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Abstract This paper discusses the relation between topo-
logical M-theory, self-dual Yang–Mills and general relativ-
ity. We construct a topological membrane field action from
Witten’s cubic string field theory, which reduces to topolog-
ical Yang–Mills on a one-parameter family of conifolds. It
turns out that this can be interpreted as the twistor space of
the four-dimensional Lagrangian submanifold M for large
momenta. From the viewpoint of the target, we find that A-
model and B-model on M unify in the topological mem-
brane theory through the Penrose–Ward transform. The par-
tition function is constructed and it is shown that, in the
weak-coupling regime, it is equal to the partition function
of Donaldson-Witten theory. Additionally, homological mir-
ror symmetry, background independence as well as role of
knot cobordisms as topological two-branes is discussed. It is
outlined that all types of Floer homology are part of the topo-
logical membrane theory. Additionally, we find evidence that
in the non-perturbative regime, the partition function of the
membrane field action and that of the partially twisted (2,0)
SU(N) superconformal field theory on the worldvolume of
N topological fivebranes must coincide.

1 Introduction

The field theoretic approach to Donaldson theory on four-
manifolds, which is based on topological K-theory, using the
moduli space of instantons, was introduced by Witten [1]
following a series of papers, where he described Morse the-
ory in the framework of perturbative supersymmetric quan-
tum field theory [2]. Later Floer constructed invariants on
three-manifolds Y utilizing tools of gauge theory to con-
struct an infinite-dimensional Morse homology out of the
Chern–Simons functional, which led to the realization [3]
that the extension of the Donaldson polynomials to mani-
folds with boundary was possible under the condition that
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they take values in the dual of the Floer groups. In [4] the
author showed that the action of Donaldson–Witten theory
could be derived by BRST quantization of a single topolog-
ical term. We utilize the identification of three-dimensional
Einstein gravity with the Chern–Simons functional [5,6]
and show that at least in the maximal symmetric case the
dynamics of the scale factor is described by the topologi-
cal term with the usual (anti)-self dual gauge by identifying
the Einstein–Hilbert action on Y × R with self-dual Yang–
Mills. This agrees with the findings of several older papers
about self-dual gravity and the connection to loop quantum
gravity and the Palatini action [7–9]. However, in the max-
imal symmetric case we can take a different route to string
theory by the interpretation of the theta-vacuum structure
as the gravitational background of a stack of N D-branes
in congruence with the characteristic of other string/gauge
dualities, where branes disappear to deform the background
metric of the dual description. One version of these duali-
ties of the topological string inspires another main empha-
sis of this paper. In [10] Witten showed that the topologi-
cal A-model string with Calabi–Yau target T ∗Y is a U (N )

Chern–Simons theory. We use the close relation between
topological Yang–Mills and Chern–Simons to construct a
membrane field theory, where the membrane fields describe
maps from the worldvolume of a 2-Brane into an eight-
dimensional target X = T ∗Y × T ∗Rt subject to a Courant
sigma-model. Its boundary theories are the A- and B-model
topological string. Moreover, the topological M-model is
a unification of both topological strings and possess a U-
duality reflected in a simultaneous S-duality and T-duality
in form of the weak/strong duality and homological mir-
ror symmetry, respectively. The Lagrangian submanifolds
are Lagrangian cobordisms between those of the topologi-
cal string embedded inside X . It is shown that this mem-
brane field theory reduces to Donaldson–Witten theory on
a one-parameter family of Calabi–Yau three-varieties in the
self-dual gauge and that complex and symplectic structures
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unify in form of the Penrose-Ward transform. This seems
also evident by the fact that its partition function counts
stable holomorphic structures over the twistor space of the
Lagrangian cobordism of the form M = Y ×R, which are in
bijection with self-dual connections on M . Another interest-
ing property is that it relates different CFTs with each other.
Moreover, the cobordisms described by instantons relating
two critical points of the Chern–Simons functional are the
result of the deformation of one conformal background into
another. One can find all different types of Floer homology, –
instanton-, symplectic and instanton knot homology – inside
this membrane field theory, which is an encouraging aspect.
Additionally, one should be able to view homological mirror
symmetry from the setting of this theory in an interesting new
light, in that it emerges from the parent topological membrane
model.

The paper focuses on the physical aspects of the theories
discussed and is structured as follows: In the first two sec-
tion we identify pure general relativity of maximal symmet-
ric spacetimes with topological Yang–Mills theory by using
tools of foliation and Floer homology. This is possible when
we view the scale factor as a parametrization of the time
coordinate of the gauge potential and follow that the vacuum
structure can be interpreted as a stack of 3-branes. The main
part of the paper is concerned with the topological membrane
theory. In particular, its construction with ∞-Chern–Weil
theory in Sect. 4 and unification of the A- and B-model from
the viewpoint of the target in form of the Penrose–Ward trans-
form. Then we focus on the worldvolume/worldsheet in that
we outline the underlying sigma-model and its connection
to the AKSZ Poisson structures that describe the worldsheet
theories of the topological strings. I give some more evidence
of the similarity with Donaldson–Witten theory by calculat-
ing the partition function in analogy to Donaldson–Thomas
theory on Calabi–Yau three-folds and analyse the connec-
tion between the different couplings and the corresponding
behaviour of symplectic and complex structures in the tar-
get. There is also a categorical interpretation in form of a
stable (1,∞)-category, which is shortly discussed. The two
following sections are dedicated to homology mirror sym-
metry and the consequences for background independence,
where we find further evidence that the membrane fields
are instantons/coherent sheaves and paths in the stratified
space of superconformal field theories with N = 2. Addi-
tionally, we analyse how general relativity, as described in
the first section, arises from the membrane field theory, while
incorporating closed/open string duality into the framework.
Finally, we discuss how the AGT correspondence occurs,
when we vary from the non-perturbative regime into the
perturbative. This seems to imply that topological M-theory
must also include the topological 6d SCFT, which we find is
true.

2 General relativity as (A)SD Yang–Mills

Our goal in this section is to summarize and clarify what was
already shown in [11], which is to connect SO(4)Yang–Mills
gauge potentials A = Aμdxμ to homogeneous and isotropic
solutions gμν of the four-dimensional pure Einstein–Hilbert
action by reduction to a system with one degree of freedom.
We start with the Yang–Mills action functional on a smooth
manifold M as the cylinder M � Y × R in temporal gauge
A0 = 0.

SY M [A] = 1

2g2

∫
d4x tr F2

μν =
1

g2

∫
d4x tr

( �E2
i + �B2

i

)
,

(1)

where Fμν is the usual SO(4)-Lie-algebra-valued two-form
defined as

Fμν = ∂μAν − ∂ν Aμ + ig
[
Aμ, Aν

]
. (2)

This theory can be split into self-dual and anti-self-dual
parts, which can be understood topologically via the clutch-
ing construction. The principal SO(4)-bundle defined over
M � Y × R � S4 � R

4 ∪ {∞} is decomposed by the def-
inition of good open covers Ui , which overlap, where one
defines the clutching map g12 : U1 ∩ U2 → SU (2). It is
convenient to split the bundle into two SU (2) sub-bundles.
We define two pairs of two open covers

U1 := S4 − {+∞}
U2 := B+∞

and

U3 := S4 − {−∞}
U4 := B−∞.

B±∞ are small neighbourhoods of the north and south poles.
The odd-labelled cover the whole sphere except for the north
and south pole, which are points at infinity. From homology
and clutching construction now follows that SO(4) instan-
tons are classified by maps

U1 ∩ U2 × U3 ∩ U4 → SO(4)

The intersection is isomorphic to

U1 ∩ U2 � S3,

which means that

h = g12 · g34 : S3 × S3 → SO (4) ,

where g12 : U1 ∩ U2 → SU (2) and since S3 � SU (2)

h : SU (2)× SU (2)→ SO (4) .

It is well known that the isomorphism classes of principal
SO(4)-bundles on S4 are in bijection with homotopy classes
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of continuous functions S4 into the classifying space for
SO(4)-bundles and so

{U1 ∩ U2 × U3 ∩ U4 → SO(4)}/homotopy

� π3

(
S3 × S3

)
= Z⊕ Z.

The next step is to include principal connections and the
corresponding curvature forms. The first intuition is, that one
has four su(2)-curvature forms that are locally defined on
the four charts Ui . But since on the quadruple overlap, we
have that h = g12 · g34 = g14, the so(4)-valued one-form A
decomposes into

A+ ∈ Ω1(U1, suL(2))

A− ∈ Ω1(U4, su R(2)).

We see that we can find the reason why the gravitational
instanton corresponds to two Yang–Mills instantons in the
bundle topology. Hence, the so(4)-valued curvature form FA

is not defined globally on all S4, but is rather a gluing of
the FA± = F±, which are locally defined on the charts U1

and U4, which we just call U± in the following. The six-
dimensional space of two forms �2 (M, so(4)) decomposes
into three-dimensional vector spaces

�2 (M, so(4)) = �2+ (U+, suL(2))⊕�2− (U−, su R(2)) .

Via the principle of extremal action, the equations of motion
unfold to be

DμFμν = 0. (3)

Since

Dμ ∗ Fμν = 0

where 1
2εαβμν Fαβ = ∗Fμν is the dual field strength, equa-

tion (3) can be expressed as a first order system

Fμν = ± ∗ Fμν. (4)

(Anti)-self-dual BPS states solving (4) are called instantons
and they saturate the bound

S ≥ 8π2

g2
|k| (5)

with the winding number k of the configuration and action
S. These equations are automatically satisfied if the electric
and magnetic fields associated to the gauge connection are
parallel, which means that in Euclidean space they satisfy

Ei = i Bi . (6)

The important point is that a Yang–Mills instanton A ∈
Ω1(Y ×R, su(2)) in temporal gauge can be equally defined
as a one-parameter family of gauge connections on Y

t → At ∈ Ω1
(

S3, su (2)
)

�A =
3∑

i=1

Ai dxi . (7)

It is easy to show that the (anti)-self-dual Yang–Mills equa-
tion can be cast into the form

d

dt
At = ∂i C S = ± ∗3 FAt ∈ Ω1 (Y, su (2)) . (8)

with ∗3α = ∗(dt ∧ α), where α is a one-form on Y . This
expression tells us that Yang–Mills instantons are the gradient
flow lines of the Chern–Simons functional

C S [A] = 1

8π2

∫
Y

tr

(
A ∧ d A + 2

3
A ∧ A ∧ A

)
(9)

on the space of principal su (2)-connections. One can define a
chain complex and the corresponding homology is known as
Floer homology [12,13], which is essentially Morse theory
of the functional above. Let us denote the space of connec-
tions of P → Y by A, and the set of the sections of the
adjoint bundle ad(P) as G. The elements are gauge trans-
formations g, which are bundle automorphisms that cover
the identity. The goal is to construct a Morse chain complex
out of A/G. Following Floer and Donaldson, we consider the
tangent space of the subspace of irreducible connections A∗
at a connection B given by

TBA
∗∼=Ω1 (Y ,ad(P) ) . (10)

We can do the same with an equivalence class [B]∈ A/G. The
metric on Y induces a Hodge star operator ∗3, with which we
can define the adjoint covariant derivative d∗B = −∗3dB∗3

with respect to B. It turns out that the tangent space is the
kernel of d∗B .

T[B]
(
A
∗/G

) ∼= ker
(
d∗B

)
. (11)

The critical points of the Chern–Simons action functional
on A

∗/G are the gauge equivalence classes of flat connec-
tions. In this infinite-dimensional setting the difference of
the index of critical points of the Morse function is replaced
by the spectral flow of operators of a path between two flat
connections. The difference of the set of eigenvalues that
cross zero along the two paths between both connections in
opposite directions is denoted by s f (B0 B1). Consider now
the space of (anti)-self dual connections A± on P × R over
Y ×R moduli automorphisms Aut (P×R) and the R-action
by shifting the t variable. By the perturbation ε > 0 of the
CS-action, we create a smooth oriented manifold Mε with

dimMε = s f
(

A+, A−
)− 1. (12)

If its dimension is zero, Mε is compact and we can count its
points by signs. We can define the boundary operator

∂A± =
∑

A± ∈ A f ,

s f
(

A+, A−
) = 1

#Mε(A+, A−) · A± (13)
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and the Floer complex C F•(Y ), which is independent of the
perturbation as well as the metric. Additionally, the bound-
ary operator is nilpotent, and the corresponding homology is
defined as

H F• (N ) = ker∂

dim∂
. (14)

We will return to the legacy of Andreas Floer when we discuss
its possible role in the stable (∞, 1)-category of Lagrangian
submanifolds with Lagrangian branes as morphisms in the
context of homological mirror symmetry.

For the moment this is enough information to associate
the Yang–Mills action functional with the Einstein–Hilbert
action. We start with the Lorentzian Yang–Mills action

SY M = −
∫

Y×R

|F |2 dμ = −1

2

∫
d4x T r F2

μν

= −
∫

d4x tr
( �E2

i + �B2
i

)
(15)

where, thanks to the temporal gauge, the electric and mag-
netic fields have a simple interpretation:

Ei = F0i = −∂Ai (�x, t)

∂t
(16)

can be interpreted as the velocity vector on the path At ,
whereas the magnetic field

Bi = 1

2
εi jk Fjk (17)

is identified with the curvature of At on S3. Now we will
parametrize t by the collective coordinate φ(t). Notice that
the family A(φ)

i is invariant under the choice of φ(t). We will
see that this function is the scale factor of an FLRW-metric.
Let us continue by calculating

− Ei = ∂0 A(φ)
i = ∂Ai (�x, φ (t))

∂φ
φ̇ (t) (18)

Hence, we write (15) as

SY M = −
∫

d4x tr
( �E2

i + �B2
i

)

= −
∫

dt

⎛
⎝
∫

tr

(
∂ �A
∂φ

)2

d3x φ̇2 (t)+
∫

tr �B2 d3x

⎞
⎠.

(19)

We require that

m (φ) = −2
∫

tr

(
∂ �A
∂φ

)2

d3x = 1 (20)

and identify the second term, which is the curvature density
integrated over S3, with the potential

2V (φ) = −
∫

tr �B2 d3x . (21)

The expression (20) is a path-dependent mass, which is in
general a positive number. Since the gauge potential is inde-
pendent of the choice of parametrization, the tunnelling rate
R does not know about this quantity as well. Additionally, at
the minima of the potential V (φ), we have also m (φ) = 0.
We assume that the gauge potential is independent of the
space coordinate. With the Pauli vector �σ we can write it as

�A = f (φ (t)) �σ .
Equation (20) then gives us the relation between the volume
VY and the function f (φ (t)).

c1

(
∂ f (φ (t))

∂φ

)2

VY = 1,

where c1 is a positive and real constant from taking the trace.
If the gauge potential is linear in the function φ, then we have
that

c1VY = 1.

Following from the above, the Yang–Mills action on Y × R

becomes the action of a one-dimensional particle in config-
uration space of principal connections modulo gauge trans-
formations inside V (φ)

SY M =
∫

dt

(
1

2
φ̇2 (t)− V (φ)

)
. (22)

Since instantons are paths for which the tunnelling rate R
becomes maximal they satisfy

�E (�x, φ (t)) = ± �B (�x, φ (t)) (23)

because then we have equality in the gauge independent
quantity

e−R ≤ e
−2

∫ t2
t1

∣∣∣ �E · �B
∣∣∣ d4x = e−8π2|k|. (24)

How is this related to the Einstein–Hilbert action of a FLRW-
metric? First, we want to consider the Riemannian four-
manifold as one-parameter families of metrics on Y , similar
to how we considered instantons as families of gauge fields
on Y . We follow the description in [14] and we will write
bold variables to distinguish tensors and vectors from scalars
when written in non-coordinate form and to avoid confusion
when these variables are used later in a different context. It is
convenient to specify how exactly we seek to foliate (M, g).
We can embed hypersurfaces into M by a map

E : ̃→M (25)

such that the image Y = E(̃) and the preimage ̃ are home-
omorphic. It also defines a push forward map E∗ between
the respective tangent spaces T (M) and T (Y ). The metric
induced on the hypersurface is then h = E∗g. Specifying
xi = (x, y, z), the components of h are hi j = gi j . Further-
more, there is the Levi-Civita connection D on Y satisfying
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Dh = 0. The deduced Riemann curvature tensors on M and
Y are

(4)Rγ
μαβw

γ = [∇α,∇β

]
wγ (26)

and

(3)Rk
li jv

l = [
Di ,D j

]
vk (27)

respectively, where w∈ T (M) and v∈ T (Y ) and ∇ is
the spacetime connection. We define the Ricci tensor by
(4)Rαβ = (4)Rμ

μαβ and the Ricci scalar (4)R = gμν Rμν as
its contraction. Additionally, to the intrinsic curvature there
is also the notion of extrinsic curvature, which depends on
the embedding. We will only consider spacelike hypersur-
faces. We can define the variation of the normal n along a
vector v tangent to Y via ∇ by S : v→∇vn. Spacelike hyper-
surfaces are defined by n·n = −1. The extrinsic curvature
K: (u,v)→−u· S(v) is a bilinear form defined on the tangent
spaces of Y . The trace K = hi j Ki j . In the following assume
that M has no closed timelike curves. As for the instantons
we want to consider continuous sets of hypersurfaces (Yt )t∈R

and a foliation of the globally hyperbolic spacetime M such
that its topology is Y×R. That is, Y is a Cauchy surface. We
define the lapse function N by n = N �∇t and the normal evo-
lution vector m = Nn. Notice that we have m·m = −N 2.
The evolution of the three-metric is given by its Lie derivative
along m.

Lmhi j = −2N Ki j (28)

It is possible to express the Riemann tensor of M in terms
of quantities associated to the hypersurfaces Yt . To do this
we need to write down the Gauss relation first, where one
more quantity needs to be defined. We write the orthogonal
projector onto the hypersurfaces �γ , which satisfies �γ (n) = 0
and �γ (v) = v. Furthermore, �γ∇ = D and Lm �γ = 0. It is
also important to note that

∇βnα = −Kαβ−DαlnNnβ. (29)

Then the contracted Gauss relation is

γ μ
αγ

ν
β
(4)Rμν+γαμnργ ν

βnσ (4)Rμ
ρνσ

= Rαβ+K Kαβ−KαμKμ
β. (30)

Writing the projector in components, one can show that

γαβnργ ν
βnσ (4)Rμ

ρνσ

= −Kασ K σ
β+ 1

N
DαDβγ

μ
αγ

ν
βnσ∇σ Kμν

= LmKαβ+ 1

N
DαDβ N+KαμKμ

β. (31)

Combining both relations, we get

γ μ
αγ

ν
β
(4)Rμν = − 1

N
LmKαβ− 1

N
DαDβ N

+Rαβ+K Kαβ−2KαμKμ
β. (32)

Now contracting with γ αβ we get

(4)R+(4)Rμνnμnν = (3)R+K 2− 1

N
LmK− 1

N
DiD

i N ,

(33)

which can be further simplified by the Gauss relation to

(4)R = (3)R+K 2+Ki j K i j− 2

N
LmK− 2

N
DiD

i N . (34)

This separation serves the identification of constraints and
true dynamical variables and is the right starting point for the
Hamiltonian formulation of general relativity. For a patch V
of M delimited by two spacelike hypersurfaces at constant
t1 and t2, we can write the Einstein Hilbert action as

SE H
[
gμν

] =
∫

V

√
g(4)R d4x (35)

with
√

g = N
√

h

SE H
[
gμν

] =
∫

V
N
√

h

(
(3)R+K 2+Ki j K i j

− 2

N
LmK− 2

N
DiD

i N

)
d4x . (36)

The last two terms are total derivatives and so they won’t
contribute to the equations of motions but ensure that we
have a well-defined variation principle when dealing with
Dirichlet boundary conditions. One can show that they are
equal to the Gibbons–York–Hawking [15] boundary term
2
∫

Y ε
√

hK d3x . Hence, we can write the above action as
an integral over the hypersurface.

SE H
[
gμν

] =
t2∫

t1

∫
Yt

N
√

h
(
(3)R+Ki j K i j−K 2

)
d3x . (37)

For hypersurfaces with constant curvature, we have the
FLRW-metric

gμν = −N 2(t)dt2+φ2(t)γi j

(
dxi + β i dt

)(
dx j + β j dt

)
,

(38)

where φ is the scale factor and β is the shift defined by ∂ t =
m + β. The Riemann curvature tensor for the synchronous
slicing with β = 0, N = 1 is

(3)Ri jkl = R

6

(
γikγ jl−γilγ jk

)
, (39)

and the Ricci-scalar

(3)Ri j = 2kγi j . (40)

We can easily calculate that

Ki j K i j−K 2 = −6

(
φ̇

φ

)2

(41)

(3)R = 6
k

φ2 (42)
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√
h = φ3. (43)

Henceforth, the Einstein–Hilbert action becomes a one-
dimensional problem, where the dynamical variable is the
scale factor.

SE H = 1

2

∫
dt6φ

(
−φ̇2+k

)
. (44)

The crucial step is now to view the curvature parameter k of
Y×R as a one-parameter family of curvature parameters of
Yt , so that it also depends on the scale factor φ (t). We see
that if

φ̇2 (t) = k (φ (t)) , (45)

then
(
Y× R, gμν

)
is a gravitational instanton because the

energy is minimized, and it satisfies

(4)Rμν = 0. (46)

This becomes clearer when we use the Hamiltonian approach.

L (q,q̇) = N
√

h
(
(3)R+Ki j K i j−K 2

)
. (47)

The canonical conjugate momentum is

π i j := ∂L

∂ ḣi j
= √

h
(

K hi j−K i j
)
. (48)

Its Legendre transformation gives the Hamiltonian density

H = −N
√

h
(
(3)R+Ki j K i j−K 2

)

−2β i
(
Di K−D j K j

i

)
. (49)

The Hamiltonian

H = −
∫
t

N
√

h
(
(3)R+Ki j K i j−K 2

)

−2β i
(
Di K−D j K j

i

)
d3x (50)

simplifies in synchronous gauge to

H = −
∫
t

N
√

h
(
(3)R+Ki j K i j−K 2

)
d3x . (51)

If Eq. (45) holds, the Hamiltonian constraint H = 0 is sat-
isfied, while the momentum constraint is automatically sat-
isfied in case of a FLRW-metric. Thus, we can consider the
action of which (45) are the equations of motion.

S [φ] = 1

2

∫
dt

(
φ̇2 (t)−k (φ)

)
. (52)

The minima associated to the potential are Ricci-flat spaces
and for multiple vacua there are interpolating solutions as
flow lines of the corresponding gradient flow. For more com-
plicated spacetimes, we cannot write the Einstein–Hilbert
action as a Yang–Mills action. The connection formulation
needed is called Palatini action.

Nevertheless, in the prescribed case general relativity is
reduced to the scale factors particle like motion through con-
figuration space feeling the potential k (φ). Upon identifying

k (φ (t)) = 2V (φ (t)) , (53)

we see that the scale factor is essentially a parametrization
of the path described by the instantons in field configuration
space of equivalence classes of SU (2)-Lie algebra valued
principal connections modulo gauge transformations. It fol-
lows immediately, that

φ̇ = ±√
k (φ)

⇐⇒ �E (�x, φ (t)) = ± �B (�x, φ (t)) (54)

because with k (φ) =
(

dW
dφ

)2
and V (φ) = 1

2

(
dW
dφ

)2
the

Hamiltonians can be written as

Hg = 1

2

∫
dt

(
φ̇2 ∓

(
dW

dφ

)2
)
+ [

W
(
φ+

)− W
(
φ−

)]

HY M = 1

2

∫
dt

(
φ̇2 ∓

(
dW

dφ

)2
)
+ [

W
(
φ+

)− W
(
φ−

)]

(55)

The last term is topological and has an integral representation

φ+∫

φ−

√
2V (φ)dφ =

∞∫

−∞

√
2V (φ)φ̇dt, (56)

which in the Yang–Mills case we recognize as proportional
to the second Chern-class

Q =
∞∫

−∞

√
2V (φ)φ̇dt =

∫
tr �E �Bd4x =

∫
Fμν∗Fμνd4x .

(57)

The Ricci tensor associated to the path is

(3)Ri j (t) = 2k (φ) γi j

= 2φ̇2 (t) γi j (58)

where γi j is the maximally symmetric metric on Y . We can
show not only that the above expression is the Einstein equa-
tions with a positive cosmological constant on Y , but that it
hides self-dual and anti-self-dual equations of SU (2) Yang–
Mills, which follows directly from (45) (Fig. 1). We can write

φ̇2 (t) = k (φ) =
∫

S3
|B|2 = 2V (φ (t)) , (59)

where we scaled away the unimportant constant factor. Split-
ting this into kink and anti-kink denoted by the superscript
+ and − respectively through taking the square root gives

φ̇+ (t) = √
2V (φ (t))

φ̇− (t) = −√
2V (φ (t)) (60)
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Fig. 1 Connection between gravitational instantons in the FLRW framework and (anti)-self-dual Yang–Mills

Because of (16) and (17) this is equal to writing

−Ei = A±i (�x, φ (t))

∂φ
φ̇± (t) = ±1

2
εi jk Fjk (61)

⇐⇒ ∂0 A±(φ)
i = ± ∗3 F

A(φ)
i
∈ Ω1

(
S3, su (2)

)
(62)

⇐⇒ F±μν = ± ∗ F±μν , (63)

where the last equation is defined on Y ×R. This concludes
that the pure Einstein equations for an isotropic and homoge-
neous space Y ×R with k (φ) ≥ 0 have an interpretation as
the combination of anti-self and self-dual SU (2)-instanton
equations on Y ×R. This subset of solutions to the pure Ein-
stein equations exists in Yang–Mills. The non-trivial solutions
(with non-zero winding) are characterized by vanishing four-
dimensional curvature and never vanishing three-curvature.
We can express the gradient flow equation (62) in terms of
vielbeins εαi as

hi j (t) = εαi (t) εβj (t) δαβ (64)

εαi (t) = φ(t)γ α
i

∂0ε
α
i (t) εβj (t) δαβ = φ̇2 (t) γi j = ∗3R = (3)Ri j , (65)

where R = dω + ω ∧ ω is the curvature- form of an so(4)-
connection ω and α, β ∈ 1, 2, 3. In a similar manner as
the Yang–Mills instantons are the gradient flow lines of the
Chern–Simons action functional, the gravitational instantons
are essentially the gradient flow lines of three-dimensional
Einstein–Hilbert action with a positive cosmological con-
stant, yet they are neither self nor anti-self-dual. The gravi-
tational action for an FLRW-space with 1 ≥ k (φ) ≥ 0

Sg
[
gμν

] =
t2∫

t1

∫
t

N
√

h
(
(3)R+Ki j K i j−K 2

)
d3x . (66)

written down in the language of connection one-forms is

SY M [A] = −1

2

∫
M

tr F ∧ ∗F + θ

16π2

∫
M

tr F ∧ F, (67)
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where A ∈ Ω1(M, so(4)). The choice of the gauge group
is interesting in so far that there is a FLRW-metric asso-
ciated to every gauge field in the theory, whose isometry
group is SO(4) for k (φ) > 0. Classically, this theory has
no propagating degrees of freedom. Instead, there are only
non-trivial tunnelling processes. The topological Yang–Mills
action enjoys a much larger gauge group than the ordinary
action. Under the action of this enlarged gauge group, the
curvature two-form takes the role of a gauge field. So, we
need to impose a gauge fixing condition of the field strength
as well in such a theory, but that is exactly what we did
to be able to understand general relativity as a Yang–Mills
theory. The requirement was that the field strength of every
connection is (anti)-self dual, expressed by the scale factor
saturating the Bogomolny-bound and non-abelian magnetic
and electric field being parallel. As a matter of this fact the
theory we described is actually defined by

ST [A] =
∫

M
tr F ∧ F

F = ± ∗ F. (68)

We can summarize this section by the statement that the
Einstein–Hilbert action on the subspace of superspace of
FLRW-metrics has the structure of (A)SD Yang–Mills the-
ory. BRST-quantization of (68) involves two additional gauge
fixings. In Witten 1988, a topological QFT was analysed,
which in fact can be reproduced by BRST-quantization of
the topological Yang–Mills action. It was also shown that
the BRST-quantized action is deeply related to the computa-
tion of Donaldson polynomials and Floer groups. Moreover,
it is basically the quantum field theoretic approach to the
computation of Donaldson polynomials, taking their values
in the dual of the Floer homology at the boundary. The fully
gauge fixed action (68) has the form

SDW =
∫

M
d4x

√
g tr

(
3

8
Fμν Fμν+3

8
Fμν∗Fμν

+1

2
�DμDμλ−iηDμψ

μ+i Dμχ
μν− i

8
�
[
χμν,χ

μν
]

− i

2
λ
[
ψμ,ψ

μ
]− i

2
� [η,η]−1

8

[
�,λ

]2
)
, (69)

where Dμ is the covariant derivative, �, λ and ψ, η, χ are
bosonic fields and fermionic fields, respectively, and χ is
self-dual. The correlation function with respect to this action
computes the Donaldson polynomials.

〈Oa1 · · ·Oad 〉 =
∫

e−
SDW (�)

�

d∏
i=1

Oai (�)D [�], (70)

with nice functionals O in the fields, which are collec-
tively denoted by �. The partition function is invariant
under the change of the metric and the strength of the cou-
pling as long as it is non-zero. Following Witten, for cycles

γ∈Hkγ (M,Z), where kγ = 0, ..., 4, one defines differential
forms W of degree kγ as

W0 = 1

2
tr (�∧�)

W1 = tr (�∧ψ)

W2 = tr

(
1

2
ψ∧ψ+i�∧F

)

W3 = i tr (ψ∧F)

W4 = −1

2
tr (F∧F) . (71)

The observables of interest are

O(γ ) =
∫
γ

Wkγ , (72)

to which one associates 4−kγ forms �γ on the Uhlenbeck-
compactified moduli space of instantons MI nst . The Don-
aldson polynomials are

〈Or1 · · ·Ord 〉 =
∫

e−SDW (�)/�
d∏

i=1

O(γi )(�)D [�]

=
∫
MI nst

d∏
i=1

�γi . (73)

The findings in this section can be easily generalized to three-
manifolds, which are simply connected, compact and bound-
aryless, since they are homeomorphic to the three-sphere.
Then the potential would still control the constant curva-
ture and its minima would still be corresponding to Ricci-flat
spaces. Further generalisation is also possible as long as the
resulting four-dimensional gradient flow lines are orientable
and admit a Riemannian metric but then the construction in
terms of the scale factor fails and it is unclear if there is a
four-dimensional action from which the instanton equations
can be derived by variational principles. It would be more
likely that we have to impose the (anti)-self-duality condi-
tion by hand as for example in type IIB string theory or that
we have to go over to singular instantons, where the singu-
larities are knot cobordisms (Sect. 7). However, these are
rampant assumptions.

For more complicated spacetimes not only depending on
an overall volume deformation we cannot write the Einstein–
Hilbert action as a Yang–Mills action. The corresponding
connection formulation is the Palatini action and from its
self-dual version the constraint equations of general rel-
ativity can be expressed in terms of Ashtekar variables,
which are the starting point of loop quantum gravity. How-
ever, three-dimensional general relativity with cosmological
constant can be expresses as a SO(4)-Chern–Simons the-
ory, which might be as satisfying considering the fact we
can represent spacetimes as families of three-dimensional
leaves. As described, the flat connections are the critical
points, which from the point of view of general relativity
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are Ricci-flat spaces. Additionally, we have instantons repre-
senting cylinders Y×R. So, a general four-dimensional the-
ory might not be needed when we restrict to (anti)-self-dual
one-parameter families. Concerning the generalisation to the
gauge group SO(3, 1), Witten argued that 2+ 1-dimensional
gravity with positive cosmological constant equals SO(3, 1)
Chern–Simons theory. Accordingly, gradient flow lines of the
functional would be SO(3, 1) Lie algebra-valued instantons
but then we had four-dimensional manifolds with two-time
directions or the instantons as a parameter family of a spatial
coordinate. The SO(4) stems from the fact that we consider
3-dimensional gravity instead of 2+ 1-dimensional, such
that the associated instantons are SO(4) Lie algebra val-
ued. This might be interpreted by the fact that every gauge
field represents a FLRW-metric with semi-definite curvature
parameter, which isometry group is SO(4).

3 General relativity as a stack of N D3-branes

As an aside on instantons, in the SO (4) situation we have

A(k=kL−kR) =
(

ASU L (2) 0
0 ASU R(2)

)

= i f (x)

2

(
ηa
μνσ

a xν 0
0 η̄a

μνσ
a xν

)
, (74)

where f (x) solves the cubic wave equation
(
�− ∂2

t

)
f −

f 3 = 0, ηa
μν , σ a are the t’Hooft and Pauli matrices respec-

tively and kL > 0, kR < 0 are the windings of the respective
sector The action is

S = 8π2

g2 (kL − kR) (75)

In the semiclassical approximation the Yang–Mills vacuum
decomposes into enumerable topological sectors connected
by tunnelling in configuration space. So, in principle there
should be a map from the moduli space of the theory we
just established into the space of Riemann four-surfaces of
genus and in a naive path integral approach by summing over
the field configuration space we would also sum over a sub-
space of Riemann surfaces. This looks like four-dimensional
quantum gravity at least for a subset of maximally symmet-
ric, positively curved surfaces. It is also worth pointing out
that the trivial vacua of the YM action are gradient flow lines
of the Chern–Simons action functional as well because the
instanton equation becomes trivial. One might say that the
Minkowski metric is a trivial gravitational instanton not leav-
ing pure gauge. It is therefore an identity component gauge
transformation under which the Chern–Simons functional is
invariant. More generally we take a SU (2)-path A(t) on
S3 × [

ti , t f
]
. Since Ati and At f are related by a gauge trans-

formation, we can define a connection Â on a bundle over

Fig. 2 The semiclassical vacuum structure of Yang–Mills theory

the torus S3 × S1. In the case of SO(4) it follows that
(
C S

(
At f

)− C S
(

Ati

))× (
C S

(
Ati

)− C S
(

At f

))

= −1

2

∫
S3×S1

〈FÂ ∧ FÂ〉 ×
1

2

∫
S3×S1

〈FÂ ∧ FÂ〉dt (76)

Expression (76) is an element of Z⊕Z and zero for identity
component gauge transformation because start and endpoint
of the paths are identical (Fig. 2).

The theta-vacuum picture is of course far from the true
ground state of quantum Yang–Mills, which is a strongly
coupled theory. However, it tells us that in the weak coupling
regime the fluctuations of the vacuum sectors tunnel through
the wells and all sectors should be described as a single self-
interacting system. This vacuum structure looks like—and
can be interpreted as—the gravitational background formed
by N D3-branes because the theta-vacuum is essentially their
gravitational imprint in the sense that the three-curvature
forms a periodic pattern. What we have established is thus
a field theory in the background of N D3 branes. Astonish-
ingly, we came from general relativity of maximally sym-
metric positively curved spaces to a landscape of branes.
However, it fits very nicely with the duality between open
bosonic string theory that requires the presence of D-branes
and closed string theory, where the branes act as sources of
Kähler fluxes. Additionally, the quantized topological Yang–
Mills theory can be regarded as a twisted N = 2 SUSY
Yang–Mills theory in four dimensions, which is identical to
two out of three possibilities of twisting its N = 4 cousin,
which lives on a stack of D3 branes. We propose therefore
that general relativity for the subset of solutions discussed
above is dual to a large N topological open bosonic string
theory. The large N duality between open and closed topo-
logical string theory is due to Vafa and Gopakumar. To make
sense of the limit from the gauge theory perspective [16],
one keeps the t’Hooft coupling λ = g2

Y M N fixed while tak-
ing N → ∞. Obviously the t’Hooft limit is classical. The
propagator of the gauge particles is

〈Ai
μj (x)Ak

νl(y)〉 = �μν (x − y) δi
lδ

k
j (77)

giving rise to the double line notation. In the so-called planar
limit, only the graphs are dominant, which wrap around the
sphere. In 1997 it was conjectured by Maldacena [17] and
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others that N = 4 SU (N ) SYM is dual to Type IIB super-
gravity on Ad S5× S5. All these arguments fit quit well with
fact that string theory at long distances gives rise to a the-
ory of quantum gravity. However, for our theory here there
is already a correspondence between the gauge fields and
four-dimensional manifolds as cobordisms.

4 Self-dual general relativity on Y × R as a membrane
field theory

It is a nice matter of fact that the sphere on which our theory
lives has a special relationship with open and closed string
field theory. The starting point is the topological non-linear
sigma model from a twist of a N = 2 superconformal sigma
model introduced by Witten living on a two-dimensional
Riemann surface g with genus g. The two possibilities of
twisting are known as the A-model and B-model. In this
paper we will be particularly concerned with the former. The
target space in our specific case is a Calabi–Yau manifold
X = T ∗S3, which is Kähler. This so-called deformed coni-
fold admits a Ricci-flat Kähler metric Gi j . We follow closely
[10,18,19].

One version of the twisted σ -model, the A-model, which
we define in more detail for convenience, can be compactly
written as

S = −i {Q,V} + t
∫
g

ϕ∗ (J ), (78)

where the last term is topological, depending on the homo-
topy of the map ϕ : g −→ X . It vanishes for the deformed
conifold according to the vanishing theorem. V is defined as

V = t
∫


d2zG I J̄

(
ψ I

z̄ ∂zϕ
J̄ + ∂z̄ϕ

Iψ J̄
z

)
. (79)

It is important to note that there is a one-to-one correspon-
dence of theQ-cohomology with the deRahm comohology of
the Kähler target X and that with the restriction to (1,1)-forms
the A-model computes deformations of the Kähler moduli.
Meaning, thatQ has an interpretation of an exterior derivative
taking p-forms to (p + 1)-forms. Picking local coordinates
Φ i on X , we have

S = 2t
∫
g

dzdz̄

[
1

2
Gi j∂zΦ

i∂z̄Φ
j + iG I J̄ψ

I
z̄ Dzχ

J̄

+G Ī Jψ
Ī
z Dz̄χ

J − RI Ī J J̄ψ
I
z̄ ψ

Ī
z χ

Jχ J̄
]
, (80)

where Dα is the covariant derivative, χ∈ϕ∗(T X) are Grass-
mann fields and ψ I

z̄ ∈ϕ∗(T (1,0)X) and ψ Ī
z ∈ϕ∗(T (0,1)X) are

the only non-zero components of a Grassmannian one-form.
Most importantly

Tαβ =
{
Q,

δV

δgαβ

}
= {

Q, bαβ
}
, (81)

for the theory is formally topological. So that after parametriz-
ing the worldsheet by σ, τ with 0 ≤ σ ≤ π , −∞ < τ <∞
and additionally choosing the metric ds2 = dσ 2 + dτ 2, we
get the Hamiltonian

{Q, b0} = L0 =
π∫

0

dσT00

=
π∫

0

dσ

(
−1

t
Gi j δ2

δϕi (σ ) δϕ j (σ )

+tGi j dϕi dϕ j

d2σ

)
+ f ermions. (82)

This follows immediately from the self-duality of ψ =
ψσdσ +ψτdτ , because it enables us to express ψσ in terms
of ψτ . Reading of the canonical commutation relation from
the action[

dϕi

dτ
(σ ) , ϕ j (σ

′
)

]
= 1

i t
Gi jδ

(
σ − σ

′)

{
ψτ (σ ) , χ(σ

′
)
}
= 1

t
δ
(
σ − σ

′)
(83)

we can write dϕ/dτ through δ/δϕ. We should also mention
that the large t behaviour is classical and exact. It is now
required that the boundary condition preserves the BRST
symmetry, so that it should be mapped into a Lagrangian
submanifold Li of the target Calabi–Yau, which in our case
is the sphere. In this way we can wrap N D3-branes around
S3. The string functional Ψ of bosonic open string theory
therefore contains constant maps from the boundary of the
worldsheet into the targets submanifold, as well as commut-
ing and anticommuting zero modes. It takes values in a Z-
graded algebra A such that the degree Ng = 1 and that for
every gauge parameter � with degree 0, Ψ is invariant under
the very large set of gauge transformations

Ψ→ δΨ = Q�+gs (Ψ  �−�  Ψ ) . (84)

The star product is a map  : A ⊗ A → A such that Ng is
additive, which is the ghost number. The action functional of
the string field is

S = 1

gs

∫
Ψ  QΨ+2

3
Ψ  Ψ  Ψ , (85)

where the integral has ghost number Ng = −3. From the
Hamiltonian follows in particular that

Ψ = c (q)+ χa Aa (q)+
3∑

p=1

χa1 ...χap A(p)
a1...ap , (86)

where thanks to the D-branes the functional is U (N ) Lie-
algebra valued. In contrast to the physical open bosonic
string, in the large t limit the energy eigenmodes for the
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topological string decouple and the field is cut down to a
single excitation

Ψ = χa Aa (q) . (87)

This lowest lying mode is nothing else than an u (n)-valued
one form, on which the BRST charge acts as an exterior
derivative. Hence the string field reduces to a point. This
induces the dictionary

 −→ ∧
Q −→ d∫
−→

∫
Y

for the A-model reduces to ordinary Chern–Simons theory
with

gs = 2π

k + N
, (88)

where k is the level of the CS-theory. It was now first postu-
lated by Gopakumar and Vafa, what is known as GV-duality,
that the large N open topological string on the deformed coni-
fold is dual to the closed topological string on the resolved
conifold. The effect of the D-branes wrapping the 3-cycle is
the creation of a Kähler flux Ngs on the S2 linking the 3-
cycle. To explain this, we take the Lagrangian submanifold
L to be intersected by the 3-cycle. Then the 2-cycle, which
is the boundary of S3 links the submanifold. Wrapping N
branes creates a Kähler flux through the otherwise homolog-
ically trivial boundary

t =
∫

S2
ω = Ngs . (89)

It follows that the D-branes act as a delta source for the flux.
They can be imagined as sitting on the tip of the deformed
conifold. Making the geometric transition to the resolved
conifold, the nontrivial S2 on the tip has volume t = Ngs

and due to the lack of nontrivial cycles the branes have disap-
peared. The flux of the D-branes created a Kähler deforma-
tion of the metric leaving the complex structure untouched.
Hence, closed and open theories are dual and connected by a
geometric transition of the conifold. Their partition functions
are identical.

The goal of this section is now to formulate a string field
theory that reduces to the topological Yang–Mills theory (68).
We start by pointing the reader’s attention towards the fact
that the classical configurations of the above topological σ -
model are pseudo-holomorphic maps. From the Hamiltonian
(82) followed that string fields were functionals of

ϕ : I −→ T ∗S3 (90)

such that ∂ I is mapped to S3. Instead, we want to consider a
one-parameter family of such maps

t −→ ϕ(t),

t ∈ R. This is a path in the infinite-dimensional loop space
L S3 and associated to it is the one-parameter family of string
functionalsΨt (ϕ(t), ...), which is a path in the infinity dimen-
sional space of string functionals. These families should be
subject to some membrane σ -sigma model. Hence, it is a
point in the path space of string functionals of loops P S3.
Therefore, we have the worldsheet metric

ds2 = δi j dσ
i dσ j (91)

with
(
σ 0, σ 1

) = (σ, τ ) and the Euclidean metric tensor δi j

as a foliation of the worldvolume metric

ds2 = dt2 + δi j dσ
i dσ j . (92)

The claim is now that we can write ϕ (t) as a map from the
one-parameter family of worldsheets into a one-parameter
path of deformed conifolds inside a manifold X complex
dimension four.

ϕt : I × R −→ T ∗
(

S3 × R

)
. (93)

This means we consider the worldsheet coordinates to be
depending on the parameter t . We can imagine this as lifting
the dimension from a string to a membrane. The construc-
tion of the “membrane field action” is in our case closely
connected to the background independence of the topolog-
ical string. To see this, [20,21] we have to observe that the
open string field theory has a cyclic L∞-structure when a
fixed representation in terms of N × N matrices is chosen.
Moreover, the string field action (85) can be viewed as the
action functional of a ∞-Chern–Simons theory. It can be
defined by the invariant polynomial on the ∞-Lie algebroid
inducing a ∞-Chern–Weil homomorphism. This means the
string field is a connection on a ∞-bundle and the string
field Lagrangian sends it to the n-circle bundle. Let l denote
the L∞-algebra and W(l) its Weil algebra. We can write the
transgression between (−) ∈W(l) and the cocycle as

dW(l)CS = Q

(
Ψ QΨ+2

3
Ψ Ψ  Ψ

)
= (−,−) . (94)

Since W(l)has trivial cocycle cohomology there is a CS ∈
W(l) for every (−). More generally, we may write the Chern–
Simons form with a n-ary braket [−, · · · ,−]n : l⊗n −→ l

as

C S (A) = 1

2
(Ψ  QΨ )+

∞∑
n=3

1

n! (Ψ [Ψ, ..., Ψ ]n , Ψ ) . (95)

In analogy with ordinary Chern–Weil theory the Lagrangian
of Witten’s open bosonic string field theory is generated by

dW(l)CS =F  F (96)
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Due to the fact that this is part of the Weil-algebra, it is also
BRST-closed. This motivates us to define

S =
∫

F  F , (97)

where F = QΨ+gsΨ  Ψ . This new string field, however,
is now a functional of pseudoholomorphic maps from the
worldvolume of a 2-Brane 3 into an eight-dimensional tar-
get T ∗

(
S3 × R

)
such that we have maps ϕt : ∂3 −→

T ∗
(
S3 × R

)
and ∂ I × R is mapped to S3 × R. Thus,

we have also one-parameter families of three-dimensional
Lagrangian submanifolds foliating four-dimensional sub-
manifolds M = S3 × R. We define the integral to have
the ghost number of the vacuum, which is −4χ (), where
dimC(X) = 4 is the complex dimension of the target. The
string theory is not anymore defined on a disc but on a cylin-
der of the disk crossed with the real line. Therefore, we have
to soak up an additional zero mode in that direction giving a
total of four zeromodes. As mentioned earlier, the target is a
one-parameter family of deformed conifolds. We define two
string field theories S0

[
Ψ (0)

]
and S1

[
Ψ (1)

]
on each of the

boundary components of this cylinder, respectively.

∂T ∗ (M) = T ∗S3 ∪ T ∗S3. (98)

The two theories are equivalent up to homotopy

S0

[
Ψ (0)

]
= S1

[
Ψ (1)

]
+

∫
F ∗ F︸ ︷︷ ︸
=const

. (99)

In particular, there should be an intertwining solution relating
both theories for which (97) is a positive constant. With the
same arguments that reduced the A-model to Chern–Simons
theory on the deformed conifold, (97) reduces to the action
of topological Yang–Mills. We fixF through the introduction
of an operator o, which maps elements of the graded A∞-
algebra with ghost number Ng to elements with ghost number
d − Ng , where d is the dimension of the submanifold. We
employ that

F± oF = 0. (100)

When the ghost number reduces to the rank of forms, the
operator o reduces to the Hodge star and (100) to the (anti-
)self-dual Yang–Mills equations in the case when d = 4. We
have also that

Q∗ = − (−1)d(Ng−1) oQo (101)

〈Ψ,Q ∗!〉 = 〈QΨ,!〉 (102)

A dynamical string field satisfying (100) is also a solution of

QF+ gmF  Ψ = 0. (103)

In the limit where the membrane coupling vanishes, the equa-
tion of motion becomes

Q2Ψ = 0, (104)

which is the nilpotency condition of the BRST charge. The
question is now how we get back to (anti)-self dual SO(4)
Yang–Mills and general relativity. Obviously, the first thing is
that the branes have to disappear. Henceforth, in analogy with
the GV-duality, we make the geometric transition and arrive
at a one-parameter family of resolved conifolds. The family
of S2 on the tip of the resolved conifolds over M = S3 × R

parametrizes the constant complex structure J on the tangent
bundle T M . Moreover, we view the resolved conifold as a
spherical fibration over S3

o : S2 × Y −→ S3. (105)

Such that the family of conifolds is the bundle

E (M) : Y × R× S2 −→ Y × R. (106)

Each fibre of E (M) is a sphere S2. We can view them as fibres
of a SO(4)/U (2) bundle, which is the associated bundle to
the principal bundle P of orthonormal frames over M . The
bundle P is the SO (4) bundle of orthonormal frames on M .
The associated bundle E

E (M) = P ×SO(4) SO(4)/U (2) (107)

is actually the twistor space P of M . It is an interesting fact
that the Penrose–Ward transformation [22–24] relates solu-
tion to the (anti)-self-dual Yang–Mills equations on M and
solutions to the holomorphic Chern–Simons equations on the
complex twistor space over M . We only considered the A-
model in this work. However, in this context it should be
noted that under similar circumstances previously described,
the B-model reduces to holomorphic Chern–Simons theory
and the membrane field action could be equally derived by
considering coherent sheafs instead of instantons. There-
fore, one might expect that the relation of the A- and B-
model unfolds on the target through a lift of the SO(4)
bundle to a holomorphic bundle over the complex space
P = (E (M) , J), where J is an integrable almost com-
plex structure on the twistor space. Hence, the Penrose–Ward
transform should relate A- and B-model topological strings
and branes. In Sect. 6 we delve deeper into the relation from
the viewpoint of the worldvolume. It implicates a deep rela-
tion between Donaldson–Witten theory and the topological
string and membrane models.

5 Relating A- and B-model topological strings through
Penrose–Ward transform

I want to get into more detail about the relation of the two
different topological string theories mentioned in the last sec-
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tion. For a detailed discussion of string theories and twistor
spaces see [25] and the references therein. We saw that the
family of resolved conifolds are the twistor space over M ,
which is the associated bundle to an SO (4) bundle. This
space has an almost complex structure J as the tensor sum of
vertical and horizontal subspaces of the tangent space T E .
We define the holomorphically trivial bundle ε over the com-
plex twistor space P. There is a projection

π : P −→ M ∀ x ∈ M. (108)

We have two commuting, two-dimensional spinor repre-
sentations usually denoted by μ = μα and λ = λα . We
will now briefly describe the ambitwistor space as a third
order thickening of the Klein-quadric. There are two ways
to parametrize the twistor space P either we demand that
λα̇ �=(0, 0)T or μα �=(0, 0)T . It follows that we have the coor-
dinates

(
ωα, λα̇; ηα̇, μα

)
on P×P∗. By covering the sphere

with two patches, we have

P× P∗ = O (1)⊕ O (1)× O (1)⊕ O (1)

−→ CP1 × CP1. (109)

The ambitwistor space is just the gluing of the twistor space
and its dual. Next, we split the principal SO(4) bundle
into self-dual and anti-self-dual sub-bundles W± with their
respective (anti)-self-dual connections A±. We have the iden-
tification P = O (1) ⊕ O (1) −→ CP1. With the help of
(108) we define E− = π∗W− through A(0,1) = π∗A− and
F(0,2) = π∗F−, such that

F(0,2) = dA(0,1) +A(0,1) ∧A(0,1) = 0. (110a)

Likewise, for the ASD bundle

F(2,0) = dA(1,0) +A(1,0) ∧A(1,0) = 0 (110b)

on the dual twistor space P∗. This can be constructed by pro-
jectors onto the respective holomorphic sectors. Equations
(110) are obtained by variation of the holomorphic Chern–
Simons functional∫

P
Ω ∧ C S (A)(0,3), (111)

where Ω is a (3, 0) form. Hence, we have a correspondence
between solutions of the (anti)-holomorphic CS action on the
twistor space P and its dual P∗ and the (A)SD SU (2) Yang–
Mills equations on M . If the B-model-part inside the topo-
logical M-theory reduces to (110) on M = Y ×R and the A-
model-part to (A)SD Yang–Mills, then they are related by the
Penrose–Ward transform, which involves a holomorphic lift
of the associated bundle, and dual from the viewpoint of the
target. In the bulk the distinction between the A-model and
the B-model vanishes, which is reflected by the fact that every
(anti)-self-dual connection on the target of the M-model cor-
responds to a pseudo-holomorphic structure on the complex
bundle over the twistor space. The topological membrane

theory splits at the boundary Calabi–Yau threefold because
of the possibility to blow up the singularities in two different
ways, and with it to wrap the respective topological branes
around the cycles. One possibility to do this is controlled by a
complex parameter, while the other is controlled by a Kähler
parameter. We may describe this as the collapse of the respec-
tive cycles of a toric fibration [26,27] that describes certain
algebraic manifolds including the conifold. The M-model is
sensitive to which cycle collapses reflecting the sensitivity
of the B-model regarding the complex structure and on the
other side the A-model’s dependence on the Kähler moduli
of the target. Another way to understand this, is to look at the
behaviour of the couplings, which we do in the next section.
Although the discussion focused on the different resolutions
of the conifold, the statements made in this section hold for
a general four-manifold M as long as it is orientable, and it
admits a Riemannian metric. Furthermore, one follows that
the discussion in the last section can be generalized to cotan-
gent spaces of such M . This points also to the existence of
holomorphic general relativity.

6 The membrane sigma-model

We consider again the membrane field theory with action

S =
∫

F  F, (112)

whereF is a vector in a homotopy Lie algebra L∞. In general,
it is defined by

F =
∞∑

n=0

1

n!
[
Ψ n] , (113)

with the membrane family of string fields. Integral and com-
position operations are given by
∫

Ψ =
∫

Dϕ (σ (t))
∏

0≤σ(t)≤ π
2

δ [ϕ (σ (t))

−ϕ (π−σ (t))]Ψ [ϕ (σ (t))] , (114)

which is just an extension of the usual string field operation
over the real line. Similarly, we can define a star product that
glues different membranes.
∫

Ψ1 ... ΨN

=
∫ N∏

i=1

Dϕi (σ (t))
N∏

i=1

∏
0≤σ(t)≤ π

2

δ
[
ϕi (σ (t))−ϕi+1 (π−σ (t))

]
Ψi [ϕi (σ (t))]. (115)

We set all higher products except for the two lowest equal
to zero and define the operator Q

′ = Q + Ψ . The immense
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gauge invariance of (112) is expressed as

δΨ = Q
′
� =Q�+Ψ � (116)

δF (Ψ ) = Q
′
(δΨ ) = � F. (117)

The membrane field Ψ is a functional of maps of the under-
lying membrane σ -model from the worldvolume of the 2-
brane 3 into the target space X . By the standard AKSZ
construction [28] of a higher Poisson structure, the σ -model
is constituted of Courant algebroid-valued differential forms
ξ : 3 → X , a one-form α ∈ Ω1 (3, ξ

∗E) and a two-form
F ∈ Ω2 (3, ξ

∗X), where E = T X ⊕ T ∗X = L+ ⊕ L−
is the second order bundle with coordinates

(
I, J̃

)
, where

I = 1, ..., 2d and J̃ = 1, ..., 4d. We are also choosing
the generalized metric η Ĩ J̃ and define the projection of the
anchor ρ I

J̃
= (

ρ I
J , ρ̃

J I
)

of E by a map ρ : L+ → T X

with ρ I
J = ρ I

J + ηJ K ρ̃ I K . There is also the three-form
TĨ J̃ K̃ (eĨ eJ̃ eK̃ ). After projection onto the DFT vectors, the
O (d, d,Z)-invariant action reads

SCourant =
∫
3

FI∧dξ J+ηI Jα
I∧dα J−ρ I

J (ξ) α J∧FI

+1

6
TI J K∧α I∧α J∧αK

+
∫
∂3

1

2
g

I J
(ξ) α I ∧ ∗α J , (118)

where g is the DFT-projection of the metric on E and ∗ is
the Hodge-operator on the worldsheet. Since Courant alge-
broids are in bijection with the AKSZ sigma-model, the
above expression is an enlargement of the AKSZ construc-
tion. We do not want to go into more detail about the tech-
nicalities, which can be found in [29,30]. Furthermore, we
define again 3 = (I×R)×Rt and ∂3 :=2 = I×Rt

and X = C3×T ∗Rt . The complex dimension of the tar-
get dimC (X) = 4, because we choose C3 = T ∗Y to be a
Calabi–Yau three-fold (C3,ω) and T ∗Rt� C. X then has the
symplectic structureω⊕ωR2 . We demand that ∂3 is mapped
onto Lagrangian submanifold M⊂X with dimC (M) = 2
and M = Y×Rt . One can understand M as Lagrangian
cobordisms [31,32] between lower Lagrangian submanifolds
Li = Yi . With some important additional requirements such
as monotony and support, they form a stable (∞, 1)-category,
which was conjectured to be identical to the partially wrapped
Fukaya category of C3 [33]. In this way the instanton Floer
homology, Lagrangian Floer homology and instanton knot
homology are part of (112). It is comfortable to introduce
some additional structure on Y that allows for composition,
aZ-graded Floer homology and the possibility to orient mod-
uli spaces of polygons in Floer theory. That is, we regard the
Y and M as Lagrangian branes. Returning to the maps ξ of
the three-dimensionalσ -model, as prescribed, the t-boundary
2 = I × Rt is mapped to the Lagrangian cobordisms, but
there are also the maps ϕ:2 → C3 with 2 = I × R,

such that ∂ I is mapped to Y , where I := ∂2 = [0,π ].
In general, the holomorphic maps ϕ : ∂3→C3 are classi-
fied by the homology class H2 (C3,Z) and are subject to
the A-twisted nonlinear sigma-model, whose path integral
computes Gromov–Witten invariants. They count the virtual
number of curves inside the moduli space of ϕ. One the other
side we have the B-twisted model on ∂3 that does not count
stable maps but objects in the derived category of coherent
sheaves DbCoh(C3) on C3. In particular DbCoh(C3) can be
thought of the category of D-branes of the B-model, while
the Fukaya category Fuk(C3), a derived version of an A∞-
category of certain Lagrangian submanifolds of C3, is the
category of the A-branes. Kontsevich’s homological mirror
symmetry [34] states that for two mirror Calabi–Yau varieties
A and B it holds that Fuk(A) ∼=DbCoh(B). The deforma-
tion of objects in the derived category of coherent sheaves
is a L∞-algebra. Moreover, the B-model computes the vir-
tual number of points inside the moduli stack of semi-stable
objects in DbCoh(B), which are ideal sheaves. This number
is actually an invariant of the underlying symplectic variety
called Donaldson–Thomas invariant. The correspondence of
Gromov-Witten and Donaldson–Thomas invariants on C3 is
a different manifestation of the duality between the two topo-
logical string theories. In particular it is the manifestation
of an S-duality since the GW partition function is evaluated
when the string coupling gm |∂3

= gs is small, while the par-
tition function for the DT invariants is evaluated in q = e−gs

and valid when 1/gs is small [35]. Obviously both models
should arise as boundary theories of the membrane sigma-
model, and this is indeed the case. After gauge fixing in the
bulk described in [36], A- and B-model arise in the frame-
work of generalized complex geometry. Given a generalized
complex structure

J
I J =

(
J i

j π i j

0 −J i
j

)
, (119)

where π i j is the Poisson bivector, the doubled Courant
sigma-model with the DFT projection α I =

(
1

gm
qi ,gm pi

)

SDFT =
∫
3

gm

(
Fi dξ

i−pi dqi+J i
jFi q

j+∂i J k
i qi q j pk

)

+ 1

gm

(
π i jFi p j−1

2
∂iπ

jkqi p j pk

)
(120)

reproduces the AKSZ description of the A-model and the
B-model on the boundary after introducing the membrane
coupling gm = 1 and setting J = 0 and π = 0, respectively.
The Hamiltonian is given by

HJ,π = 1

gm

(
π i jFi p j−1

2
∂iπ

jkqi p j pk

)

+gm

(
J i

jFi q
j+∂i J k

i qi q j pk

)
(121)
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It holds that

gm = gA = 1

gB
(122)

We see that for gm � 1 and gm � 1 the boundary theories
are also reducing to the AKSZ forms of the A- and B-model
respectively. Namely the Poisson and the complex Courant
sigma model. This means that modulating the coupling has
the same effect as continuously exchanging complex and
Poisson structure, which is a manifestation of a topologi-
cal U-duality. The two Kähler forms of the boundary models
are related through the membrane coupling

gmkB = kA. (123)

While the last section drew the unification of both models
from the viewpoint of the target in form of the Penrose–Ward
transform, the membrane sigma-model shows this unification
on the side of the worldsheet/worldvolume. The partition
functions of the boundary theories are just the generating
functions for the GW and DT-invariants, and we know at
least what the membrane field theory computes on a Calabi–
Yau fourfold of the form X = T ∗Y×T ∗Rt : The Donaldson-
Polynomials. Moreover, the partition function of the mem-
brane sigma-model and the Donaldson–Witten model should
coincide. In the last section we will see that his is only true
in the perturbative regime.

7 Homological mirror symmetry

It should be interesting to what extend we can gain new
insights into the mirror duality of the boundary models. Mir-
ror symmetry is a kind of T-duality first observed by physi-
cists in the context of topological string theory, which is char-
acterized by exchanging the symplectic structure of the target
with a complex structure. At infinity resolved and deformed
geometries as well as the singular are topological equiva-
lent. As described previously, they look like a sphere bun-
dle over the base manifold that we can associate with its
twistor space. In general, the B-branes are represented by
holomorphic vector bundles. The previous sections suggest
that the topological membrane model links certain Calabi–
Yau three-folds with their mirror. That is, while the objects
of the respective derived categories are linked by the mir-
ror transform of the underlying target space, the morphisms
between them, which are subject to the parent membrane
theory, are in bijection through the Penrose–Ward transform.
Moreover, in this sense topological M-theory does not only
relate different Fukaya-categories to each other in terms of
Lagrangian correspondences, it also relates the correspond-
ing categories of derived sheaves. Therefore, it is helpful
to analyse the stable (∞, 1)-category with the Lagrangian
cobordism as morphisms through the instanton Floer homol-

ogy similar to how the symplectic Floer homology is imple-
mented into the Fukaya category. The new important ingre-
dient in our reasoning is the Atiyah–Floer conjecture that
states

H∗ (Y )∼= H F
(

R
(

H1
g

)
,R

(
H2

g

))
. (124)

Here Y is a homology 3-sphere, Hi
g are the handle bodies

satisfying Y = H1
g∪g H2

g produced by Heegaard splitting

along the surface g and R
(

Hi
g

)
is the space of flat connec-

tions on g that extend into the Hi
g . The invariant H∗ (Y )

is determined by the Floer homology that is the homology
of the chain complex defined in Sect. 1. Roughly speaking,
the conjecture tells us that symplectic Floer homology and
instanton Floer homology are in congruence. A proof is still
missing due to some obstructions related to the singularity
of the spaces of flat connections and the resulting problems
in defining the right side of (124) in a rigorous way [37,38].
On the level of our membrane field theory this conjecture
is restated by saying that the stable (∞, 1)-category of L
with Lagrangian cobordisms as morphisms M is identified
with the partially wrapped Fukaya category. In particular the
additional structure includes a vector bundle E , and to the
flat connections A we associate the Lagrangian branes, and
the Lagrangian cobordisms M correspond to (anti)-self-dual
instantons that are the flow lines of the Chern–Simons action
functional. This association became evident in the first sec-
tion. On the other hand, we have the Fukaya category utiliz-
ing symplectic Floer homology and Gromov–Witten theory,
where the flow lines are holomorphic strips, and the critical
points are the intersection points of certain Lagrangian sub-
manifolds. The equivalence of both categories includes the
statement of the Atiyah–floer conjecture.

The next step in our reasoning is the fact that the gra-
dient flow equations on the four-manifold M , that are the
(anti)-self-dual Yang Mills equations, are equivalent to the
Hermitian–Yang Mills equations.

F = ± ∗ F⇐⇒F(2,0) = F(0,2) = 0, k ∧ F = 0. (125)

This was basically the statement of the last section because
there is no difference to holomorphic Chern–Simons in the
six-dimensional case. A solution A to these equations is a
Hermitian–Einstein connection and corresponds to a pseudo-
holomorphic structure over the twistor space. In this sense
an (anti)-self-dual connection A is also a Hermitian–Einstein
connection A. The Kobayashi–Hitchin correspondence [39–
41] ensures that every connection A corresponds to a semi-
stable holomorphic bundle ε. The sections of such a slope-
semi-stable holomorphic vector bundle form the bounded
derived category of coherent sheaves DbCoh(C3), where the
states satisfying the slope stability condition, which are bet-
ter known among physicists as BPS-states. This establishes
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the equivalence of A-branes and B-branes through the cate-
gory involving the Lagrangian cobordism in the sense that the
morphisms of both categories are related by the Kobayashi-
Hitchin correspondence and the Penrose–Ward transform.
The equivalence is also embodied in the generalized twistor
correspondence, which transfers data on the manifold M
((anti)-self-dual bundles) to holomorphic data on the twistor
space over M (holomorphic bundles over the twistor space).
The T-duality together with the S-duality discussed in the
last section point towards a topological U-duality of the topo-
logical M-model. This means that while changing the cou-
pling of the 2-branes continuously we describe a path in the
compactified space of N = 2 superconformal field theories
M̄N=2 in the two limits the sigma-model degenerates into the
two boundary topological strings. Obviously, the topological
membrane model relates different topological string theories
on different backgrounds with each other. This can either be
two A-models, two B-models or A-model and B-model. It
turns out that the above description of the topological M-
model enables a very clear geometric picture of mirror sym-
metry, which reproduces the approach in [42]. The boundary
of M̄N=2 is the stratified space of CFTs with Calabi–Yau tar-
get. The coupling gm divides it into three-sectors: The orbit of
constant gm = 0 describes the A-stratum, while for gm = ∞
we are in the B-stratum. Additionally, at 0 < gm < ∞
we have the “M-stratum” with a special coincidence orbit
at gm = 1. The A-stratum is parametrized by equivalence
classes (JWR

+ · gW , BW ), where g is a Calabi–Yau met-
ric and B is a B-field. Likewise, (JW∨R+ · gW∨ , BW∨) are
classes parametrizing the B-stratum. Last but not least in the
M-stratum we can pick ([gW ] , BW , [gW∨] , BW∨) as local
coordinates, where [g] is a class of metrics. A mirror trans-
formation is nothing else than the continuous path γ (gm) in
∂M̄N=2 with gm ∈ [0,∞] connecting the A-stratum and the
B-stratum. The variation of gm is actually equal to the action
of an additive semigroup because with

gm = gA = 1

gB

and so, with (gA, gB ) ∈ R
+ × R

+, the action

([G X ] ,BX , [G X∨ ] ,BX∨)

"→ (
egA [G X ] ,BX ,e

gB [G X∨ ] ,BX∨
)
. (126)

varies the size of two tori of a Narain lattice #d,d defined by
Z

2d with the quadratic form Ω

Ω (xi , yi ) =
n∑

i=1

xi yi . (127)

We can write it as the sum of two lattices of rank d, #d,d =
L ⊕L∨. The symmetry operations of#d,d are T-dualities and

are identical to the symmetries of the covariant DFT theory

Aut
(
#d,d ,Ω

)
= O (d,d,Z) . (128)

Thus, membrane fields describe geometric transitions in
terms of paths γ (gm(t)). The geometric picture so far did not
include branes, but it turns out that they transform as half-
spinor representation under O (4, 4,Z). Consider the brane
charge μ as the generalized Chern character of the bundle E
associated to a brane. We can describe the lattice of branes
by a group K i in K-theory because the map μ describes
a correspondence between branes and classes in K-theory.
Hence the full lattice is #d,d ⊕ K i . In particular even and
odd-dimensional branes transform as conjugate spinor rep-
resentations of the U-duality group G = O (5, 5,Z)

K 0 ∼=
even∧

L∨

K 1 ∼=
odd∧

L∨ (129)

To map the Ext-groups of DbCoh(C3) to the Hom-spaces
of Fuk(C3) we observe bundles of the three and five-branes
wrapping cycles in the dual geometries, which are extended
over the real line such that they describe wrapped four
and six-dimensional worldvolumes inside X = C3×T ∗Rt .
Hence, we have a four-cycle M = Y×Rt with self-dual bun-
dle E of rank N and a six-dimensional P = Y×Rt×S2 with
holomorphically trivial bundles E , which are stable coherent
sheaves in the given topological class. We can associate the
respective moduli spaces MI nst (M) and MCoh(P), which
are Hilbert schemes. The Penrose–Ward transformation is a
bijective map f : MI nst (M) → MCoh (P). Accordingly,
for the Hilbert spaces of BPS states it holds that

HM−brane (μ) = H∗ (MI nst (M)) = H∗ (MCoh (P)) .

(130)

Modifying the brane coupling the topological M-brane at
gm = 1 degenerates into topological A-branes and B-branes.
They are its weak and strong coupling limits. Furthermore,
we can expect that the topological branes and topological
strings are related by topological U-duality. Moreover, we
will expect that μ and p are related by U-duality transforma-
tions

Ht−brane (μ) = Ht−string (p) , (131)

where p ∈ #4,4 is the momentum the unimodular lattice
#d,d . Therefore, we have a relation of A-model topological
and B-model topological string in a geometric picture.
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8 Background independence

There are two ways of describing a SFT on different back-
grounds: Either we deform the conformal field theory on
the worldsheet, or we expand the string field action around
an infinitesimal solution of the shifted equations of motion.
For example, we can have two CFTs given by SC FT,1 and
SC FT,2 on the worldsheets 2,1 and 2,2, which are related
by a marginal deformation

δSC FT = 1

2π

∫
d2zo (z, z) , (132)

where o is a primary (1,1) operator, such that

SC FT,1 = SC FT,2 + δSC FT . (133)

In correspondence we can formulate the two SFT of dynam-
ical string fields Ψ1, Ψ2 associated to the CFTs. They are
related by the membrane field Ψ

S [Ψ1] = S [Ψ2]+
∫

FΨ  FΨ , (134)

where the worldvolume 3 is bounded by 2,1∪2,2. Alter-
natively, one can show that the membrane field action, which
is defined on the space of CFTs, is reparameterization invari-
ant. Similar to Chern–Simons theory we have large gauge
transformations relating different vacua, which, however,
in this case are conformal field theories. In the target this
amounts to relating two vacua of Chern–Simons theory with
each other. As the worldsheets 2 bound the brane worldvol-
ume the associated flat spaces bound the gravitational instan-
tons and so it is not hard to guess that the field theories on the
intertwining worldvolume 3 correspond to semi-classical
solutions of the gradient flow equations of the Einstein–
Hilbert action or equivalently the Chern–Simons functional.
As the metric on the brane is a one-parameter family of sur-
face metrics, so is the target space metric. The deformation
between two different conformal backgrounds results in a
deformation of the target space metric. This might be just
an expansion or contraction in the linear case but can also
be a non-linear deformation depending on which direction
we are moving the space of metrics. In fact, this is similar
to the statement that the interpolating metric can be arbi-
trary as long as it asymptotically approaches two Ricci-flat
spaces at infinity. Let’s take as simple and concrete exam-
ple the A-model on the deformed conifold T ∗S3. We have
N A-branes wrapped around the Lagrangian submanifold
S3 and open strings stretched between them. These are the
Hom-spaces of the Fukaya category. Assuming the correct-
ness of the Atiyah–Floer conjecture we can instead consider
instantons on S3 × Rt . To connect two branes, we deform
the CFT by a path γ (gm(t)) in ∂M̄N=2. In this geometry
the membrane coupling controls the radius of the zero locus.
Starting at gm(t = −∞) = 0, the radius R of S3 is infinite

and so are the branes. Now we move towards the coinci-
dence orbit at gm = 1, where the S3 a non-zero minimal
radius. If we would increase gm further, there would be the
S2 growing and we had the resolved geometry. Instead, we
decrease gm again such that gm(−∞) = 0 and the sphere
grows until it is infinite and completely flat. This is what
we described in the first section but with the N wrapped
branes forming a theta vacuum structure. Similarly, we could
have started at the opposite stratum connecting different 5-
dimensional B-branes through stable coherent sheaves con-
stituting the Ext-groups in the resolved geometry. This is
very interesting in my opinion. A deformation of the CFT
induces a gradient flow of the string field action functional,
that shapes the geometry of the target space. The flow lines of
the gradient flow equation of cubic string field theory are the
membrane fields. With this knowledge it is rather obvious
that, while the A-model reduces to Chern–Simons theory,
the membrane fields reduce to instantons. Now we should
also be able to explain the duality between the D-branes and
the theta-vacuum structure. The dual A-model closed string
geometry is the U (2)-bundle E over S3. The closed strings
wrap the spheres and are one-dimensional subspace S1 ⊂ S2

of them. We define now a standard one-form connection A
as a projection from the tangent bundle TS1 E onto verti-
cal subspaces VS1 of points p ∈ S1 at the fibre Fx over a
basepoint x ∈ S3. Hence, the string induces the principal
U (2)-valued principal connection A, which in turn induces a
connection on the SO(3)-bundle of trace-free, skew-adjoint
automorphisms. We conclude that U (N )-Chern–Simons the-
ory in the large N limit arising in the open string geometry
is dual to a A-model closed string geometry that is a SO(3)-
principal bundle. However, this is only one half of the story. It
seems that we also have to assume a stack of N anti-D-branes
inside of the A-model open string geometry such that we have
U (N )×U (N )-Lie algebra-valued connections. The topolog-
ical T-duals then are SU (2)× SU (2) connections. Since the
base manifold Y is three-dimensional, the SU (2)× SU (2)-
Chern–Simons theory is the Einstein–Hilbert action on Y
with cosmological constant. As known from section one, the
gradient flow lines with the form of an FLRW-metric are
also solutions to four-dimensional general relativity. All this
arises and is understandable in the framework of topologi-
cal M-theory as established within this work. Additionally,
we have seen in this section how the membrane field theory
produces its own background.

9 Knot cobordisms as topological 2-branes in
membrane field theory

Wilson loop operators along knots are a crucial ingredi-
ent in Chern–Simons theory and they play the role of open
strings in the closed string background. Obviously, we need
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to construct Lagrangian submanifolds, specifying the bound-
ary conditions to incorporate them in our description. The
construction of the submanifolds is due to Ooguri and Vafa
[43] and we follow it closely. For every knot K in Y there is
a Lagrangian submanifold CK in T ∗Y . We parametrize the
knot by q(s). We define

CK =
{
(q (s) ,p)∈T ∗Y

∣∣∣∣∣
∑

a

∂qa

ds
pa = 0 , 0 ≤ s ≤ 2π

}

(135)

as the conormal bundle, where pa are the coordinates on
the cotangent bundle. This can be understood as the twistor
space over the knot K. Hence, it has the topology S1×S2 and
intersects the zero locus at K. Wrapping M branes on this
space creates an U (M) Chern–Simons theory on CK. Now
we have the maps φ ∈K. Of course, this opens a new sector
of strings, which can be shown to be described by a complex
scalar, which ends are charged under the U (N ) and U (M)

gauge fields on the branes. In the resolved geometry these
branes survive the geometric transition and describe the open
string sector in the large N duality. One can show that there
is a map between the K and Lagrangian submanifolds CK in
O (1)⊕O (1)−→ CP1 sending K→ CK and b1 (CK) = 1.
The open string amplitudes are the same as the knot invariants
computed in CS theory.

Again, we can derive what role they play in the topo-
logical membrane theory. Let us consider two knots K1,K2

in Y1 and Y2 of two different leaves T ∗Y1 and T ∗Y2 inside
X = T ∗Y×T ∗Rt of constant t at t1 and t2. There is a
knot cobordism S⊂M , where M is a Lagrangian cobordism
between Y1 and Y2 with ∂S = K1∪K1. We construct the
conormal bundle over S simply as

CS =
{
(q (s (t)) ,p (t)) ∈ X

∣∣∣∣∣
∑

a

∂qa

ds
pa = 0,

0 ≤s (t)≤ 2π

}
, (136)

which has the topology of U (2)-bundle over S, where t ∈
[t1, t2]. Furthermore, the knot cobordism related the Kho-
vanov homology K h of K1 to that of K2. In [44] the author
describes how one can calculate K h from instantons. This
comes naturally within the membrane field theory. Let’s con-
sider as before the Lagrangian submanifolds Yi as critical
points of the Chern–Simons functional with singularities of
codimension 1, where the locus is a knotK and the cobordism
M as an instanton. This instanton has singularities of codi-
mension 2, where the locus is the embedded surface defined
by the knot cobordism S. These are the conormal bundles
over the knots and knot cobordisms. The key point is now to
consider the Chern–Simons action functional over the space
of singular instantons modulo gauge transformation. Let P

be a sphere-bundle over Y . Let B be the space of smooth
connection of ad(P) andB\CK the subspace of smooth con-
nections in the restriction of ad(P) to Y\Kwith a singularity
alongK. The group of determinant-one gauge transformation
G(K) acts on this space freely and one defines

BK = B/G(K). (137)

Define further the set R(Y\K) of homomophisms ς :π1

(Y\K)→ SU (2). Then the critical points C of the CS func-
tional are

C = R (Y,K) /SU (2). (138)

So, when we consider the membrane field theory with knots,
we have to consider the twistor space with codimension-2
singularities as sphere bundles over knot cobordisms in the
Lagrangian cobordisms. This will modify the membrane field
action on the family of conifolds. With knots, the classical
topological membrane theory (112) descends to the Chern–
Weil formula

ST [A] =
∫

M\S
tr F∧F = −1

4
p1 (P�) [M�]+ 1

16
Is (139)

where we have singular bundle data P�→M� as in [45] and
Is = S·S is the self-intersection number, while the first term
is the sum of instanton and monopole numbers. Thus, the
partition function will be modified as well and it is to be
expected that the expectation values along the knot cobor-
disms will coincide with the expectation values of the topo-
logical 2-branes in the membrane model, similar to how Wil-
son loop operators along knots in CS-theory are identical to
open string amplitudes.

Here lies an unforeseen connection with an interesting and
somewhat mysterious aspect of M-theory. Even though we
did not discuss it explicitly, it was an implicit part of the topo-
logical membrane model when we discussed N fivebranes
wrapped around the twistor space P = M × S2.

10 6d N= (2, 0) superconformal field theory

The worldvolume theory of such a stack of branes in M-
theory is believed to be a six-dimensional (2, 0) supercon-
formal field theory, which is a quantum theory of non-abelian
gerbes. Hence, there is good reason that its topologically
twisted version should be part of our considerations of topo-
logical M-theory and that it somehow is described by the
membrane field action (112). Indeed, there is a beautiful con-
nection, which involves the previously discussed knot cobor-
disms in the four-manifold M and the AGT correspondence
[46,47]. A review can be found in [48]. The AGT correspon-
dence relates a conformal field theory on a Riemann surface
of genus with n punctures Cg,n to a N = 2 superconfor-
mal field theory on a complex surface MC. Both theories
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are reductions of the twisted (2, 0) theory on MC × Cg,n

and the precise content of either is determined by the param-
eters of the other. For example, the four-dimensional the-
ory depends on the punctures and complex structure on C .
We saw before from the membrane field action (112) that
topological M-theory on T ∗M reduces to Donaldson-Witten
theory on M , which is a topological twisted N = 2 quan-
tum field theory. From section 4 we can extract that there is
most likely an equivalence between the Nekrasov partition
function and the partition function of topological M-theory.
Without digressing further, we note that the interesting point
here is that, when we discussed the geometric picture of mir-
ror symmetry, the twistor space P was wrapped by a stack
of N B-branes inside the M-stratum for 1 ≤ gm < ∞.
Their worldvolume theory can be described by the topologi-
cal twisted six-dimensional (2, 0) superconformal field the-
ory on P = M × CP

1, because the topological M5-branes
only degenerate into D5-branes at gm = ∞. The knot cobor-
disms inside M can be interpreted as codimension 2 defects
from the 4d perspective and as such they are equivalent to a
degenerate vertex operator of the CFT. Since we identified
them with topological M2-branes it is clear that they are half-
BPS states and preserve half of the original supersymmetry
of the 6d theory. This is exactly the requirement that they
also preserve the supersymmetry in the 4d theory. Moreover,
it follows that they are inserted at the singularities of a one-
form azdz on a bundle over C modulo gauge transformation.
We pick local coordinates z ∈ CP

1 and x to parametrize the
fibres of T ∗CP1. Furthermore, we define a N -fold cover 
of CP1 with a one-form λ = xdz through

 =
{

(z, x)
∣∣∣〈det (λ− az)〉

= λN +
∑N

k=2
αk(z)λ

N−k = 0

}
⊂ T ∗CP1. (140)

It is determined by the vacuum configuration. Specifically,
by the VEVs vk(z) = 〈Pk(az)〉dzk = αk(z)dzk of the six-
dimensional SCFT, in the case g = su(N ). Apart from that,
az=a6+ia7 is the only non-zero component of the adjoint-
valued scalars ai of the rotation group of the transverse
coordinates to the branes in the ambient spacetime, which
parametrize the vacua of the desired (2, 0) superconformal
field theory. Moreover, when analysing the embedding of
the anti-chiral supercharges of the four-dimensional theory
into the six-dimensional, one recognizes the restriction the
invariant polynomials constructible from ai to depend only
on the coordinate z. Thus,  is interpreted as the Seiberg-
Witten curve of a N= 2 4d theory specified by a Lie algebra,
a surface and puncture data (g,C, (ρi , μi )), where ρi are Lie
algebra homomorphisms and μi ∈ gC are mass parameters.
With its help one can derive the prepotential of the Coulomb
branch as well as the masses of the BPS states. Let’s assume

that CP1 has full tame punctures at zi . It follows that az has
first order poles az ∼ μi (z − zi )

−1 dz + O(1) defined up
to conjugation. Such punctures correspond to a flavour sym-
metry, which is coupled to the constant value of the back-
ground vector multiplet scalar, specified through the mass
parameters. However, they can collide to form higher order
poles, which results in a non-conformal behaviour of the con-
formal blocks. Assuming that we have two wild punctures
zi = 0, ∞ and M = C

2. In the limit z → ∞ the punc-
ture at infinity translates into poles v2 ∼ z−4dz2 and hence
into wild singularities of the SW curve. These correspond
to the residue of the Hitchin field on C up to conjugation,
or equivalently, to the quadratic differential v2 = α2 (z) dz2,
which has no other poles than the zi . Hence, the SW curve
 is defined by x2 = α2, and corresponds to the spectral
curve of the Hitchin system on C , translating into periods of
the SW prepotential FM (�a ; q) that describes the IR effective
action of the N = 2 theory. In our case of the two punc-
tured CP

1, the Hitchin system is the Toda integrable system
with chiral algebra W AN−1. The instanton contribution to
the prepotential is given by the Nekrasov partition function

Finst
C2 (�a ;q) = lim

ε1,ε2→0
Zinst

C2 (ε1,ε2, �a ; q) , (141)

taking the form of a conformal block

Zinst
C2 (ε1, ε2, �a ; q) = 〈ψC2 , q L0ψC2〉. (142)

Here ψC2 is a Whittaker vector in the completion of graded
components of an infinite-dimensional Z≥0-graded Hilbert
space HN

(
C

2
)

and q L0 acts as multiplication by qn on each
of the components. ψC2 is a state in the representation corre-
sponding to a topological two-brane. It was shown that any
N = 2 gauge theory on M corresponds to such a Donagi-
Witten integrable system [49], which we just prescribed. In
this way, we find the AGT correspondence within topolog-
ical M-theory. If we analyse the full geometric set-up, we
observe that topologically twisted M-theory on a compact
eight-manifold X with Spin(7) holonomy is equivalent to
M-theory on X × S3, which is isomorphic to a SU (2) bun-
dle over X . The Spin(7)-instantons on X take values in the
SU (2)Lie algebra. We can decompose X as M×Q×R

3 with
Q = T ∗C , a four-dimensional hyperkähler manifold and
place coincident M5-branes on M × C inside it. This setup
is equivalent to 6d (2, 0) SCFT with gauge group SU (N ) on
the worldvolume of the M5-branes on M × C . In this way,
topological M-theory on X should be equal to the prescribed
partially twisted SCFT on M × C . When collecting all the
findings of this paper, we have that in the weak-coupling
regime

ZT ∗M (Ψ (ξ) ,q)

=
∫

DΨ e−
∫
F F=

∞∑
k=0

qk
∫
MG,k (M)

C (P → M), (143)
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where Ψ is a functional of maps ξ :3 → X , MG,k is the
moduli space of G-valued, anti-self-dual connections with
topological charge k. The characteristic class C of the bun-
dle P is a topological invariant of a Riemannian manifold
M ⊂ X and q=e−2πgm . ZT ∗M is the partition functions
of twisted N= 2 gauge theory, which is the cohomological
Yang-Mills theory that computes the Donaldson-invariants.
In the first term (143) is written as the path integral of the
membrane field action that must be gauge fixed appropri-
ately. As prescribed, for X=T ∗M it is equal to the Nekrasov
partition function of N= 2 SU (N ) gauge theory because
F→ F = d A + A ∧ A.

Zinst
M (Ψ (ξ) ,q) =

∫
DΨ e−

∫
F F=

∫
DAe−

1
2

∫
F∧F

=
∞∑

k=0

qk
∫
MN ,k (M)

1. (144)

Yet, the partition function for (112) is much more general
considering the possible content of the membrane functional,
determined by the values it takes at the boundary. In the case
we discussed explicitly, when all higher modes become mas-
sive and decouple and when in the weak coupling regime,
the intertwining membrane field is just an U (N ) instanton.
Assuming C = CP

1 without punctures, the Penrose-Ward
transform relates the instantons in the infrared regime to holo-
morphic vector bundles over P in a bijective manner. The
transition from objects in the perturbative regime to objects
in the non-perturbative regime is geometric. Applying this to
the partition function, we have to replace instantons by stable
coherent sheaves E of rank r and the instanton moduli space
MN ,k by the moduli space of torsion-free sheaves Mr,k over
P with ch3 = −k.

Zcoh
P (Ψ (ξ) q) =

∫
DΨ e−

∫
F F

=
∞∑

k=0

qk
∫
[Mr,k (P)]vir t

1. (145)

In this way we get

Zinst
M (Ψ (ξ),q)=Zcoh

P (Ψ (ξ),q) . (146)

remembering that this is an IR-UV duality. Hence,

Zcoh
P (Ψ (ξ),q)=Ztop−(2,0) SC FT . (147)

This is an explicit example of the general statement concern-
ing the limits of the partition function Z of (112).

Zgm→0=Ztop−A

ZZ0<gm<1=Ztop−N=2

Zgm→∞=Ztop−B (148)

In the finite non-perturbative regime, topological M-theory
on M × T ∗C is partially twisted 6d (2,0) superconformal

field theory on M × C .

Z1<gm<∞=Ztop−(2,0) SC FT (149)

because gm controls the size of the Riemann surface C ,
which shrinks to a point in the limit gm↘ 1, where the SCFT
becomes N= 2 gauge theory but which has finite size in the
regime 1 <gm < ∞. However, the string field is in general
a linear combinations of gauge fields of a higher principal
bundle. They decouple because of the topological nature of
the sigma-models discussed, making them fairly easier to
handle. Such principal n-bundles can be expressed as Lie
crossed modules of n-tuples of Lie groups Gn with group
homomorphisms, usually denoted as t :Gn+1→Gn satisfy-
ing the Pfeiffer identity and another identity, which renders
them as G-homomorphisms. They are also understood as cat-
egorification of Lie-groups, constructable with higher Čech-
cohomology. Throughout the paper we considered topologi-
cal strings, where only zero modes contributed, and the string
field had ghost number one. This made it possible to connect
the four-dimensional twisted infrared theory to its topologi-
cal six-dimensional superconformal UV-completion via the
Penrose-Ward transform, because we considered only self-
dual connections on a 1-principal bundle. Now we also con-
sider the two-form B and the three-form C as higher gauge
connections and excitations, together with their respective
curvature forms H and G. Henceforth, the string field

Ψ = (A, B,C) (150)

can be interpreted as a section of a principal 3-bundle with
structure 3-group (G3 → G2 → G1,$, {• , •}). Here we
should note that the principal bundle is expressed on a Lie 2-
crossed module, where G1 acts smooth $ on G2 and G3 via
automorphisms and the smooth map {• , •} : G2 × G2 →
G1 is the so-called Pfeiffer lifting. Furthermore, as one can
show, this is a non-abelian generalisation of the principal 2-
bundle with abelian 2-gerbes, e. g. when G3 is trivial. This
trivialisation can be seen as the mathematical process for the
decoupling of the higher excitations, where only the lowest
lying mode on the principal 1-bundle survives. It follows, that
the membrane field will now contain higher self-dual connec-
tions in the infrared regime, where we extend the principal
3-bundle over Y onto Y × R. Then the vector F is the triple
(F, H, G) with

F=d A+A∧A − B

H = d B + A ∧ B

G = dC + A ∧ C + {B, B} (151)

where the line indicates that the quantity was acted on
by t . Note that one needs to specify the wedge product
between forms valued in the different groups. There will be
a higher Penrose-Ward transform relating non-abelian self-
dual gerbes to holomorphic vector and principal 3-bundles,
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for which there are interconnecting self-duality relations
between the curvatures in (151). Higher Penrose-Ward trans-
forms where constructed in [50]. Throughout the paper we
just considered the case where the associated groups of these
higher structures are trivial. However, in general, increas-
ing of the coupling into the regime of strong coupling will
associate these higher structures to each other through a 3-
Penrose-Ward transform. Hence, the action (112) is a unifi-
cation of interesting theories, depending on the content of
the membrane field functional, which is determined by a
sigma-model, and the coupling strength. The interconnec-
tions between the theories discussed are for a great part of
conjectural nature. Although strong evidence exists, proof-
ing them in general is often very hard. As we saw, they are
incarnation of the same topological theory.

11 Conclusion

We have shown that the Einstein–Hilbert action over the
space of FLRW-metrics takes the form of (A)SD SO(4)
Yang–Mills. The underlying theory is the Donaldson–Witten
theory. A supersymmetric topological theory computing the
Donaldson polynomials of the underlying manifold. The con-
struction of the membrane field action incorporated the ∞-
extension of Chern–Weil theory and it reduced to a topo-
logical Yang–Mills theory on a four-dimensional manifold,
which upon (A)SD gauge fixing becomes a (A)SD Yang–
Mills theory. It was shown how the mirror duality of com-
plex and symplectic structures is reflected in the membrane
model by the Penrose–Ward transform as well as how the
membrane coupling is related to the string couplings. From
this we were able to derive the partition function for the
model without Wilson loops in the boundary and found that it
counts slope-stable bundles over the twistor space, which are
related by the Karenbeck–Donaldson–Yau theorem and the
Penrose–Ward transform to the counting of instantons over
Lagrangian cobordisms, which is closely related to Donald-
son theory. Furthermore, we discussed homological mirror
symmetry from the viewpoint of the membrane field the-
ory, where we could utilize again the connection between
self-dual Yang Mills and slope-stable complex bundles to
relate the morphisms of either categorical description of
the respective topological string models. At the end it was
shown how the inclusion of knots into the boundary the-
ory transfers into the membrane model by drawing the con-
nection to instanton knot homology and Khovanov homol-
ogy. We find that the knots are the boundaries of 2-Branes
embedded into the Lagrangian cobordisms described by knot
cobordisms and that the expectation values along the cobor-
disms correspond to the expectation values of 2-branes in
the topological M-model. All this is related to general rela-
tivity by the fact alone that the Chern–Simons functional is

three dimensional Einstein-gravity with cosmological con-
stant. For me personally the most important question remain-
ing is to what extend the membrane field action captures the
non-perturbative framework of physical M-theory in a simi-
lar way as string field theory captures the dynamics of both
the physical and topological string. The underlying DFT is a
promising hint because it is known that supergravity theories
can be formulated this way and they are the low energy limit
of M-theory. Additionally, from the topological viewpoint
we note that we were able to formulate string phenomenol-
ogy in physically relevant dimensions without the need of
compactified dimensions. In the end, the AGT correspon-
dence seems to be a central object inside topological M-
theory, relating the superconformal theory in six-dimensions
to N = 2 gauge theories. The latter is topological M-theory
on X in the weak coupling regime, where the target looks like
X = T ∗M , degenerating into the A-model on T ∗∂M = T ∗Y
for gm → 0. The former is topological M-theory in the non-
perturbative regime, where X = M × T ∗C .
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