally we evaluate this constraint for
the momentum space metrics of the most popular DRKs in
Sect. 4, where we find that it is not satisfied by every momen-
tum basis, i.e., every choice of momentum coordinates, but
only for those maximally symmetric metrics which have lin-
ear Lorentz transformations as isometries. Finally, we dis-
cuss the main outcomes of the work in Sect. 5, including the
interpretation of our findings and possible generalisations.

2 Deformed relativistic kinematics: from flat to curved
spacetimes

Deformed relativistic kinematics (DRKs) can be understood
in terms of non-trivial curved momentum space geometry,
defined by a momentum space metric. One of the aims of
this article is to develop the geometric notions to lift this
model consistently to curved spacetime. To do so, we recall
the flat spacetime construction and present a simple way for
lifting this setup to curved spacetime. In Sects. 3 and 4 we
will study under which conditions the construction yields a
mathematically self-consistent curved phase-space geome-
try, i.e., a curved spacetime with curved momentum spaces.

2.1 The flat spacetime construction

Originally, curved momentum spaces have been intro-
duced by Born [42] to unify quantum theory and relativ-
ity. In the geometric approach to DRKs, momentum spaces
are equipped with a maximally symmetric metric ζ =
ζμν(k)dkμdkν . The maximal symmetry requirement implies
the existence of 10 isometries, which consist of 4 translations
T and 6 boosts and rotations J (we are considering metrics
of Lorentzian signature and 4 dimensions). Along this paper,
we will restrict ourselves to this particular kind of momentum
spaces, since we will identify translations and Lorentz gener-
ators with the deformed law of addition of momenta and the

rotations and boost respectively [12]. For momentum spaces
that are not maximally symmetric this construction cannot
be carried out, failing then to identify geometrically the rel-
ativistic deformed kinematics.

The dispersion relation, which physical momenta have to
satisfy, is obtained as the square of the minimal geometric dis-
tance of a momentum k from the origin of momentum space,
measured by the momentum space length measure induced
by the metric [4]. As discussed before, translations induce a
deformed law of addition of momenta, and the rotations and
boosts represent the local observer transformations [12]

(p ⊕ q)μ = T(p, q)μ, p′
μ = J(p,Ω)μ, (1)

whereT(p, q) is the translation of p by another momentum q
(used as parameter of the translation) to the momentum (p⊕
q)μ, and J(p,Ω) are the rotations and boosts, parametrized
by the matrix Ωμν = −Ωνμ.

The isometries are generated by the momentum space vec-
tor fields

T μ = Tμ
λ(k)

∂

∂kλ

, J μν = Jμν
λ(k)

∂

∂kλ

, (2)

which define the deformed symmetry algebra, and are Killing
vector fields of the momentum space metric. Their action on
momenta is

p̃μ = pμ + qνT
ν
μ(p) + Ωρσ J

ρσ
μ(p). (3)

An explicit representation of a maximally symmetric
momentum space metric, in a global Cartesian coordinate
on flat spacetime, is given by

ζμν(k) = ημν + K

(1 − Kηρσ kσ kρ)
ημλkλη

νιkι, (4)

whereη is the Minkowski metric, and the curvature parameter
K is identified with the QG scale by K = ±1/Λ2. The
generators of translations, boosts, and rotations, are

T λ = √
1 − Kημνkμkν

∂

∂kλ

,

J μν = kρ(δ
μ
λ ηνρ − δν

λημρ)
∂

∂kλ

. (5)

They form a de-Sitter or anti-de-Sitter algebra for K posi-
tive or negative, respectively. For K = 0, one recovers the
Poincaré algebra.

The representation of the symmetry generating vector
fields chosen here defines the so-called Snyder algebra DRKs
[12]. Different DRKs are obtained by defining new transla-
tion generators as
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T̃ μ = T μ + cμ
νρ J νρ, (6)

where it depends on the choice of the coefficients cμ
νρ which

kind of DRKs one constructs. These redefinitions of the
translation generators are equivalent to a redefinition of the
momentum composition law associated to them.

For example, the κ-Poincaré algebra is obtained from a de-
Sitter metric when the translation generators form a closed
subalgebra, which means choosing cμ

νρ = δ
μ
ν nρ/Λ [12]1,

where Λ is usually interpreted as a high energy scale and
nρ are the components of a timelike normalized covector
on Minkowski spacetime, ημνnμnν = −1, that can be cho-
sen to be nμ = (1, 0, 0, 0). Explicitly the new generators
of translations in momentum space are easily calculated to
be

T̃ μ = T μ + nρ

Λ
J μρ = T μ + 1

Λ
J μ0. (7)

2.2 Non-commutative spacetime from isometry generators

Before we lift the deformed kinematics to curved spacetime,
we like to point out their relation to non-commutative space-
times.

As demonstrated in the previous section, and shown in
[12], the kinematics of κ-Poincaré [43], Snyder [44], and the
so-called hybrid models [45], can be obtained from the geo-
metrical ingredients of a maximally symmetric momentum
space.

It is straightforward to calculate the commutator relations
between the generators of the isometries (5). They form the
algebra [12,44]

[T α, T β ] = KJ αβ, [T α,J βγ ] = ηαβT γ − ηαγ T β,

[J αβ,J γ δ] = ηβγJ αδ − ηαγJ βδ − ηβδJ αγ + ηαδJ βγ .

(8)

Now we can make the identification of the non-commutative
space-time coordinates with the generators of translations,
viz.

x̄α = T α, (9)

from which we can read the following commutators

[x̄α, x̄β ] = −KJ αβ, [x̄α, kβ ] = δα
β

√
1 − Kημνkμkν,

[x̄α,J βγ ] = ηαβ x̄γ − ηαγ x̄β. (10)

1 The κ-Minkowski algebra can be only obtained from the generators
of a de Sitter momentum space, being impossible to find it for anti-de
Sitter [12].

This phase space corresponds to the Snyder phase-space non-
commutativity [44] and the composition law (defined as the
finite translations) [12]

(p ⊕ q)μ = pμ

(
√

1 − Kqμqνημν − Kpμqνη
μν

(
1 + √

1 − Kpμ pνημν
)

)

+ qμ,

(11)

of the Maggiore representation. Different non-commutative
flat spacetimes can be obtained by a redefinition of the trans-
lation generators, as explained below (6). For example, for
the change to the κ-Minkowski translations (7) one easily
finds

[T̃ α, T̃ β ] = nγ

Λ

(
T̃ αηβγ − T̃ βηαγ

)
,

[T̃ α,J βγ ] = ηαβ T̃ γ − ηαγ T̃ β + nδ

Λ

(
ηδβJ αγ − ηδγJ αβ

)
.

(12)

2.3 Lifting deformed relativistic kinematics to curved
spacetime

To study predictions from deformed relativistic kinemat-
ics on curved spacetimes, such as the existence or absence
of energy dependent time delays in time of arrival mea-
surement of high-energetic photons from cosmological dis-
tances [15,19,20,22,46], photon orbits [24], and other grav-
itational lensing observations [47], it is necessary to extend
the previous discussion to a curved spacetime scenario. For
these observables, curved space-time effects have an essen-
tial influence and cannot be neglected.

Moreover, from the geometrical approach, the step from
flat to curved spacetimes is naturally the next one, since the
gravitational interaction can be described by a curved space-
time geometry. We have seen that the passage from SR to
DSR is depicted by a curved momentum space, so we should
be able to combine both curvatures in order to obtain a defor-
mation of GR. In this way, we would be able to describe
deformed kinematics on a curved spacetime from a geomet-
rical point of view [23,24,26,48–51].

For that aim, we implement the DRKs on curved space-
times by localizing the momentum space geometry to each
point in spacetime.

Conjecture Givena spacetime M equippedwith aLorentzian
metric a with local coordinate components aμν(x), then its
QG scale deformed momentum dependent geometry is deter-
mined by the position dependent momentum space metric
with local coordinate components

gμν(x, k) = aμν(x) + K

(1 − Kaρσ (x)kσ kρ)
aμλ(x)kλa

νι(x)kι. (13)
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In fact, we can decompose the spacetime metric as a func-
tion of the components of a tetrad eμ

ν = eμ
ν(x)of the metric,

i.e., aμν(x) = eμ
αηαβeν

β , so that the previous equation can
be written as

gμν(x, k) = eμ
αηαβeν

β

+ K

1 − Keλ
ιηιεeσ

εkλkσ

eμ
αηαβeλ

βkλe
ν
γ ηγ δeσ

δkσ . (14)

This shows that the curved spacetime and momentum space
metric (13) assumes its flat spacetime form (4) in the frames
of the metric a. Defining k̄α = eμ

αkμ, we can rewrite the
previous expression easily as

gμν(x, k) = eμ
αζαβ(k̄)eν

β . (15)

This is in agreement with what we found in [26].
The generators of isometries on curved spacetime become

space-time dependent and can be obtained from their flat
spacetime counterparts (5), either by a frame transforma-
tion kμ → kνeν

μ of the momenta, or, equivalently, by
the replacement of the flat by the curved spacetime metric
ημν → aμν(x). The DRKs are then defined at each spacetime
point, analogously as they are defined on flat spacetime (1).

General coordinate transformations on momentum space
yield the momentum space geometry which represents DRKs
on curved spacetime in different bases [26,27]. In the new
basis the resulting momentum space metric may not only
depend on a spacetime metric, but in general on further space-
time tensors, such as additional vector fields. In the literature,
often one additional vector field is employed. We will discuss
this possibility again in Sect. 4. The phenomenological con-
sequences may be different, for different bases or different
choices of translations generators, as it is already the case on
flat spacetime.

Alternatively one obtains different DRKs by redefining the
generators of translation, analogously as on flat spacetime,

T̃ μ = T μ + cμ
νρ(x)J νρ, (16)

with the difference that on curved spacetimes the coefficients,
which define the translation generators, may depend on the
space-time point cμ

νρ(x). Hence, there may be space-time
regions where they differ, and even vanish. This gives the
possibility to construct spacetimes with regions where dif-
ferent DRKs are relevant.

To transform the local Snyder algebra (5), for example to
a local κ-Poincaré algebra in the classical basis on curved
spacetimes, one needs to choose cμ

νρ(x) = δ
μ
ν Zρ(x)/Λ,

where Zα(x) = nνeν
α(x) and aρσ (x)Zρ(x)Zσ (x) = −1.

Considering a vector field with compact support, which can
be constructed by multiplication of the components Zα(x) of
any unit timelike 1-form by a function of compact support,

would directly lead to a spacetime with regions of different
DRKs.

In this case then, in the regions where Zσ (x) �= 0, the
translation generators become

T̃ μ = T μ + Zρ(x)

Λ
J μρ. (17)

We introduce this new possibility of equipping spacetimes
with different DRKs in different regions here for the first
time and will investigate it in detail in future work.

Before we continue to study the geometric consistency and
consequences of this just outlined geometric construction for
deformed relativistic kinematics on curved spacetimes in the
next Sect. 3, we like to comment on the interpretation of
the deformed relativistic kinematics as non-commutativity
of spacetime in the curved case.

2.4 Local non-commutative spacetime from isometry
generators on curved spacetimes

On curved spacetimes the generators of isometries in momen-
tum space, at each point of spacetime become,

T λ(x) =
√

1 − Kk2 ∂

∂kλ

, J μν(x) = kρ(δν
λa

μρ − δ
μ
λ a

νρ)
∂

∂kλ

,

(18)

where k2 = kμkνaμν(x), and satisfy

[T α,T β ] = KJ αβ, [T α,J βγ ] = ηαβT γ − ηαγ T β,

[J αβ,J γ δ] = ηβγJ αδ − ηαγJ βδ − ηβδJ αγ + ηαδJ βγ . (19)

On a curved spacetime, the identification of the generators
of translations on-momentum space with the coordinates of a
curved non-commutative spacetime is not as straightforward
as on flat spacetime.

One possibility is to identify again the non-commutative
spacetime with the generators of translations, x̄α(x, k) =
T α(x, k), and again we find (where we suppressed the x-
dependence on J μν = J μν(x)),

[x̄α, x̄β ] = −KJ αβ, [x̄α, kβ ] = δα
β

√
1 − Kk2,

[x̄α,J βγ ] = aαβ x̄γ − aαγ x̄β, (20)

and in this case the composition law ⊕̄ for a generic curved
spacetime reads

(p⊕ q)μ = pμ

⎛

⎝
√

1 − Kq2 − Kp · q
(

1 + √
1 − Kp2

)

⎞

⎠+ qμ,

(21)

where p · q = pμqνaμν(x), p2 = pμ pνaμν(x) and q2 =
qμqνaμν(x).
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This construction would lead to a non-commutative struc-
ture (spacetime) attached to each point of the classical space-
time. As in the flat spacetime case, different local non-
commutative algebras on curved spacetimes can be con-
structed by the redefinition of the translation generators, as
introduced in Eq. (16). The redefinition of the translation
generators can depend on the space-time region, and thus,
it is possible to construct different local non-commutative
structures in different regions on spacetime.

For the κ-Poincaré algebra in the classical basis on curved
spacetimes the generators of translation (17) satisfy

[T̃ α, T̃ β ] = Zγ

Λ

(
T̃ αaβγ − T̃ βaαγ

)
,

[T̃ α,J βγ ] = aαβ T̃ γ − aαγ T̃ β + Zδ

Λ

(
ηδβJ αγ − aδγJ αβ

)
. (22)

Mathematically precise, one can say that the
non-commuting translations on each momentum space at
each point in spacetime define local non-commutativity. In
the flat spacetime case, due to the existence of a global coordi-
nate system, one can identify momentum spaces with space-
time itself globally, and thus the non-commutativity of the
momentum spaces is inherited to the flat spacetime globally.
On a curved spacetime this can only be done locally. Our
approach, starting from the differential geometry of a curved
spacetime and implementing a local non-commutative struc-
ture on its momentum spaces (technically cotangent spaces),
is a complementary approach to the algebraic one, which is
performed for maximally symmetric spacetimes in [39].

We like to point out that, from a classical differential
geometry of curved manifolds point of view, this is a very
natural construction: to deform the local cotangent/tangent
space structure to introduce a new geometric structure on
curved spacetime, such as non-commutativity. And also,
from a physical point of view, the localization of symme-
try algebras is precisely what is done in gauge field theories
in particle physics, and what happens in the transition from
special to general relativity, when one passes from global to
local Lorentz transformations as symmetries of the theory.

Hence, in our opinion, the just outlined approach to non-
commutative curved spacetimes, which starts from a curved
spacetime and localizes a non-commutative structure to each
point of this spacetime, has strong prospects to yield new
insights in the description of quantum deformations of the
Poincaré algebra and non-commutativity on curved space-
times.

The full analysis of this new program will be investigated
in a series of future articles. We start in this article by study-
ing consistency conditions and consequences from deformed
relativistic kinematics on curved spacetimes on the curved
momentum space and spacetime, i.e., curved phase-space
geometry.

3 Consistent phase space geometry, purely from a
momentum space metric

In this section we identify self-consistent momentum space
geometries, which are based on a position dependent momen-
tum space metric, encoding DRKs at each point of spacetime.

We start by summarizing the main geometrical frame-
work to describe the geometry of curved momentum spaces
on curved manifolds consistently, following [25,52]. Math-
ematically speaking, we are looking at the geometry of the
cotangent bundle of a manifold defined by a specific cotan-
gent bundle metric. Physically speaking, we are looking at
the geometry of the point particle phase space.

Afterwards we identify those cotangent bundle geome-
tries, which are compatible with the following two princi-
ples:

1. The dispersion relation of physical point particles is
defined by the minimal geometric distance in momen-
tum space, determined by the momentum space metric.

2. Solutions of the Hamilton equations of motion, deter-
mined by the dispersion relation defining Hamilton
function, are horizontal curves, i.e., they are adapted to
the geometry such that they can be interpreted as force-
free, purely geometrically determined, particle trajec-
tories.

These two principles lead to several compatibility condi-
tions, as has been pointed out in [26,27], which we recall
in Sect. 3.2.

The first principle was originally suggested in the con-
text of relative locality [4]. However, since our starting point
is a maximally symmetric momentum space metric and the
deformed kinematics obtained from it, it actually follows that
any function of the metric distance in momentum space must
be a Casimir element of the deformed relativistic symmetry
algebra given by the isometries of the metric. Thus any of
the Casimir operators can be chosen as mass operator, i.e.,
dispersion relation. Simplicity, and a smooth limit to special
and general relativity, suggests to use the square of the metric
distance [12].

The second point states that the point particle trajecto-
ries shall be compatible with the dispersion relation and the
geometry which is derived from the momentum space metric.

We will investigate explicitly which kind of cotangent
bundle geometries are compatible with these consistency
conditions on a perturbative level in Sect. 3.3, where we find
that only certain position dependent momentum space met-
rics lead to a self-consistent geometry of the cotangent bundle
realizing the two criteria.

All of this geometric analysis is done for general momen-
tum space metrics and prepares the study of the consequences
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for the implementation of DRKs on curved spacetime based
on maximally symmetric momentum spaces in Sect. 4.

3.1 The geometry of the cotangent bundle

To discuss the geometry of a curved spacetime with curved
momentum spaces we need the following notions, see for
example [25,52].

3.1.1 General notions

Let M be a smooth n-dimensional manifold (usually in
physics is chosen as n = 4). At each point p ∈ M one
can consider the cotangent spaces T ∗

p M , whose union over
the whole manifold form the so-called cotangent bundle
T ∗M = ⋃

p∈M T ∗
p M . In the following we will consider

T ∗M in manifold induced coordinates, which are constructed
as follows. A local coordinate chart (U, xμ) on M induces a
local coordinate chart on T ∗U by identifying u ∈ T ∗U with
the coordinates (x, k) obtained from its coordinate expres-
sion u = kμdxμ ∈ T ∗

x U . The cotangent bundle is itself a
2n-dimensional manifold and naturally carries the structure
of a fibre bundle with local fibres R

n , which are identified
with the cotangent spaces T ∗

x M . The bundle projection is
given by π : T ∗M → M; (x, k) �→ x .

The local coordinate bases of the tangent T(x,k)T ∗M and
cotangent spaces T ∗

(x,k)T
∗M of T ∗M will be denoted by

{∂μ = ∂
∂xμ , ∂̄μ = ∂

∂kμ
} and {dxμ, dkμ}, (23)

respectively.
Our aim is to set up a geometry of the cotangent bundle

T ∗M such that at each point a clear split between the base
manifold M (position space) and the cotangent spaces T ∗

x M
(momentum spaces) is ensured. This can be done in a math-
ematical precise way with the help of a so-called non-linear
connection on T ∗M .

3.1.2 The non-linear connection

The tangent and cotangent spaces of T ∗M can be split into
vertical and horizontal subspaces, which are physically inter-
preted as tangent spaces to momentum and position space,
respectively.

The vertical tangent spaces at a point V(x,k) is canon-
ically defined as ker dπ(x,k) and is nothing but the tan-
gent space to the fibre T ∗

x M . In a local coordinate basis
V(x,k) = span

{
∂̄μ

}
. The union of all vertical spaces V =⋃

(x,k)∈T ∗M V(x,k) is called the vertical tangent bundle of
T ∗M .

The whole tangent space T(x,k)T ∗M can then be split into
its vertical part V(x,k) and a complement H(x,k), called the
horizontal tangent space. The union of all horizontal spaces

H = ⋃
(x,k)∈T ∗M H(x,k) is called the horizontal tangent bun-

dle of T ∗M .
The freedom in defining the horizontal space is encoded

in the choice of a connection on T ∗M , defined by local con-
nection coefficients Nνμ(x, k), which are needed to construct
the local basis of H(x,k) = span

{
δμ

}
as

δμ = ∂μ + Nνμ(x, k)∂̄ν . (24)

The main important property of these basis elements, which
defines the transformation behaviour of the non-linear coef-
ficients, is that, under manifold induced coordinate transfor-
mations, they transform tensorial, analogously to the ∂μ basis
of TxM under coordinate changes on the base manifold, i.e.,

x �→ x̃(x) ⇒ δa �→ δ̃μ = ∂̃μx
νδν. (25)

This transformation behaviour makes them basis for so-
called distinguished or d-tensor on T ∗M , which are tensors
on T ∗M whose components behave under manifold induced
coordinate transformations analogously to tensor compo-
nents of tensors fields on the base manifold M .

In summary, with help of a connection one can split the
tangent spaces T(x,k)T ∗M of T ∗M into horizontal and vertical
subspaces

T(x,k)T
∗M = V(x,k) ⊕ H(x,k) = span

{
∂̄μ

} ⊕ span
{
δμ

}
,

(26)

where the vertical space can be identified with the tangent
spaces to T ∗

x M (physically to the momentum spaces) and the
horizontal space can be identified with the tangent spaces to
M (physically to position space). An analogous split for the
cotangent spaces T ∗

(x,k)T ∗M of T ∗M exists and is written as

T ∗
(x,k)T

∗M = V∗
(x,k) ⊕ H∗

(x,k) = span
{
δkμ

} ⊕ span
{
dxμ

}
, (27)

with

δkμ = dkμ − Nνμ(x, k) dxν . (28)

The choice of the connection coefficients defines the
geometry of the cotangent bundle. In general, the Nνμ(x, k)
can have a non-linear dependence on k and are called non-
linear connection coefficients. In the case of the existence
of an affine connection on the base manifold M , defined by
local connection coefficients Γ σ

μν(x), these define linear
connections on T ∗M through the connections coefficients

Nνμ(x, k) = Γ ρ
νμ(x)kρ. (29)

For pseudo-Riemannian manifolds, which are equipped with
a spacetime metric a = aμν(x)dxμ ⊗ dxν , Γ ρ

μν(x) can for
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example be chosen as the Christoffel symbols of the Levi-
Civita connection of a.

3.1.3 The non-linear curvature

Connections immediately lead to the notion of curvature,
which measure the integrability of the tangent spaces and
can be related to the nonlinear connection coefficients, as
we will see in the following. The non-linear curvature of the
non-linear connection is defined as

Rρμν(x, k)∂̄
ρ = [

δμ, δν

] = (
δμNρν(x, k) − δνNρμ(x, k)

)
∂̄ρ . (30)

Physically, this object represents the curvature of spacetime
in phase space and is in general position and momentum
dependent. In case the non-linear connection is linear in the
momenta k, it is related to the Riemann curvature tensor
Rσ

ρμν(x) of an affine connection on the base manifold M

Rρμν(x, k) = kσ R
σ

ρμν(x). (31)

In virtue of Frobenius theorem, the non-linear curvature mea-
sures the integrability of spacetime, i.e., position space, as a
subspace of the cotangent bundle.

3.1.4 The metric and its compatible affine connection

After the discussion of the split of the tangent spaces of
the cotangent bundle into position (horizontal) and momen-
tum (vertical) space parts, a metric on the cotangent bundle,
which defines a position and momentum space metric, can
be defined as

G = gμν(x, k)dx
μdxν + gμν(x, k)δkμδkν . (32)

It makes T ∗M a metric manifold and we can determine met-
ric compatible affine connections on T ∗M . The Levi-Civita
connection of (32) has the drawback that, in general, it does
not respect the horizontal-vertical split of the non-linear con-
nection, i.e., its covariant derivative does not map vertical
vectors to vertical ones, or horizontal vectors to horizontal
ones. However, there exists a metric compatible connection
which does so [25,52]. It is defined by the covariant deriva-
tive operations

∇δμδν = Hσ
μν(x, k)δσ , ∇δμ ∂̄ν = −H ν

μσ (x, k)∂̄σ ,

(33)

∇∂̄μ ∂̄ν = −Cσ
μν(x, k)∂̄σ , ∇∂̄μδμ = Cμ

σν(x, k)δσ ,

(34)

where the affine connection coefficients are given by

Cρ
μν(x, k) = −1

2
gρσ (∂̄μgσν(x, k) + ∂̄νgσμ(x, k)

− ∂̄σ gμν(x, k)), (35)

Hρ
μν(x, k) = 1

2
gρσ (x, k)(δμgσν(x, k) + δμgσμ(x, k)

− δσ gμν(x, k)). (36)

In our later discussion, two sets of curves will be of physical
importance:

– Vertical autoparallels of this metric compatible affine
connection, i.e. curves γ (τ) = (x0, k(τ )) satisfying
∇γ̇ γ̇ = 0, are solutions of the equations

k̈μ − Cμ
νσ (x, k)k̇ν k̇σ = 0. (37)

They will define the distance in momentum space from
which the dispersion relation is obtained.

– Horizontal autoparallels are curves γ (τ) = (x(τ ), k(τ ))

characterized by the horizontality condition

δk̇λ = k̇λ − Nσλ(x, k)ẋ
σ = 0, (38)

and the autoparallel equation

ẍμ + Hμ
νσ (x, k)ẋν ẋσ = 0. (39)

They define force-free particle motion along spacetime
and will be satisfied by solutions of the Hamilton equa-
tions of motion defined by the dispersion relation.

3.2 Mathematical realization of the principles

We introduced all the notions needed to cast the two princi-
ples, which are listed at the beginning of Sect. 3 in a precise
mathematical statement. They imply non-trivial constraints
on the cotangent bundle geometry in case the distance in
momentum space, which is interpreted as dispersion relation
of the point particles, is not a homogeneous function in the
momenta.

3.2.1 The Hamilton function and the dispersion relation

Our first principle states that the dispersion relation is given
by the geodesic distance in momentum space between the
origin and a given momentum k, defined by the momentum
space metric.
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Consider a momentum space curve k(τ ) with k(0) = 0
and k(τ1) = k. For these curves, the geometric length mea-
sure defined by the metric on momentum space is

D(x, k) =
∫ τ1

0
dτ

√
gμν(x, k(τ ))k̇μ(τ)k̇ν(τ ). (40)

Then, to extremize this length measure, it turns out that k(τ )

has to satisfy

k̈μ + 1

2
gμσ (x, k)(∂̄ρgσλ(x, k) + ∂̄λgσρ(x, k)

− ∂̄σ gρλ(x, k))kρkλ = 0, (41)

which means that k(τ ) is a vertical autoparallel, see (37).
The dispersion relation defining Hamilton function

C(x, k), or mass Casimir operator of a symmetry algebra,
can be identified with the square of the geometric distance
C(x, k) = D(x, k)2, as has been shown in [27]. In fact,
as commented in Sect. 3, any function of f (D(x, k)) is a
Casimir of the symmetry algebra obtained from the momen-
tum space isometries. The identification with the square of
the distance was considered as the simplest way to have a
smooth limit to special and general relativity.

In [26,53], it has been demonstrated that, to determine the
expression for C(x, k), one can solve the following differen-
tial equation instead of solving the integral (40) explicitly,

C(x, k) = 1

4
∂̄μC(x, k)gμν(x, k)∂̄

νC(x, k). (42)

This equation is the first necessary condition which relates
the dispersion relation and the momentum space metric. It is
valid on flat, as well as, on curved spacetime.

The Hamilton function then defines the dispersion rela-
tion, the position and momentum of a physical particle have
to satisfy

C(x, k) = m2. (43)

3.2.2 Particle motion

The second principle states that the Hamilton equations of
motion determined by the dispersion relation defining Hamil-
ton function,

k̇μ + ∂μC(x, k) = 0, ẋμ = ∂̄μC(x, k), (44)

shall be horizontal curves, so that they are adapted to the
geometry and can be interpreted as force-free, purely geo-
metrically determined, particle trajectories. The first Hamil-
ton equation of motion can be rewritten in terms of the non-

linear connection to take the form

k̇μ − Nνμ(x, k)∂̄νC + δμC(x, k) = 0. (45)

Comparing this equation with the horizontality condition
(38) it is clear that solutions of the Hamilton equations of
motion are horizontal curves if and only if the Hamiltonian
satisfies

δμC(x, k) = 0. (46)

This condition connects the non-linear connection with the
Hamiltonian and, in the virtue of (42), with the momentum
space metric.

For Hamilton functions which are positively r -
homogeneous in k, i.e. H(x, λk) = λr H(x, k), with λ > 0,
this condition can always be satisfied for a specific choice
of a canonical non-linear connection, which always exists
and is uniquely constructed from the Hamiltonian alone, as
it is known from the framework of Hamilton geometries (see
[23,25]). Hence, there always exists a self consistent geome-
try of to cotangent bundle for position dependent momentum
space metrics, which leads via (40) and (42) to homogeneous
Hamiltonian functions, that automatically encode force-free,
pure geometric particle motion. In general, if the resulting
Hamiltonian is not homogeneous, this is not the case. Then,
(46) is a non-trivial constraint which can be used to determine
parts of the non-linear connection from the momentum space
metric. In the framework of generalized Hamilton spaces,
whose geometry is based on a position dependent momen-
tum space metric (without any use of the Hamiltonian), a
general solution for a non-linear connection such that (46) is
satisfied is not known.

Evaluating (46) on the first condition (42) implies imme-
diately another consistency constraint, which is

Hρ
μν(x, k) = ∂̄ρNμν(x, k). (47)

It connects the affine connection coefficients Hρ
μν(x, k) on

T ∗M with the more fundamental non-linear connection coef-
ficients Nμν(x, k). Using this additional constraint in the sec-
ond Hamilton equation of motion, ẋμ = ∂̄μC, implies the
horizontal geodesic Eq. (39).

The geometric construction presented so far makes the
solutions of the Hamilton equation of motion horizontal
autoparallels of the metric compatible affine connection, as
has also been shown in [27].

In the following, we use a perturbative ansatz for the
momentum space metric to determine the consequences from
the compatibility constraints on the metric. If the momen-
tum space metric components gμν(x, k) are independent of
k, both conditions (46) and (47) are satisfied for non-linear
connection coefficients (29), which are generated by the
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Christoffel symbols of the Levi-Civita connection that are
derived from the metric components gμν(x, k) = aμν(x).
We will show that this is not the only possible solution,
but that there exists k-dependent momentum space metrics
which satisfy (46) and (47). However, among all possible
momentum space metrics which one may consider, in par-
ticular among those which are employed to encode DRKs, it
turns out that only specific classes satisfy the constraints.

3.3 n-th order polynomial perturbative cotangent bundle
geometry from a metric

Deformations of the kinematics of high-energetic particles
are expected to become relevant for particles of an energy
near a high energy scale Λ, for example the Planck scale in
the context of quantum gravity. To study such modifications,
we make a first order perturbative expansion for the geomet-
ric objects involved that is polynomial in the momenta. We
evaluate the compatibility conditions which relate the metric
and the Hamiltonian (42) as well as the non-linear- and the
affine connection, (46) and (47).

The parameter ε below is a perturbation parameter which
labels the first order non-vanishing deformation of the quan-
tity under consideration. In the context of DRKs the defor-
mation parameter is given by ε = 1

Λq , where q denotes the
order of the polynomial deformation.

For the momentum space metric we use

gμν(x, k) = aμν(x) + εbμν(ρ1···ρn)(x)kρ1 · · · kρn , (48)

whose inverse (indices are raised and lowered with the zeroth
order metric components aμν and aμν , respectively) is given
by

gμν(x, k) = aμν(x) − εbμν
(ρ1···ρn)(x)kρ1 · · · kρn , (49)

and the Hamiltonian will be expressed as

C(x, k) = kμkν

(
A(μν)(x) + εB(μνρ1···ρn)(x)kρ1 · · · kρn

)
.

(50)

For the nonlinear connection coefficients we use an ansatz of
the form

Nμν(x, k) = kσ

(
Γ σ

μν(x) + εXμν
(σρ1···ρn)(x)kρ1 · · · kρn

)
.

(51)

Hereaμν(x) is a Lorentzian spacetime metric, as employed
in general relativity, and Γ σ

μν(x) are the affine connec-
tion coefficients of its Levi-Civita connection. The A(μν)(x)
components define the zeroth order Hamilton function, a

priori independently of the metric. The space-time ten-
sor fields bμν(ρ1···ρn)(x), B(μνρ1···ρn)(x) and Xμν

(σρ1···ρn)(x)
parametrize the perturbations from Lorentzian spacetime
geometry.

In the following we determine relations between these
tensor fields from the conditions (42), (46) and (47). For the
sake of readability we omit to display the x dependence of
the spacetime tensors explicitly in the following calculations,
wherever the dependence of the objects involved should be
clear from the context.

3.3.1 Compatibility between Hamiltonian and metric

Let us first study the condition (42). Expanding this expres-
sion to first order in ε yields

aμνkσ kαA
μσ Aνα (52)

+ ε
(
aμν A

μσ (n + 2)B(ναβ1...βn)kαkσ kβ1 . . . kβn

−Aμσ Aναbμν
(λ1...λn)kλ1 . . . kλn kσ kα

)

= kμkν

(
A(μν) + εB(μνρ1···ρn)kρ1 · · · kρn

)
, (53)

which determines the coefficients in the Hamiltonian from
the metric coefficients order by order. Equating the powers
in the polynomial in k yields at zeroth order

A(μν) = aμν, (54)

while the first order implies

B(μνρ1···ρn) = 1

n + 1
b(μνρ1···ρn). (55)

3.3.2 Compatibility between the non-linear connection and
the Hamiltonian

Having obtained the Hamiltonian from the metric, we expand
(46), which, in turn, intertwines the non-linear connection
coefficients and the components of the metric. Expanding
(46) to first order in ε and using (51) yields

Xμλ
(σρ1...ρn)A(λν)kνkσ kρ1 . . . kρn

= −1

2
∇̊μB

(σνρ1···ρn)kνkσ kρ1 . . . kρn , (56)

where ∇̊ denotes the covariant derivative defined by the Levi-
Civita connection of the metric a.

In order for this equation to be satisfied, using (54) and
(55), we find that

Xμ
(νσρ1...ρn)(x) = − 1

2(n + 1)
∇̊μb

(σνρ1···ρn)(x). (57)
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3.3.3 Compatibility between nonlinear connection and the
affine connection

To investigate the condition (47), which imposes a relation
between the non-linear and affine connection coefficients on
the tangent bundle, we first note that

δσ gμν(x, k) = ∂σaμν − ε(∇̊σbμν
(ρ1...ρn)

+ Γ λ
μσbλν

(ρ1...ρn) (58)

+ Γ λ
νσbλμ

(ρ1...ρn))kρ1 . . . kρn , (59)

allowing us to express the affine connection coefficients (36)
as

Hσ
μν(x, k)=Γ σ

μν − 1

2
aσλ(∇̊μbλν

(ρ1...ρn)+∇̊νbλμ
(ρ1...ρn)

(60)

− ∇̊λbμν
(ρ1...ρn))kρ1 . . . kρn . (61)

The k-derivative of the non-linear connection coefficients
(51) yields

∂̄σ Nμν(x, k) = Γ σ
μν(x) + (n + 1)εXμν

(σρ1···ρn )(x)kρ1 · · · kρn . (62)

Now, by imposing condition (47) one gets

Xμν
(σρ1···ρn)kρ1 . . . kρn = − 1

2(n + 1)
aσλ(∇̊μbλν

(ρ1...ρn)

+ ∇̊νbλμ
(ρ1...ρn) (63)

− ∇̊λbμν
(ρ1...ρn))kρ1 . . . kρn . (64)

By contraction with kσ and kν , one finds that this equation
actually implies the compatibility (57) we found earlier.

Equation (64) imposes an important constraint on the met-
ric perturbation tensor b. Only those tensors b which satisfy
this constraint lead to a cotangent bundle geometry, which
satisfies the principles listed in the beginning of Sect. 3. Since
the left hand side is symmetric in the exchange of ρi and σ ,
the right hand side must also satisfy this symmetry condition,
which is not guaranteed for an arbitrarily chosen b.

To classify in general for which bλν
(ρ1...ρn) the constraint

(64) does not lead to a contradiction, is beyond the scope
of this article. Certainly, there exist consistent momentum
dependent perturbations of metric spacetime geometry, as
for example

bμνρ = aμρaνσ ∂σ φ + aνρaμσ ∂σ φ, (65)

for n = 1 demonstrates. It leads to Xμν
σρ = − 1

2a
σρ∇μ∂νφ

and the index symmetries of both sides of the equations
match. This is not always the case, as we will see next.

4 Deformed relativistic kinematics on curved spacetime
with consistent cotangent bundle geometry

In this section we will study the consequences from the com-
patibility conditions (42), (46), and (47), for cotangent bun-
dle metrics which encode DRKs, in the sense discussed in
Sect. 2.

This means we consider a maximally symmetric momen-
tum space metric on a flat spacetime with components
ζμν(k), which is lifted to a cotangent bundle metric with the
help of the tetrads eμ

α(x) of a Lorentzian spacetime metric
a (aμν(x) = ηαβeμ

α(x)eν
β(x)) by the mapping

ζμν(k) → gμν(x, k) = ζ αβ(k̄(k))eμ
α(x)eν

β(x) (66)

where k̄α = eμ
αkμ, as it was already mentioned in (15). In

general, the cotangent bundle metric depends on the tetrad
one chooses.

Different momentum space bases of DRKs are encoded
in different momentum space metrics, which thus lead to
different cotangent bundle metrics. For the majority of the
models studied in the literature, the momentum space metric
is constructed from the Kronecker delta δ

μ
ν , the Minkowski

metric ημν , and a vector field with constant components nν ,
where often n is chosen as nμ = (1, 0, 0, 0) [54], in order
to obtain an isotropic (rotational invariant) momentum space
metric and thus isotropically deformed kinematics. In the
following, we study the consequences for such models.

We will see that only certain DRKs lead to cotangent bun-
dle metrics, which define a self-consistent cotangent bundle
geometry, i.e., which satisfy the constraints (46) and (47).

4.1 Constraints on the momentum coordinates for
deformed relativistic kinematics on curved spacetime

The position dependent momentum space metric for a DRKs
model under consideration can be expanded into the polyno-
mial form (48), which yields a specific perturbation tensors
bμν(ρ1...ρn). Using the construction (15), one finds the fol-
lowing relation

bμν
(ρ1···ρn)(x) = eα

μ(x)eβ
ν (x)eρ1

γ1
(x) · · · eρn

γn
(x)b̄αβ

(γ1···γn),
(67)

where b̄αβ
(γ1···γn) is constructed from the Kronecker delta δ

μ
ν ,

the Minkowski metric ημν , and a vector field with constant
components nμ, which is often chosen as nμ = (1, 0, 0, 0).
Eq. (67) entails that bμν

(ρ1···ρn)(x) is constructed from the
space-time metric a, the Kronecker delta δ

μ
ν and a vector

field Z = Zμ∂μ = eμ
σ (x)nσ ∂μ, for the models we are

interested in, in this section.
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For the most prominent models in the literature we list the
perturbation tensors and evaluate the compatibility condition
(64).

– The κ-Poincaré algebra in the bicrossproduct basis [12,
55] on curved spacetime

bμνρ = 2aμν Zρ + 2Zν Zρ Zμ. (68)

Evaluating (64) for this case yields

Xμν
(σρ) = 1

2

(
δρ
ν ∇̊μZ

σ + δρ
μ∇̊ν Z

σ − aμν∇̊ρ Zσ (69)

+∇̊μ(Zν Z
ρ Zσ ) + ∇̊ν(ZμZ

ρ Zσ ) − ∇̊ρ(Zν ZμZ
σ )

)
.

(70)

The way the perturbation is constructed the left hand side
must be symmetric in its upper indices, but the right hand
side of the equation is clearly not symmetric in σ and ρ.
Thus, the κ-Poincaré algebra DRKs in the bicrossproduct
basis cannot be consistently lifted to curved spacetime,
with the procedure based on the momentum space metric,
which we discussed so far.

– The Snyder algebra in the Maggiore realization [44] and
theκ-Poincaré algebra in the classical basis [56] are based
on a momentum space metric which we presented in (13)
[12]. It leads to

bμν(ρ1ρ2) = 1

2
(aμρ1aνρ2 + aμρ2aνρ1). (71)

This deformation tensor immediately satisfies (64) since
it is covariantly constant, i.e. ∇̊σbμν(ρ1ρ2) = 0 holds,
and hence, these DRKs can be lifted to curved spacetime
with the algorithm we presented, leading to a vanishing
Xμν

σρ1ρ2 .
– In [27] we found a particular momentum basis for the

DRKs, which leads to the following tensor field

bμν(ρ1ρ2) = −1

2
aμνaρ1ρ2 . (72)

By the same argument used in the previous example,
∇̊σbμν(ρ1ρ2) = 0, implying that (64) is automatically
satisfied, being zero.

In general, a covariantly constant perturbation tensor for
which ∇σbμν(ρ1...ρn) = 0 is viable. As demonstrated by the
first example of κ-Poincaré, Eq. (64) is not satisfied by a
generic vector field Zμ on any curved spacetime, i.e., for any
space-time tetrad. There may exist particular spacetimes with
high symmetry, for which there exist tetrads such that (64)
can be satisfied. This however would lead to the fact that
the DRKs under consideration cannot be implemented on

generically curved spacetimes for a generic tetrad. Note that
the non-trivial example displayed in (65), which leads to a
consistent solution of (64), does not appear as perturbation
tensor in the class of DRKs models under consideration.

To ensure that (64) holds for any choice of spacetime
tetrad, for the perturbations we consider in this section, one
needs that the tensor field bμν(ρ1...ρn) is covariantly constant.
This means that it is constructed from the components of
the space-time metric aμν or the Kronecker delta δ

μ
ν alone,

and that the components of the distinguished vector field Zμ,
which cannot be covariantly constant for every possible tetrad
from which it may be constructed, cannot appear. Thus, in
the context of DRKs, the most general bμν(ρ1...ρn) satisfying
(64) on any spacetime for any tetrad has the following form

b (ρ1···ρn)
μν = b1aμνa

(ρ1ρ2 . . . aρn−1ρn ) + b2δ
(ρ1
μ δρ2

ν aρ3ρ4 . . . aρn−1ρn),

(73)

where b1 and b2 are constants. Implications are that the poly-
nomial power counting index n = 2N must be even, and that,
when we use (73) in (48), the hole perturbatively deformed
momentum space metric can be written as

gμν(x, k) = aμν(x) f1

(
k2

Λ2

)
+ 1

Λ2 kμkν f2

(
k2

Λ2

)
, (74)

where k2 = aμν(x)kμkν , and the perturbation functions are
f1 = 1 + εb1(k2)N and f2 = εb2(k2)N−1 with ε = 1

Λ2N .
For such a metric, the corresponding non-linear connec-

tion coefficients are actually linear in the momenta and
defined solely by the Christoffel symbols of the metric a,
see (51). Consequently, by Eq. (47), the affine connection
coefficients are identical to the Christoffel symbols of the
Levi-Civita connection of the metric a, and the horizontal
part of the cotangent bundle geometry reduces to the usual
Lorentzian metric space-time geometry defined by the met-
ric.

However, at each point on spacetime, the cotangent
spaces/momentum spaces still posses a non-trivial geom-
etry determined by the metric (74), which simultaneously
encodes DRKs on – and local Lorentz invariance of – the
curved space-time geometry.

Our perturbative analysis of the geometric consistency
conditions (which were derived from the principles on the
cotangent bundle geometry) shows that DRKs models cannot
be lifted to arbitrary curved spacetimes for any momentum
basis. Indeed, we find that this lift can be done only with a
momentum space basis leading to a local momentum space
metric which is local Lorentz invariant, i.e., its lift to the
cotangent bundle does not dependent on the tetrad chosen.
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4.2 Local Lorentz invariance as guiding principle

Our findings from the perturbative analysis lead to the con-
jecture of another guiding principle for the construction
of deformed relativistic kinematics on curved spacetimes.
As already mentioned several times, for general momen-
tum space metrics, the lifting procedure to curved space-
times leads to different cotangent bundle metrics for dif-
ferent tetrads. Given two tetrads eμ

α(x) and êν
β(x) =

Λν
σ (x)eσ

β(x) of a spacetime metric a, where Λν
σ (x) is

a local Lorentz transformation,

gμν
e (x, k) = eμ

α(x)eν
β(x)ζμν(k̄(k)) �= gμν

ê (x, k)

= êμ
α(x)êν

β(x)ζμν(k̂(k)). (75)

If we now demand that gμν
e (x, k) = gμν

ê (x, k), i.e., that for a
given momentum space metric the lifting procedure to curved
spacetime is independent of the tetrad, this yields that the
cotangent bundle metric is a function of k2 = aμν(x, k)kμkν

and that the components must be given by

gμν(x, k) = aμν(x)h1

(
k2

Λ2

)
+ 1

Λ2 k
μkνh2

(
k2

Λ2

)
, (76)

where the functions h1 and h1 can, in principle, be general
functions in k2. A quick calculation shows that for these
metrics, in general, the conditions (42), (46) and (47) are
satisfied.

– Equation (42) can be solved explicitly for any metric of
the form of (76). Since this metric is a function of k2,
the Hamiltonian will also be. Being the square of the
metric distance in momentum space, it shares the same
symmetries. The generators of the isometries for the met-
ric (76) contain the generators of the usual undeformed
linear Lorentz transformations, hence also the Hamilto-
nian must be invariant under these, and thus it can only
depend on linear Lorentz invariant terms, i.e., on k2. With
this, evaluating (42) yields

4C(x, k) = ∂̄μC(x, k)gμν(x, k)∂̄
νC(x, k)

= 4

(
∂C
∂k2

)2

kρa
μρ(x)kσ a

νσ (x)gμν(x, k)

= 4

(
∂C
∂k2

)2 (
k2h1

(
k2

Λ2

)
+ (k2)2

Λ2 h2

(
k2

Λ2

))
. (77)

The previous differential equation leads to the following
expression for the dispersion relation defining Hamilton
function

C(x, k) =
(

1 + 1

2

∫ k2

1

Λ
√

α(Λ2h1(α/Λ2) + αh2(α/Λ2))
dα

)2

.

(78)

– Evaluating Eq. (46) for a Hamilton function C(x, k) =
C(k2) implies that the non-linear connection coefficients
must be of the form Nμν(x, k) = Γ ρ

μνkρ . To see this
we write

δμC(k2) = ∂k2C(k2)δμk
2

= ∂k2C(k2)(kρkσ ∂μa
ρσ + 2kνa

νσ Nνμ) = 0,

(79)

and hence, for a non-trivial Hamilton function the bracket
must vanish. Taking another k-derivative of the bracket
implies

2kσ ∂μa
λσ + 2aλσ Nμν + 2kνa

νσ ∂̄λNνμ = 0. (80)

Contracting (80) with kμ and using the symmetry of Nμν

and (79) implies that ∂̄λNνμ(x, k) must be independent
of k and can thus be written as Nμν(x, k) = Γ ρ

μνkρ .
Plugging this expression again into (79) and (80) yields
that the coefficients Γ ρ

μν must be exactly the Christoffel
symbols of the Levi-Civita connection of the metric a, as
it is used in general relativity.

– With the findings from Eq. (46), Eq. (47) is satisfied,
since for the metric (76)

δσ gμν(x, k) = h1

(
k2

Λ2

)
∂σaμν(x, k) (81)

+ 1

Λ2 h2

(
k2

Λ2

)
kλ

(
Γ λ

μσ (x)kν + Γ λ
νσ (x)kμ

)
,

(82)

holds. Then, using this in the definition of the spacetime
affine connection (36) one can easily find that

Hλ
νσ (x, k) = Γ λ

νσ (x). (83)

With this we show the compatibility conditions of
Eqs. (36) and (47).

Thus, demanding the lifting procedure of DRKs encod-
ing momentum space metrics ζμν(k) to curved spacetime
to be independent of the choice of spacetime tetrad, self-
consistent cotangent bundle geometries (in the sense that they
satisfy the principles listed in the beginning of Sect. 3) must
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be linearly local Lorentz invariant. The resulting space-time
geometry (horizontal cotangent bundle geometry) is identical
to the metric space-time geometry determined by the space-
time metric a whose tetrads e were used for the lifting pro-
cedure. The momentum space geometry (vertical cotangent
bundle geometry) is maximally symmetric and determined
at each space-time point by (76). Therefore, we call the self-
consistent cotangent bundle geometry defined by the metric
gμν(x, k) = eμ

α(x)eν
β(x)ζμν(k̄(k)) the ζμν induced quan-

tum deformation of the spacetime (M, a).

5 Conclusions

Starting from first principles we studied how deformed rel-
ativistic kinematics can be implemented consistently on
curved spacetimes in terms of a locally maximally symmet-
ric geometry of the cotangent bundle. Our starting point were
three assumptions. The first we identified in Sect. 2.3, while
the other two we formulated as principles in the beginning of
Sect. 3. We cast this assumptions into precise mathematical
conditions using the framework a cotangent bundle geometry
derived from a cotangent bundle metric which respects the
horizontal/vertical (spacetime/momentum space) split, see
Sec.s 3.2.

In summary our results are based on the following starting
points:

1. Given deformed relativistic kinematics encoded in a
momentum space metric ζ(k) = ζμν(k)dkμ ⊗ dkν

on flat spacetime, its lift to a curved spacetime with
metric a(x) = ημνeμ

α(x)eν
β(x)dxα ⊗ dxβ is given

by g(x, k) = gμν(x, k)δkμ ⊗ δkν where the com-
ponents gμν(x, k) = eμ

α(x)eν
β(x)ζ αβ(k̄) are gener-

ated from a tetrad eμ
α(x) of the metric a and the flat

spacetime momentum space metric ζ(k̄) evaluated at
k̄μ = eα

μ(x)kα , see (15).
2. The dispersion relation C(x, k) = m2 of physical point

particles is defined by the minimal geometric distance
in momentum space, which is defined by the momen-
tum space metric through the relation 4C(x, k) =
∂̄μC(x, k)gμν(x, k)∂̄νC(x, k), see (42).

3. Solutions of the Hamilton equations of motion, deter-
mined by the dispersion relation defining Hamilton
function C(x, k), are horizontal curves, i.e., they are
adapted to the geometry such that they can be inter-
preted as force-free, purely geometrically determined,
particle trajectories. Mathematically, this lead to the
conditions δμC(x, k) = 0 for the Hamilton function
and Hρ

μν(x, k) = ∂̄ρNμν(x, k) for the non-linear and
affine connection on T ∗M , see Eqs. (46) and (47).

Evaluating the constraints on a momentum dependent per-
turbation of metric space-time geometry encoded into a per-
turbation tensor b in Sect. 3.3.3, we found that in particular
point 3. leads to a strong constraint on the perturbation.

In Sect. 4 we considered flat momentum space metrics
constructed from the Minkowski metric η, the identity matrix
δ and a vector field n with constant coefficients in a global
Cartesian coordinate system, as they appear in the geometric
description of the most studied DRKs in the literature. We
found that they can be lifted to curved spacetimes in accor-
dance with the points 1.–3. if there exists a momentum space
basis such that the momentum space metric actually does
not depend on the vector field n; in other words, if the DRKs
are linear local Lorentz invariant. For such momentum space
metrics, the horizontal geometry of the cotangent bundle, i.e.,
the geometry of spacetime, is identical to Lorentzian met-
ric spacetime geometry on which general relativity is based,
however the vertical geometry of the cotangent bundle, i.e.,
the momentum space geometry, is non-trivial. Consequently
the phenomenology of these DRKs in the 1-particle sector is
indistinguishable from general relativity and the non-trivial
momentum space geometry on curved spacetime will only
manifest itself in multi-particle processes. The precise phe-
nomenology depends on the choice of translations genera-
tors, which define the modified law of momentum addition
and the modified dispersion relation through the metric. This
result should not be discouraging from the phenomenologi-
cal point of view, but rather the opposite. The here presented
geometrical approach to DRKs avoids the rather strong con-
straints, based on time delays of massless particles, and shows
a path towards DRKs on curved spacetimes which are com-
patible with a high-energy deformation scale of TeV, as it has
been discussed in the literature [21,57–60].

In addition to the geometric considerations, we have
addressed in Sects. 2.2 and 2.4 that the non-commutativity of
spacetime can be derived by the identification of translations
generators in momentum space with non-commutative coor-
dinates: globally on flat spacetime, locally on curved space-
times. We have studied the particular cases of local Snyder
and κ-Minkowski non-commutative structures. The further
intensive investigation of this new conjecture how to describe
non-commutative spacetimes from the differential geomet-
ric, curved spacetime perspective, as well as the construction
of other models, like κ-Poincaré, is left for future works.

In the future it will be interesting to derive multi-
particle scattering processes on curved spacetimes, to iden-
tify observables in which the DRKs on curved spacetimes we
identified manifest themselves. One such process is for exam-
ple the famous collisional Penrose process on Kerr spacetime,
which certainly will be effected by DRKs.

We like to point out that surely there exits further self
consistent curved momentum space geometries on curved
spacetimes. In particular, another way to construct a consis-
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tent cotangent bundle geometry for DRKs on curved space-
time is not to insist on δμC = 0, which would immediately
circumvent our conclusion. This would imply that the Hamil-
ton equations of motion will not lead to geodesic motion but
include a force-like term. A possible interpretation would
be that particles subject to DRKs of this type feel an effec-
tive force, a remnant of the underlying fundamental theory of
quantum gravity, which prevent point particles from geodesic
motion.

A huge class of cotangent bundle geometries which lead
to, or are derived from, a homogeneous Hamilton function
satisfy the δμC = 0 part of principle 3. automatically, as
it is know from the framework of Hamilton geometry [23,
25]. Then, it depends on whether the Hamilton function is
derived from a momentum space metric or not, whether the
connections have to satisfy Hρ

μν(x, k) = ∂̄ρNμν(x, k) or
not. This class of geometries is in principle as preferable as
the ones we identified in this article, however it is not clear if,
or under which conditions, they encode self-consistent DRKs
including a compatible deformed addition of momenta.

The same is true for the class of consistent cotangent
bundle geometries that simply satisfy the constraints (46)
and (47), of which we already presented an example gener-
ated by a non-constant scalar field on spacetime in (65).

A next step in the analysis of the relation between self-
consistent cotangent bundle geometries and DRKs is under
which conditions, or how, the latter two geometries just men-
tioned can lead to self-consistent DRKs. Moreover, an open
question to be investigated is if it is possible to construct
DRKs from an arbitrary momentum metric on the cotangent
spaces, and not only from maximally symmetric ones. The
main difficulty to be overcome here lies in how to construct
consistent deformed relativistic addition of momenta, when
the momentum space metric has neither quasi-translations
nor Lorentz-transformations as isometries. While in Ref. [12]
it was developed the simplest way to obtain a DRK from
is a maximally symmetric momentum space, an idea to go
beyond that is to start from a momentum space with more
than four dimensions. In this case new generators should
appear, and therefore, there would not be a so simple identi-
fication with the kinematical ingredients as explained here.
Furthermore, in upcoming works, we will investigate pos-
sible dynamics for cotangent bundle geometries, and under
which conditions they are identical to the Einstein equations
or lead to modified theories of gravity.

With this article we systematically identified paths to lift
DRKs to curved spacetimes and discussed the possibilities to
describe them by a self-consistent cotangent bundle geome-
try.
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