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Abstract Tidal deformability of a star in the presence of
an external tidal field provides an important avenue to our
understanding about the structure and properties of neutron
stars. The deformation of the star is characterized by the tidal
Love number (TLN). In this paper, we propose a technique
to measure the TLN of a particular class of compact stars.
In particular, we analyze the impact of anisotropy and com-
pactness on the TLN.

1 Introduction

Compact objects provide extreme conditions in terms of grav-
ity and density and thus are unique astrophysical laboratories
for studying general relativity and interactions at the super
nuclear density. In general, compact objects exist in bina-
ries comprising either two neutron stars (NS–NS binaries)
or a black hole (BH) and a neutron star (NS) (BH–NS bina-
ries). The merger of these objects generates huge gravita-
tional waves which have been experimentally verified in the
recent times.

A neutron star provides a perfect place for investigating
the nature of particle interactions at very high densities in a
natural way [1]. Neutron stars (NS) are compact objects of
very high energy density having approximate masses 1.5 M�
and radii 105 times smaller than the Sun’s radius. Therefore,
they are perfectly natural systems to study nuclear matter
properties at high densities. In fact, density inside the core
of an NS can be as high as several times the density that is
reached inside a heavy atomic nucleus [2]. Despite attempts
of several decades, we still lack a proper understanding of
the thermodynamical behaviour inside a compact star. The
extreme conditions at the interior of a compact star compris-
ing matter of uncertain composition have prompted many

a e-mail: shyam_das@associates.iucaa.in
b e-mail: parida.bikram90.bkp@gmail.com
c e-mail: rsharma@associates.iucaa.in (corresponding author)

investigators to study its gross macroscopic properties within
the framework of General Relativity. In order to understand
the microscopic properties, physical quantities such as NS
masses and radii have been used as important tools to con-
strain its EOS.

This article explores the possibility of introducing tidal
deformation as one of the astrophysically observable macro-
scopic properties that can be used to study the interior of
a NS [3]. Like any other extended object, a NS is tidally
deformed under the influence of an external tidal field. The
tidal deformability measures the star’s quadrupole deforma-
tion in response to a companion perturbating star [4]. The
induced quadrupole moment of the neutron star affects the
binding energy of the system and increases the rate of emis-
sion of gravitational waves [5–7]. Tidal deformability plays
an important role in the observation of coalescing NS with
gravitational waves and has been used to probe the internal
structure of NS. The TLN characterizes how easy or difficult
it would be to deform a NS away from sphericity [8,9]. The
TLN can be computed by following the standard methods
available in the literature [10–14].

The tidal behaviour of a NS has been observed to have a
direct bearing on the emitted gravitational wave signal. The
advanced LIGO [15] and advanced Virgo [16] gravitational-
wave detectors have made their first observation of a binary
NS inspiral [17], an event known as GW170817. Subse-
quently, another signal emitted during a neutron star binary
coalescence, known as GW190425, was detected. The latter
signal was much weaker than GW170817 as it was originated
from a much greater distance [18]. Such observational data
can be used to constraint many physical properties of NS
such maximum masses and radii [19–29]. In particular, the
LIGO observational data may lead to the theoretical insight
into the TLN [17].

In gravitational wave astronomy, the tidal deformability
characterized by TLN [10], can be used to analyze the phys-
ical features of the merging objects [30]. The TLN, in par-
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ticular, is used to constrain the EOS of the NS [28,30]. To
understand the methods of estimating the TLN, we refer to
the citations [14,31–33]. The algorithm can also be extended
to slowly rotating extended compact objects [33–38]. Note
that even though the TLN of a Schwarzschild black hole is
zero [31,32,39–41], it does not vanish for a Kerr BH [42].
For relatively less compact objects, the dominant contribu-
tion to the tidal deformability comes from the even parity
quadrupole term l, which starts to impact the phase of the GW
signal emitted in a binary at the fifth post-Newtonian (5PN)
order [43]. The leading order (6PN) term of even-parity tidal
deformability has also been calculated [44]. A method to cal-
culate the odd-parity (or gravitomagnetic or mass-current)
tidal deformability was proposed independently by Damour
and Nagar [31] and Binnington and Poisson [32]. The choice
of fluid properties also affects the odd-parity tidal deforma-
bility [33] as shown by Pani et al. [45]. The pioneer in this
field was Yagi [46] who, for the first time, estimated the
impact of odd-parity tidal deformability on the gravitational
waves phase evolution and then extended the work by ana-
lyzing the signal from GW170817 [47].

In this paper, we develop a method to estimate the TLN
for a spherically symmetric and anisotropic relativistic star in
static equilibrium. In a compact object, pressures may be dif-
ferent in radial and transverse directions and the difference of
radial pressure (pr ) and tangential pressure (pt ) is defined as
pressure anisotropy. Incorporating anisotropy into the mat-
ter distribution of compact objects, numerous anisotropic
stellar models have been developed and investigated which
include the investigations carried out in references [48–72]
and Raposo et al. [73]; amongst others. Ruderman [74] and
Canuto [75] have shown that anisotropy may develop inside
highly dense, compact stellar objects due to a variety of fac-
tors. Kippenhahn and Weigert [76] showed that in relativis-
tic stars, anisotropy might occur due to the existence of a
solid core or type 3A superfluid. Strong magnetic fields can
also generate an anisotropic pressure inside a self-gravitating
body [77]. Anisotropy may also develop due to the slow rota-
tion of fluids [78]. A mixture of perfect and a null fluid may
also be represented by an effective anisotropic fluid model
[79]. Local anisotropy may occur in astrophysical objects for
various reasons such as viscosity, phase transition [80], pion
condensation [81] and the presence of strong electromagnetic
field [82]. The factors contributing to the pressure anisotropy
have also been discussed by Dev and Gleiser [83,84] and
Gleiser and Dev [85]. Ivanov [86] pointed out that influences
of shear, electromagnetic field etc. on self-bound systems can
be absorbed if the system is considered to be anisotropic.
Self-bound systems composed of scalar fields, the so-called
‘boson stars’ are naturally anisotropy [87]. Wormholes [88]
and gravastars [89,90] are also naturally anisotropic. The
shearing motion of the fluid can be considered as one of the
reasons for the presence of anisotropy in a self-gravitating

body [91]. Bowers and Liang [92] have extensively discussed
the underlying causes of pressure anisotropy in the stellar
interior and analyzed the effects of anisotropic stress on the
equilibrium configuration of relativistic stars. Therefore, we
find it worthwhile to investigate the impacts of anisotropic
stress on sources of gravitational waves. Alternatively, for
an estimated TLN of the source, the technique can also be
used to constrain the anisotropy of the source of a given mass
and radius. Earlier, Biswas and Bose [93] used the gravita-
tional wave (GW) and electromagnetic (EM) observation of
GW170817 to constrain the extent of pressure anisotropy.
Many applications of TLN in neutron stars have also been
explored by Yagi and Yunes [8].

The paper is organized as follows: In Sect. 2, the methodol-
ogy of determining the TLN is discussed. Section 3 provides
a particular stellar model which is used to get an estimate of
the TLN. In Sect. 4, the TLN k2 for a wide range of masses
and radii is provided. The range of values of k2 for a fixed
compactness C possessing anisotropic stress is investigated.
Section 5 summarizes the main results and provides some
prospects of future investigation in this direction.

2 Tidal Love number

We consider a static spherically symmetric neutron star (NS)
immersed in an external tidal field. In response to the tidal
field, the star will be deformed by the tidal force by devel-
oping a multipolar structure. This kind of situation occurs in
coalescing binary systems where the gravitational field of its
companion tidally deforms each component. The TLN char-
acterizes the deformability of the NS away from sphericity
[94]. For mathematical simplicity, in our calculation, we shall
restrict ourselves to quadrupole moments Qi j only. This is
reasonable if the two binary neutron stars remain sufficiently
far away from each other. In such a situation, the quadrupole
moment (l = 2) dominates over the multiple moments. Qi j

can be related to the external tidal field Ei j as [95]

Qi j = −�Ei j , (1)

where � is the tidal deformability of the neutron star and it
is related to the TLN k2 as [95]

k2 = 3

2
� R−5. (2)

The TLN is dimensionless. The quadrupole fields Qi j and
Ei j can be expanded in tensor spherical harmonics Y lm

i j as:

Ei j =
2∑

m=−2

EmY
2m
i j = E0Y

20
i j = EY 20

i j , (3)
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Qi j =
2∑

m=−2

QmY
2m
i j = Q0Y

20
i j = QY 20

i j . (4)

In the second equality, the coordinate system was so ori-
ented that the term became symmetric in φ. Subsequently,
the only component that is non-vanishing is the m = 0 com-
ponent. We can rewrite Eq. (1) as

Q = −�E . (5)

Now the background metric (0)gμν(xν) corresponding to
the neutron star, with a small perturbation hμν(xν) due to
external tidal field, gets modified as

gμν

(
xν

) =(0) gμν

(
xν

) + hμν

(
xν

)
. (6)

We write the background geometry of the spherical static
star in the standard form

(0)ds2 =(0) gμνdx
μdxν

= −e2ν(r)dt2 + e2λ(r)dr2 + r2
(
dθ2 + sin2 θdφ2

)
.

(7)

For the linearized metric perturbation hμν , using the
method as in Refs. [93,96], we restrict ourselves to static
l = 2, m = 0 even parity perturbation. With these assump-
tions, the perturbed metric becomes

hμν = diag
[
H0(r)e

2ν, H2(r)e
2λ,

r2K (r), r2 sin2 θK (r)
]
Y20(θ, φ) (8)

where H0(r), H2(r) and K (r) are radial functions to be deter-
mined by the perturbed Einstein field equations.

For the spherically static metric (7), the stress-energy ten-
sor is given by [97–100]

(0)T ξ
χ = (ρ + pt ) u

ξuχ + pt g
ξ
χ + (pr − pt ) ηξηχ , (9)

where ηi is the space-like vector and the vector ui represents
fluid 4-velocity. The quantities satisfy the relations uξuξ =
−1, ηξηξ = 1 and ηξuξ = 0. The quantities ρ, pr and
pt represent density, radial pressure and tangential pressure,
respectively.

Furthermore, the energy–momentum tensor is perturbed
by a perturbation tensor δT ξ

χ which is defined as

T ξ
χ =(0) T ξ

χ + δT ξ
χ . (10)

The non-zero components of T ξ
χ are:

T t
t = − dρ

dpr
δpr Y (θ, φ) − ρ(r), (11)

T r
r = δpr (r)Y (θ, φ) + pr (r), (12)

T θ
θ = dpt

dpr
δpr (r)Y (θ, φ) + pt (r), (13)

T φ
φ = dpt

dpr
δpr (r)Y (θ, φ) + pt (r). (14)

With these perturbed quantities, we write the perturbed
Einstein Field Equations as

Gξ
χ = 8πT ξ

χ , (15)

where we assume G = c = 1 and the Einstein tensor Gξ
χ is

calculated using the metric gχξ .

2.1 Derivation of the master equation and expression for
TLN

Using the background field equations (0)Gξ
χ = 8π(0)T ξ

χ , we
obtain the following results:

(0)Gt
t = 8π(0)T t

t ,

⇒ λ′(r) = 8πr2e2λ(r)ρ(r) − e2λ(r) + 1

2r
, (16)

(0)Gr
r = 8π(0)T r

r ,

⇒ ν′(r) = 8πr2 pr (r)e2λ(r) + e2λ(r) − 1

2r
. (17)

Note that ∇(0)
ξ T ξ

χ = 0. Choosing ξ = r , we obtain

p′
r (r) = −rpr (r)ν′(r) − 2pr (r) + 2pt (r) − rρ(r)ν′(r)

r
.

(18)

For the perturbed metric, using Einstein equations (15),
we get the following results:

Gθ
θ − Gφ

φ = 0 ⇒ H0(r) = H2(r) = H(r), (19)

Gθ
r = 0 ⇒ K ′ = H ′ + 2Hν′, (20)

Gθ
θ + Gφ

φ = 8π(T θ
θ + T φ

φ ),

⇒ δpr = H(r)e−2λ(r)
(
λ′(r) + ν′(r)

)

8π
dpt
dpr

r
. (21)

Now, using the identity

∂2Y (θ, φ)

∂θ2 + cot (θ)
∂Y (θ, φ)

∂θ

+ csc2(θ)
∂2Y (θ, φ)

∂φ2 = −6Y (θ, φ),
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and Eqs. (16), (17), (18), (19), (20) and (21), we obtain the
master equation for H(r) as

− 1

e−2λ(r)Y (θ, φ)

[
Gt

t − Gr
r

]

= − 8π

e−2λ(r)Y (θ, φ)

[
T t
t − T r

r

]

⇒ H ′′(r) + RH ′(r) + S H(r) = 0, (22)

where,

R = −
(

−e2λ(r) − 1

r
− 4πre2λ(r)(pr (r) − ρ(r))

)
, (23)

S = −
(

4e2λ(r) + e4λ(r) + 1

r2 + 64π2r2 pr (r)
2e4λ(r)

+ 16πe2λ(r)
(
pr (r)

(
e2λ(r) − 2

)
− pt (r) − ρ(r)

)

+−4π
dρ
dpr

e2λ(r)(pr (r) + ρ(r)) − 4πe2λ(r)(pr (r) + ρ(r))
dpt
dpr

)
.

(24)

The exterior region of the static spherically symmetric star
will be described by the Schwarzschild metric and hence by
setting, ρ = 0, pr = 0, pt = 0 and e2λ = 1/(1 − 2M/r),
the master equation (22) takes the form

− H ′′(r) − 2(M − r)H ′(r)
r(2M − r)

+ 2H(r)
(
2M2 − 6Mr + 3r2

)

r2(r − 2M)2 = 0. (25)

The solution to this second-order differential equation (25)
is obtained as [9]

H(r) = 1

2M2r(2M − r)

[
c2

(
−2M

(
2M3 + 4M2r

−9Mr2 + 3r3
)

− 3r2(r − 2M)2 log
( r

M
− 2

)

+3r2(r − 2M)2 × log
( r

M

))]
+ 3c1r(2M − r)

M2 ,

(26)

where, c1 and c2 are integration constants. In order to get the
expression for these constants, we make a series expansion
of Eq. (26) as

H(r) = −3c1r2

M2 + 6c1r

M
− c2

(
8M3

)

5r3 + O

((
1

r

)4
)

.

(27)

Now, in the star’s local asymptotic rest frame, at large r
the metric coefficient gtt is given by [95,101,102]

(1 − gtt )

2
= −M

r
− 3Qi j

2r3

(
nin j − 1

3
δi j

)
+ O

(
1

r3

)

+ 1

2
Ei j x

i x j + O(r3), (28)

where ni = xi/r . Matching the asymptotic solution using
Eq. (27) together with the expansion of Eq. (28) and using
Eq. (1), we obtain

c1 = −M2E

3
, c2 = 15Q

8M3 . (29)

Subsequently, the expression for TLN k2 can be obtained
by using Eqs. (2), (26), (29) and also using the expression
for H(r) and its derivatives at the star’s surface r = R as

k2 = [8(1 − 2C )2C 5(2C (y − 1) − y + 2)]/X, (30)

where,

X = 5(2C (C (2C (C (2C (y + 1) + 3y − 2)

− 11y + 13) + 3(5y − 8))

−3y + 6) + 3(1 − 2C )2(2C (y − 1)

− y + 2) log

(
1

C
− 2

)

−3(1 − 2C )2(2C (y − 1) − y + 2) log

(
1

C

))
. (31)

Note that C (= M
R ) and y depend on r, H(r) and it’s

derivatives evaluated at R in the form

y = r H ′(r)
H(r)

∣∣∣∣
r=R

. (32)

To calculate the TLN k2 for a particular compact star, we
need to specify a model which we can be utilized to calculate
y and subsequently k2 for a particular NS of given mass M
and radius R.

3 Choice of a physically acceptable model

3.1 Einstein field equations

To describe the interior of a static and spherically symmet-
ric relativistic star, we take the line element in coordinates
(xa) = (t, r, θ, φ) as given in Eq. (7).

We also assume an anisotropic matter distribution for
which the energy–momentum tensor is assumed in the form
as given in the Eq. (9).
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The energy density ρ, the radial pressure pr and the tan-
gential pressure pt are measured relative to the comoving
fluid velocity ui = e−νδi0. For the line element (7), the inde-
pendent set of Einstein field equations are then obtained as

8πρ = 1

r2

[
r(1 − e−2λ)

]′
, (33)

8πpr = − 1

r2

(
1 − e−2λ

)
+ 2ν′

r
e−2λ, (34)

8πpt = e−2λ

(
ν′′ + ν′2 + ν′

r
− ν′λ′ − λ′

r

)
, (35)

where primes (′) denote differentiation with respect to r . The
system of equations determines the behaviour of the grav-
itational field of an anisotropic imperfect fluid sphere. The
mass contained within a radius r of the sphere is defined as

m(r) = 4π

∫ r

0
ω2ρ(ω)dω. (36)

We define, � = pt − pr as the measure of anisotropy.
The anisotropic stress will be directed outward (repulsive)
when pt > pr (i.e., � > 0) and inward when pt < pr (i.e.,
� < 0).

3.2 A particular anisotropic model

Any well-behaved, physically viable stellar model can be
used to find the TLN k2 in our construction. For example,
Jiang and Yagi [103] have used the Tolman VII model to
analyze the relationship between the TLN with the moment
of inertia and compactness of the star. The same model was
also used by them for the description of neutron star interiors,
where the authors introduced central density as an input to
fine-tune the observables [104]. The authors have also used
the tidal measurement of binary stars for probing the GW
propagation [105]. To calculate the TLN, we choose a par-
ticular model, which is an anisotropic generalization of the
Korkina and Orlyanskii solution III obtained earlier by [106].
To examine the physical acceptability of the solution, we first
write the variables which are obtained as

e2ν = A2(1 + aCr2)2, (37)

e2λ =
[
1 − BCr2(1 + 3aCr2)−2/3 − αCr2(1 + aCr2)−1

×(1 + 3aCr2)−2/3
]−1

, (38)

8π� = αC2ar2(1 + 3aCr2)1/3

(1 + aCr2)3 . (39)

The line element (7) then takes the form

ds2 = −A2(1 + aCr2)2dt2

+
[
1 − BCr2(1 + 3aCr2)−2/3 − αCr2(1 + aCr2)−1

×(1 + 3aCr2)−2/3
]−1

dr2 + r2(dθ2 + sin2 θdφ2).

(40)

The model contains five constants namely, a, A, B, C and α

three of which do get fixed by the boundary conditions. The
parameter a that appears as a free parameter in the solutions
provided by [106], without any loss of generality, can be set
to a = 1. The other free parameter α provides the measure of
anisotropy. For an isotropic sphere (α = 0), if we set B = 0
and C = 1, the metric (40) reduces to

ds2 = −A2(1+ar2)2dt2+dr2+r2(dθ2+sin2 θdφ2), (41)

which is the Korkina and Orlyanskii solution III [107].
In other words, the solution (40) obtained by [106] is an
anisotropic generalization of the solution of [107]. Conse-
quently, this particular solution provides a tool to investigate
the anisotropic effects on the TLN. Physical quantities in this
model are obtained as

8πρ = BCη2
1(3 + 5aCr2) + C(3 + aCr2(6 − aCr2))α

η2
1η

5
3
2

,

(42)

8πpr = −C(Bη1ψ1 + α + a(−4η
2
3
2 + Cr2(−4aη

2
3
2 + 5α)))

η2
1η

2
3
2

,

(43)

8πpt = 1

η3
1η

2
3
2

×
[
C(−Bη2

1ψ1 + a(4η
2
3
2 + Cr2(2a(4η

2
3
2

+ Cr2(2aη
2
3
2 − α)) − 5α)) − α)

]
, (44)

8π� = aC2r2η
1
3
2 α

η3
1

, (45)

m(r) = Cr3(B + aBCr2 + α)

2η1η
2
3
2

, (46)

where, ψ1 = (1 + 5aCr2), η1 = (1 + aCr2) and η2 =
(1 + 3aCr2).

3.3 Physical acceptability of the solution

Before using the solutions, let us first examine the physical
acceptability of the solution:

(i) In this model, we have (e2ν(r))′r=0 = (e2λ(r))′r=0 = 0
and e2ν(0) = A2, e2λ(0) = 1; these imply that the metric
is regular at the centre r = 0.

(ii) Since 8πρ(0) = 3C(B + α) and 8πpr (0) = 8πpt (0) =
C(4a − B − α), the energy density, radial pressure and
tangential pressure will be non-negative at the centre if we
choose the parameters satisfying the condition a > B+α

4 .

123



136 Page 6 of 12 Eur. Phys. J. C (2022) 82 :136

(iii) The interior solution (7) should be matched to the exterior
Schwarzschild metric

ds2 = −
(

1 − 2M

r

)
dt2 +

(
1 − 2M

r

)−1

dr2

+r2(dθ2 + sin2 θdφ2), (47)

across the boundary of the star r = R, where M is the
total mass of the sphere which can be obtained directly
from Eq. (36) as

M = m(R) = CR3(B + aBCR2 + α)

2(1 + 2aCR2)(1 + 3aCR2)
2
3

.

Matching of the line elements (40) and (47) at the bound-
ary r = R yields,

(
1 − 2M

R

)
= 1 − αCR2

(1 + aCR2)(1 + 3aCR2)
2
3

− BCR2

(1 + 3aCR2)
2
3

, (48)

(
1 − 2M

R

)
= A2(1 + aCR2)2. (49)

Using the junction conditions, we determine the constants
A, B, C as

A = (5M − 2R)

2
√
R(R − 2M)

, (50)

C = M

aR2(2R − 5M)
, (51)

B = − (5M − 2R)[2 8
3 a( M−R

5M−2R )
2
3 (2M − R) + Rα]

2R(2M − R)
.

(52)

(iv) The gradient of density, radial pressure and tangential
pressure are respectively obtained as

8π
dρ

dr
= 1

A1
×

(
2aC2r(−10Bη4

1 + (−15 + aCr2

(−53 + aCr2(−49 + 5aCr2)))α)
)

, (53)

8π
dpr
dr

= − 1

A2
(2aC2r(−2Bη1η3 + a(4η

2
3
2

+ Cr2(a(16η
2/3
2 + Cr2(12aη

2/3
2

− 25α)) − 8α)) + α)), (54)

8π
dpt
dr

= 1

η4
1η

5
3
2

× (4aC2r(Bη2
1η3 + a(−2η

2
3
2

+ Cr2(6α + a(−10η
2
3
2 + Cr2(17α + a(−14η

2
3
2

Fig. 1 Density profile at the stellar interior

Fig. 2 Radial and tangential pressure profiles at the stellar interior

+ Cr2(−6aη
2
3
2 + 5α)))))))), (55)

where, η3 = (−1 + 5a2C2r4), A1 = η3
1η

8
3
2 and A2 =

η3
1η

5
3
2 .

The decreasing nature of these quantities is shown graph-
ically.

(v) Within a stellar interior, it is expected that the speed of
sound should be less than the speed of light i.e., 0 ≤
dpr
dρ ≤ 1 and 0 ≤ dpt

dρ ≤ 1.
In this model, we have

dpr
dρ

= − 1

(−10Bη4
1 + (−15 + aCr2(−53 + aCr2η4))α)

×
[
η2(−2Bη1η3 + a(4η

2
3
2 + Cr2(a(16η

2
3
2

+ Cr2(12aη
2
3
2 − 25α)) − 8α)) + α)

]
, (56)

dpt
dρ

= −1

(10Bη5
1 + 15α + aCr2(68 + aCr2(102 + aCr2η5))α)
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Fig. 3 Radial and transverse component of sound speed at the stellar
interior

Fig. 4 Fulfillment of energy condition at the stellar interior

Fig. 5 Radial variation of anisotropy at the stellar interior

Г

Г

Г

Г

Fig. 6 Radial variation of adiabatic index at the stellar interior

Fig. 7 Radial variation of mass at the stellar interior

Fig. 8 Nature of Equation of state (EOS) at the stellar interior

×
[
2η2(Bη2

1η3 + a(−2η
2
3
2 + Cr2(6α + a(−10η

2
3
2

+ Cr2(17α + a(−14η
2
3
2 + Cr2(−6aη

2
3
2 + 5α)))))))

]
,

(57)

where, η4 = (−49 + 5aCr2) and η5 = (44 − 5aCr2).
By choosing the model parameters appropriately, it can
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Fig. 9 Forces in equilibrium at the stellar interior

be shown that this requirement is also satisfied in this
model.

(vi) Fulfillment of the energy conditions for an anisotropic
fluid i.e., ρ+pr+2pt ≥ 0, ρ+pr ≥ 0 and ρ+pt ≥ 0 can
also be shown graphically to be satisfied in this model.

3.4 Physical behaviour of the model

The simple elementary functional forms of the physical
quantities help us to make a detailed study of the physical
behaviour of the star. Most importantly, the solution contains
an ‘anisotropic switch’ α, which allows us to investigate the
impact of anisotropy. We analyze the physical behaviour of
the model by using the values of masses and radii of observed
pulsars as input parameters. We consider the data available
from the pulsar PSRJ0030 + 0451 whose estimated mass
and radius are M = 1.34 M� and R = 12.71 km, respec-
tively [108]. Even though systematic errors in the measure-
ments of neutron star masses and radii can not be ignored
[109] for the assumed set of values, we determine the con-
stants for two different values of the anisotropic factor α.
For an isotropic case (α = 0), we obtain the constants
B = 3.03291, C = 0.000787453, A = 0.736378; assum-
ing the star to be composed of an anisotropic fluid distribu-
tion (we assume α = 1.5), the constants are calculated as
A = 0.736378, B = 1.70219, C = 0.000787453. Making
use of these values, we show graphically the nature of all the
physically meaningful quantities in Figs. 1, 2, 3, 4, 5, 6, 7 and
8. The plots clearly show that all the quantities comply with
the requirements of a real star. In particular, the figures high-
light the effect of anisotropy on the gross physical behaviour
of the compact star. Figure 9 shows that the configuration is
stable under the combined effects of three different types of
forces.

Fig. 10 k2 is plotted against C for different α

Fig. 11 V 2
r (R) and V 2

t (R) plotted against C for different α values

Table 1 The maximum limit of C and its corresponding k2 for α > 2

Anisotropy α Compactness C TLN k2

2.5 0.31405 0.144954

3 0.2288 0.173846

3.5 0.1800 0.221919

4 0.1384 0.269166

4 Numerical calculation of TLN

Using the method employed in reference [110], we now cal-
culate the numerical value of k2 for a particular neutron star.
We first rewrite the master equation (22) using the Eq. (32)
as

r y′ + y2 + (rR − 1)y + r2S = 0. (58)
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Fig. 12 k2 is plotted against C for different α values. Only physically
allowed range of α and C are considered here

Fig. 13 (Top) k2 plotted against different masses M for different α

at R = 10 km, (Bottom) k2 plotted against different masses M with
different radii R for a fixed value of α = 2

From Eq. (30), at C = 0 we expect k2 = 0. This implies
that y(0) = 2. Moreover, in the horizon formation limit C =
0.5, the TLN k2 vanishes for all values of y.

In order to solve the differential equation (58), we use the
initial condition y(0) = 2 in addition to the expression for
R, S using Eqs. (23) and (24), respectively. Using the initial
condition and Eqs. (38), (42), (43) and (44) for a particular
NS, Eq. (58) can be solved and subsequently using Eq. (30),
the TLN k2 can be calculated. One can also find the analytical
expression for y(r) in terms of compactness factor C and
anisotropy α. Employing this technique, we plot the relation
between k2 and compactness factor C for different values of

Fig. 14 (Top) k2 plotted against different radii R for different values
of α of a star of fixed mass M = 1.5 M�, (Bottom) k2 plotted against
different radii R and masses M for a fixed value of α = 2

Fig. 15 y is plotted against α assuming different compact star masses
and radii provided in the Table 2. Only physically allowed range of α

is considered

Fig. 16 k2 is plotted against α assuming different compact star masses
and radii provided in the Table 2. Only physically allowed range of α

has been considered
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Table 2 y and k2 for α = 0 and
the corresponding maximum
value of α are evaluated for
different compact objects. The
masses and radii of the compact
stars are in accordance to
references [112,113]

Compact star M(M�) R(km) y at α = 0 k2 at α = 0 Max. α k2 at max. α

SAX J1748 .9-2021 1.81+0.25
−0.37 11.7+1.7

−1.7 1.88994 0.0176463 3.006 0.174571

4U 1608-52 1.57+0.30
−0.29 9.8+1.8

−1.8 1.93653 0.0162621 2.9341 0.167513

4U 1820-30 1.46+0.21
−0.21 11.1+1.8

−1.8 1.79387 0.0221002 3.3467 0.207726

4U 1724-207 1.81+0.25
−0.37 12.2+1.4

−1.4 1.85006 0.0190864 3.093 0.182933

EXO 1745-268 1.65+0.21
−0.31 10.5+1.6

−1.6 1.90908 0.0170474 2.973 0.171127

KS 1731-260 1.61+0.35
−0.37 10+2.2

−2.2 1.94436 0.0160516 2.924 0.166511

J0437-4715 1.44+0.07
−0.07 13.6+0.9

−0.8 1.78635 0.0243844 3.78 0.248741

M13 1.38+0.08
−0.23 9.95+0.24

−0.27 1.81066 0.0209619 3.2355 0.196986

α as shown in the Fig. 10. We note that k2 increases gradually
with increasing C up to a certain value and then decreases
with further increase of C . The range numerical value of k2

resembles with the Ref. [111]. For a NS having compactness
C < 0.34 and α ≤ 2, the above scheme can be used to
calculate the TLN in this model.

For α > 2, a discontinuity arises in the plot of k2 vs
C . To address this problem, we set a maximum limit on
C for a particular α > 2, using the ‘physical acceptabil-
ity’ conditions discussed earlier. One can check that for all
range of values of C < 0.34, ρ(r = 0), ρ(r = R), pr (r =
0), pr (r = R), pt (r = 0), pt (r = R) ≥ 0. The energy
condition ρ + pr + 2pt ≥ 0. Therefore, the maximum limit

on C can be calculated from the condition 0 ≤ dpr
dρ

≤ 1

and 0 ≤ dpt
dρ

≤ 1. For different values of α, V 2
r (R) = dpr

dρ

and V 2
t (R) = dpt

dρ
are plotted against C in Fig. 11. It then

becomes easy to evaluate the maximum limit on C for dif-
ferent α from the plot. For example, in Fig. 11, we note that
for 0 ≤ α ≤ 2, the range of compactness is 0 ≤ C ≤ 0.4.
For 0 ≤ α ≤ 2, Fig. 10 shows that 0 ≤ C ≤ 0.34. In Table 1,
the maximum value of C for different α is given.

For α > 2, variation of the TLN k2 against C is shown
in Fig. 12. In Table 1, the numerical values of the TLN k2 is
shown for different α values.

In the Fig. 13, (Top) k2 is plotted against mass M for
different values of α at R = 10 km, (Bottom) k2 is plotted
against mass M for different radii R at a fixed value of α = 2.
In the Fig. 14, (Top) k2 is plotted against radius R for different
α values having a fixed mass M = 1.5 M� and (Bottom) k2

is plotted against R for different masses M for a fixed value
of α = 2.

In the Fig. 15, variation of y with respect to α is plotted
for different compact stars. In this case, the range of α is
assumed to be 0 ≤ α < 4. In Fig. 16, k2 is plotted against α.
Physically acceptable range of α has been calculated numer-
ically. Obviously, the maximum value of α is not the same
for different class of compact stars. In Table 2, the maxi-

mum value of α is calculated for different neutron stars and
the corresponding k2 is also shown. In Fig. 16, we note that
the TLN increases monotonically with increasing α for stars
having different compactness. In Table 2, k2 is calculated for
α = 0 for different compact objects.

5 Discussion

In this paper, we have presented a technique to measure the
TLN of a compact object when subjected to an external tidal
field. Conversely, if the TLN is known, our method can be
used to constrain the anisotropic stress of a compact star of a
given mass and radius. The possible role of anisotropy vis-a-
vis matter distribution of the star on the TLN has been ana-
lyzed. Our investigation clearly shows that TLN is influenced
by anisotropic stress. It remains to be seen whether such
impacts can be observationally realized. In our model, we
focused on the quadrapolar ‘even parity TLN k2. However,
one can also calculate higher-order TLN as well as magnetic
TLN. Effects of other factors such as EOS, electromagnetic
field etc. on the TLN needs further probe and will carried out
elsewhere.
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