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Abstract The relationship between radiating stars in gen-
eral relativity and Riccati equations is investigated for a gen-
eral matter distribution including the electromagnetic field
and the cosmological constant. A generalised transformation
relating the gravitational potentials for a spherically symmet-
ric relativistic gravitating fluid is introduced. This generates
a new Riccati equation at the surface of the radiating star.
Exact solutions to the boundary condition are found and the
gravitational potentials are given explicitly. Some of the con-
sistency conditions can be reduced to Bernoulli equations
which admit exact solutions. We also demonstrate that the
reduction of order allows us to write the boundary condition
as a first order equation utilising the generalised transforma-
tion. Solutions obtained using the generalised transformation
also admit a linear equation of state.

1 Introduction

The evolution of a radiating star is an interesting and long
standing problem of interest in general relativity. The com-
plete model of a radiating star was generated by Santos [1]
who showed that the boundary conditions included an equa-
tion relating the radial pressure to the heat flux for an interior
barotropic matter distribution. The Santos boundary condi-
tions have been generalised to include other matter fields
including the electromagnetic field, the cosmological con-
stant, anisotropic pressure, null dust and null strings. For
recent treatments of the generalised junction conditions see
[2–5]. Explicit models of radiating stars are necessary to
study important astrophysical processes including viscosity,
thermal effects, particle production at the stellar surface, dis-
sipative processes and gravitational collapse. Some examples
of investigations in these directions are contained in [6–16].
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Some other recent areas that have been studied include causal
thermodynamics [17], embedding of the four dimensional
spacetime containing the radiating star into higher dimen-
sional Euclidean space [18], modified gravity theories [19]
and models with minimal complexity (real radius velocity is
proportional to the areal radius).

In analysing the physical features of the relativistic radi-
ating star, including the various features mentioned above,
it is necessary to solve the Santos junction condition at the
surface of the star. This is a nonlinear differential equation.
A systematic approach is to apply the Lie group method of
infinitesimal generators [20–23] which leads to new exact
models. Another approach is to write the junction condition
as a Riccati equation which was first explored by Misthry et
al. [24], Thirukkanesh et al. [25] and Rajah and Maharaj [26].
A third approach is to introduce a new transformation that
produces a new differential equation for the Santos junction
condition; the transformed junction condition is anewRiccati
equation. The Riccati equation can be solved under certain
conditions. A useful transformation, for Riccati equations,
was suggested by Ivanov [27–29] called the horizon function
as it is related to the formations of horizons. Other treatments
related to the horizon function are contained in the works of
Mahomed et al. [30–32]. A transformation related to that of
Ivanov was considered by Thirukkanesh and Maharaj [33].
The intention of this paper is to find a transformation that
transforms the Riccati boundary condition into a new Riccati
equation. Our approach has two advantages. Firstly, it does
lead to new solutions of the boundary condition which have
interesting physical features. Secondly, the Riccati equation
generated in our analysis regains the results of previous stud-
ies as special cases. Also it should be emphasised that new
Riccati equations lead to new solutions of the Einstein or
Einstein–Maxwell field equations.

In this paper we introduce a new transformation that
expresses the Santos junction condition as a new Riccati
equation. We show how second order derivative terms from
the junction condition can be eliminated by placing restric-
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tions on the arbitrary parameters in our transformation. We
systematically show how other transformations studied are
regained from our transformations. We generate new exact
solutions to our new Riccati equation by placing restrictions
that will transform the equation into either a simpler Ric-
cati equation, a Bernoulli equation or a linear equation in
terms of one of the dependent variables. We have included
the effects of shear, electromagnetic charge, anisotropy and
the cosmological constant in our comprehensive treatment.

2 The model

The interior line element of an accelerating, expanding and
shearing spacetime is given by

ds2 = −A2dt2 + B2dr2 + Y 2
(

dθ2 + sin2 θ dφ2
)

, (1)

where A, B and Y represent the gravitational potential func-
tions. The potentials are functions of r and t . The kinematical
quantities which describe the geometric behaviour are given
by the acceleration

u̇a =
(

0,
Ar

AB2 , 0, 0

)
, (2)

the expansion scalar

� = 1

A

(
Bt

B
+ 2

Yt
Y

)
, (3)

and the magnitude of the shear scalar

σ = − 1√
3

1

A

(
Bt

B
− Yt

Y

)
. (4)

Note that subscripts denote partial differentiation.
The energy momentum tensor that describes the matter

field is given by

Tab = (ρ + p)uaub + pgab + qaub + qbua

+πab + Eab, (5)

where ρ represents the density, p represents the isotropic
pressure, q represents the heat flux, and πab represents the
anisotropic stress. These quantities are measured relative to
the four-velocity u. The heat flux is given as

qa =
(

0,
1

B
q, 0, 0

)
, (6)

and the anisotropic stress tensor πab as

πab = (
p‖ − p⊥

) (
nanb − 1

3
hab

)
, (7)

where p‖ represents the radial pressure and p⊥ represents
the tangential pressure. The relationship between the radial
pressure and the tangential pressure is given by

p = 1

3

(
p‖ + 2p⊥

)
. (8)

Isotropic pressure is obtained when p‖ = p⊥. The tensor h
is the projection tensor and n is the unit radial vector given
by

na = 1

B
δa1 . (9)

The Einstein–Maxwell equations are given by

Rab − 1

2
R gab = 8πTab − 	gab, (10a)

Fab;c + Fbc;a + Fca;b = 0, (10b)

Fab;b = 4π Ja, (10c)

where the tensors R, T, and F are the Ricci tensor, energy
momentum tensor and Faraday tensor respectively, and J
represents the current. We have included the cosmological
constant 	. The Faraday tensor and current can be respec-
tively defined as

Fab = 
b;a − 
a;b, (11a)

Ja = ζua, (11b)

where 
a and ζ respectively represent the electromagnetic
potential and the proper charge density. The tensor E repre-
sents the electromagnetic field tensor which is defined by

Eab = 1

4π

(
Fa

c Fbc − 1

4
Fcd Fcd gab

)
. (12)

The four-potential is given by


a = (ϕ(r, t), 0, 0, 0) . (13)

Using system (11) the following electromagnetic quantities
can be obtained [4]

ϕrr −
(
Ar

A
+ Br

B
− 2

Yr
Y

)
ϕr = 4πζ AB2, (14a)

ϕr t −
(
At

A
+ Bt

B
− 2

Yt
Y

)
= 0. (14b)

The system (14) can be solved to yield

ϕr = AB

Y 2 Q, (15)

Q = 4π

∫ r

ζ B(w, t)Y 2(w, t)dw, (16)

where Q is a function of r and represents the total charge
contained in the star. Throughout this paper w represents the
dummy variable of integration. The Einstein–Maxwell field
equations (10) with shear are given by
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8πρ = 2

A2

BtYt
BY

+ 1

Y 2 + Y 2
t

A2Y 2 − Q2

Y 4

− 1

B2

(
2
Yrr
Y

+ Y 2
r

Y 2 − 2
BrYr
BY

)
− 	, (17a)

8π

(
p + 2

3



)
= 1

A2

(
−2

Ytt
Y

− Yt
Y 2 + 2

AtYt
AY

)
+ Q2

Y 4

+ 1

B2

(
Y 2
r

Y 2 + 2
ArYr
AY

)
− 1

Y 2 + 	,

(17b)

8π

(
p − 1

3



)
= − 1

A2

(
Btt

B
− At Bt

AB
+ BtYt

BY

− AtYt
AY

+ Ytt
Y

)
− Q2

Y 4

+ 1

B2

(
Arr

A
− Ar Br

AB
+ ArYr

AY

− BrYr
BY

+ Yrr
Y

)
+ 	, (17c)

8πq = − 2

AB

(
BtYr
BY

+ ArYt
AY

− Yrt
Y

)
, (17d)

ζ = Qr

4πBY 2 , (17e)

where 
 represents the degree of anisotropy, and is given by


 = p‖ − p⊥. (18)

The line element that describes the exterior spacetime, rep-
resented by the generalised Vaidya metric [34,35], is given
by

ds2 = −
(

1 − 2
m(v, r̄)

r̄

)
dv2

−2dvdr̄ + r̄2(dθ2 + sin2 θdφ2), (19)

where m(v, r̄) represents the mass function. In the exterior v

and r̄ are the retarded time and the radial coordinates respec-
tively. In our case the mass function becomes

m(v, r̄) = m(v) + 1

2

Q2

r̄
− 1

6
	r̄3. (20)

The matching of the interior spacetime and extrinsic curva-
ture to the exterior spacetime was completed by Santos [1]
for shear-free, uncharged matter. For the extension to charged
matter and shear, see the treatments of Maharaj and Goven-
der [36] and De Oliveira and Santos [37]. The cosmological
constant was included in the investigations of Thirukkanesh
et al [38] and Bhatti [39]. For a composite fluid the matching
was completed in four dimensions by Maharaj and Brassel
[4]. The mass function (20) includes both charge and the
cosmological constant in our unified treatment for a shearing
spherically symmetric interior. The junction conditions at the
stellar surface � then gives

(p)� = (q)� . (21)

We substitute (17b) and (17d) into (21) to obtain

2AB2Y 3Ytt +AB2Y 2Y 2
t − 2B2Y 3AtYt − 2ABY 3Yt Ar

+2A2BY 3Yrt − 2A2Y 3ArYr

−2A2Y 3BtYr − A3Y 2Y 2
r + A3B2Y 2

−A3B2Q2 − 	A3B2Y 4 = 0. (22)

The partial differential equation (22) represents the junction
condition at � for a spherically symmetric radiating star
inclusive of shear, charge and the cosmological constant. We
can recover earlier results by placing restrictions on A, B,
Y , Q and 	 in (22). The general solution to (22) is currently
unknown.

We write (22) in the equivalent form

Bt + L1B
2 + L2B + L3 = 0, (23)

where

L1 = AtYt
A2Yr

+ Q2A

2Y 3Yr
+ 	AY

2Yr

− Y 2
t

2AYYr
− Ytt

AYr
− A

2YYr
, (24a)

L2 = −Yrt
Yr

+ ArYt
AYr

, (24b)

L3 = Ar + 1

2

AYr
Y

. (24c)

We observe that (23) is a Riccati equation in the potential
B. Riccati equations are useful as Bernoulli equations, lin-
ear equations and other integrable forms can be obtained as
special cases by placing appropriate restrictions on the coef-
ficients in the Riccati equation. This feature was explored in
several investigations including that of Ivanov [29].

The boundary condition may be supplemented with a
barotropic equation of state

p‖ = p‖(ρ), (25)

based on physical grounds. The linear stiff equation of state
is a special case and can be written as

p‖ = ρ. (26)

The geodesic junction condition is obtained by assum-
ing the particles travel in geodesic motion and this can be
achieved by setting A = 1 in (23). The charge can be removed
by setting Q = 0 and the cosmological constant can be
excluded by setting 	 = 0. The presence of charge Q is an
important physical quantity, particularly in the early stages
of stellar evolution. The cosmological constant 	 represents
the background energy density of spacetime. In 1998 the
Supernova Cosmology Project [40] and High-Z Supernova
Search Team [41] independently produced results that sug-
gested that the universe could be expanding at an accelerating
rate. This implies that the cosmological constant on a cosmo-
logical scale could be a strictly positive number [42]. There
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are cases on an astrophysical scale where the cosmological
constant could be a negative number. An example of this is
the anti-de Sitter spacetime. The anti-de Sitter spacetime can
be used to model static black holes. The accelerating expan-
sion of the universe is related to the concept of dark energy,
which is a repulsive force. It is therefore important to con-
sider both cases for the cosmological constant: 	 = 0 and
	 �= 0.

There are fewer charged models of radiating stars as
adding an electromagnetic field results in the inclusion of
the Maxwell equations in the modelling process. Radiating
stars for different compositions of matter with the inclusion
of electromagnetic fields were studied by Maharaj and Bras-
sel [4]. The presence of charge in the gravitational potential
functions affects the rate of gravitational collapse and other
physical features. We will show this later. Other interesting
features such as how an electromagnetic field reduces the
instability of an expansion free radiating fluid during dis-
sipative collapse were explored by Sharif and Azam [43].
There is evidence to suggest that massive stars also have a
prevalent magnetic field [44].

3 An invariant transformation

Transformations are useful as they allow us to transform coor-
dinate systems of equations which might allow us to express
the equation in a form that is simpler to solve, or could allow
us to obtain solutions that are group invariant with regard to
the transformation. In this paper we investigate transforma-
tions that remove second order derivative terms from (23),
that still allow us to express the equation as a Riccati equation
in one of the dependent variables.

We present the new transformation in the form

H =
(

α
Yr
B

+ β
Yt
A

)
F + G, (27)

where α and β are arbitrary constants, and F and G are arbi-
trary functions of r , t , A and Y . In general

F = F (r, t, A,Y ) , (28a)

G = G (r, t, A,Y ) , (28b)

which we will show leads to new solutions. Note, even though
A and Y are functions of r and t , they have to appear explic-
itly in F and G. Also note that F and G are independent of
B, which implies that we can substitute H for B. Indeed,
requiring this relationship between H and B guarantees that
the resulting differential equation will remain a Riccati equa-
tion as Riccati equations are form invariant under reciprocal
transformations.

The four transformations used in [27,28,32,33] are con-
tained in the generalised transformation (27). We now con-
sider some special cases for F and G.

3.1 F = 1 and G = 0

We set

F = 1, (29a)

G = 0, (29b)

α = 1, (29c)

β = 0, (29d)

Z = 1

H
, (29e)

in (27) to obtain

Z = B

Yr
. (30)

Equation (30) is the Thirukkanesh and Maharaj [33] trans-
formation.

3.2 F = 1 and G = γ

We set

F = 1, (31a)

G = γ, (31b)

in (27) to obtain

H = α
Yr
B

+ β
Yt
A

+ γ, (32)

where γ is an arbitrary constant. Equation (32) is the gener-
alised horizon function which was used by Mahomed et al.
[32].

We observe that the γ term in (32) is redundant. We can
see this by defining

H = H − γ. (33)

Substituting (33) into (32) results in

H = α
Yr
B

+ β
Yt
A

. (34)

We conclude from (32), that the γ term in (32) may be elim-
inated.

In the special case when α = β we can define

H = H − γ

β
. (35)

Substituting (35) into (32) results in

H = Yr
B

+ Yt
A

. (36)

Hence (32) reduces to (36) when α = β, which is the horizon
function first introduced by Ivanov [28].
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3.3 F = F (r, t) and G = G (r, t)

We set

F = F(r, t), (37a)

G = G(r, t), (37b)

in (27) to obtain

H =
(

α
Yr
B

+ β
Yt
A

)
F (r, t) + G (r, t) . (38)

This means that A and Y do not explicitly appear in F and G.
The expression (38) can be transformed to the simpler form
if we can introduce a new function H by setting

H = H − G (r, t)

F (r, t)
. (39)

Substituting (39) into (38) results in

H = α
Yr
B

+ β
Yt
A

, (40)

which is the generalised horizon function obtained in [32].
The horizon function (36) is a special case when α = β.

3.4 Dependence on potential functions

When either or both functions A and Y appear explicitly inF
and/or G in the transformation (27), a new transformation is
produced. It should be emphasised that the dependence of the
potentials A and Y on the functions F and G have not been
considered previously. Consequently these cases will lead to
new solutions via the generalised transformation (27). The
explicit forms of the potentials A, B and Y will then lead to
new solutions of the Einstein–Maxwell system (10).

We solve (27) for B to obtain

B = − αAYrF
βYtF AG − AH

. (41)

We substitute (41) into (23) to obtain the master equation

Ht + L4H
2 + L5H + L6 = 0, (42)

where

L4 = − 1

2α

1

YYrF
(2ArY + AYr ) , (43a)

L5 = − 1

α

1

AYYrF
(A (Yr (αY (AtFA + YtFY + Ft ) − βYtF)

−2ArYG) + (α − 2β)ArYYtF − A2YrG
)
, (43b)

L6 = − 1

2αA2Y 3YrF
(−2A2Y 2YrG (αY (AtFA + YtFY + Ft )

−βYtF) + 2αA2Y 3YrF (AtGA + YrGY + Gt )
−2(α − 2β)Ar AY

3YtFG
+2(α − β)Y 3YtF2 (αAtYr − βArYt ) + 2Ar A

2Y 3G2

+α2A3YrF2 (
	Y 4 − Y 2 + Q2) − (α − β)AY 2YrF2

× (
(α + β)Y 2

t + 2αYYtt
) + A3Y 2YrG2) . (43c)

A comparison between (23) and (42) reveals that both are
Riccati equations. There are two distinguishing features of
the master equation (42). Firstly (42) contains only one sec-
ond order term Ytt . Our transformation (27) simplified (23)
by removing the second order term Yrt . Secondly new terms
containing Ft ,FA,FY ,Gt ,GA and GY arise which provide
us with additional options to solve the Riccati equation.

We were able to generate several previous transformations
from (27) that were used to simplify the different versions
of junction conditions that are obtained from (23). These
results are sumarised in Table 1. The first transformation we
looked at was that obtained by Thirukkanesh and Maharaj
[33]. Their transformation was used to simplify the geodesic
junction condition exclusive of both charge and a cosmo-
logical constant. This junction condition can be obtained
by setting A = 1 and Q = 	 = 0 in (23). We note that
Thirukkanesh and Maharaj’s [33] transformation removed
one of the second order terms, the Yrt term, from this junc-
tion condition. The next transformation we explored was the
horizon function introduced by Ivanov [27], which simplified
the geodesic junction condition exclusive of both charge and
a cosmological constant. This transformation removed both
of the second order terms, Yrt and Ytt , from the junction con-
dition. The horizon function [27] also transformed the junc-
tion condition from a second order equation into a first order
equation. In 2016 Ivanov [28] modified the horizon function
to simplify the non-geodesic junction condition exclusive of
both charge and cosmological constant. This junction con-
dition can be obtained by setting Q = 	 = 0 in (23). This
transformation removed both second order terms, Yrt and
Ytt , from the junction condition. The final transformation we
considered was the Mahomed et al. [32] generalised horizon
function, which simplified (23) by removing the second order
term Yrt .

4 Linear equation: L4 = 0

We impose the restriction

2ArY + AYr = 0, (44)

on (42) to obtain a linear equation in H . In order to avoid
having implicit solutions we make the assumption thatF and
G are independent of A so that

F = F (r, t,Y ) , (45a)

G = G (r, t,Y ) . (45b)
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Table 1 Particular transformations that can be generated from (27)

Reference Restrictions Transformation Junction condition Spacetime

[33]

β = G = 0

α = F = 1

H = 1

Z
A = 1

Z = B
Yr Bt = 1

2

B2
(
Y 2
t + 2YYtt + 1

)

YYr
+ BYrt

Yr
− 1

2

Yr
Y

Geodesic and exclusive of both

charge and cosmological constant

[27]

α = β = F = 1

G = 0

A = 1

H = Yr
B + Yt Bt = 1

2

B2
(
Y 2
t + 2YYtt + 1

)

YYr
+ BYrt

Yr
− 1

2

Yr
Y

Geodesic and exclusive of both

charge and cosmological constant

[28]
α = β = F = 1

G = 0
H = Yr

B + Yt
A

Bt = 1

2

B2
(−2AtYYt + A

(
Y 2
t + 2YYtt

) + A3
)

A2YYr

+ 1

2

B
(
2A2YYrt − 2AArYYt

)

A2YYr

+ 1

2

A3
(−Y 2

r

) − 2Ar A2YYr
A2YYr

Nongeodesic and exclusive of both

charge and cosmological constant

[32]

F = 1

G = γ

where α, β and γ are

arbitrary constants

H = α Yr
B + β Yt

A + γ Bt = L1B2 + L2B + L3
Nongeodesic and exclusive of both

charge and cosmological constant

We solve (44) to obtain the restriction

A = T0√
Y

, (46)

where T0 is an arbitrary function of t . We substitute (46) into
(42) to obtain the linear equation

Ht + L5H + L6 = 0, (47)

where

L5 = −
(

2

F (Ft + YtFY ) − Yt
Y

)
(48a)

L6 = −1

2

1

Y 7/2

(
Y 2G
F

(
−2Y 3/2 (YtFY + Ft )

)

+ F
T 2

0

(
2(α − β)T ′

0YtY
4

+αT 3
0

(
	Y 4 − Y 2 + Q2

)

−2(α − β)T0

(
Y 2
t + YYtt

)
Y 3

)

+YtY
5/2 (2YGY + G)

)
+ Gt . (48b)

We solve (47) to obtain

H =
F

(∫ t
1 ℘1dw + R0

)
√
Y

, (49)

where R0 is an arbitary function of r , and

℘1 = 1

2T 2
0 Y 3F2

(
−2T 2

0 Y 7/2 (YwFY + Fw)G

+T 2
0 Y 5/2F (Yw (2YGY + G) + 2YGw)

+F2
(
Y 2

(
2(α − β)T ′

0Y
2Yw − 2(α − β)T0Y

×
(
Y 2

w + YYww

)
+ αT 3

0

(
	Y 2 − 1

))
+ α Q2T 3

0

))
.

(50)

In the integrand ℘1 in (50) the functions T0, Y , F and G
respectively represent T0(w), Y (r, w), F (r, w,Y (r, w)) and
G (r, w,Y (r, w)). Substituting (45), (46) and (49) into (41),
we obtain

B = αT0
√
YYrF

−T0
√
YG + F

(
T0(

∫ t
1 ℘1dw + R0) − βYYt

) .

(51)

Restriction (44) was also solved by Mahomed et al [32] to
obtain the potential A given in (46). However, the poten-
tial B in (51) differs from that obtained in [32] as different
transformations were used. We can regain the same form of
the gravitational potential function B in [32] (see their Eq.
(24)) when we set F = 1 and G = 0 in (51). An alter-
native approach is to solve (44) for Y as was done in [25].
As expected, the gravitational potential B obtained there is
different from (51).

We summarise our results in the following theorem:
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Theorem 1 The boundary condition

Ht + L5H + L6 = 0, (52)

which is a linear equation in H can be solved in general with
F = F (r, t,Y ) and G = G (r, t,Y ) for a general relativistic
radiating star with explicit forms for the potentials A and B
obtained.

Corollary 1.1 Known potentials are regained if F =
F (r, t) and G = G (r, t) including models with accelerat-
ing particles. Physical solutions that include particles that
travel in geodesic trajectories are not contained in this class
of models.

5 Bernoulli equation: L6 = 0

We can rewrite (42) as the Bernoulli equation

Ht + L4H
2 + L5H = 0, (53)

subject to the restriction

− 1

2αA2Y 3YrF
(
−2A2Y 2YrG (αY (AtFA + YtFY + Ft )

−βYtF) + 2αA2Y 3YrF (AtGA + YrGY + Gt )
− 2(α − 2β)Ar AY

3YtFG
+ 2(α − β)Y 3YtF2 (αAtYr − βArYt ) + 2Ar A

2Y 3G2

+ α2A3YrF2
(
	Y 4 − Y 2 + Q2

)

− (α − β)AY 2YrF2
(
(α + β)Y 2

t

+2αYYtt ) + A3Y 2YrG2
)

= 0. (54)

It is difficult to obtain the general solution to the partial dif-
ferential equation (54). Particular exact solutions to (54) can
be obtained by imposing appropriate restrictions. We will
show later that such solutions to (54) do exist. We solve (53)
to obtain

H = e
∫ t

1 ℘2dw̄

R1 − ∫ t
1 ℘3e

∫ w
1 ℘2dw̄dw

, (55)

where R1 is an arbitrary function of r and

℘2 = 1

αAYYrF
(A (Yr (αY (Aw̄FA + Yw̄FY + Fw̄) − βYw̄F)

−2ArYG) + (α − 2β)ArYYw̄F − A2YrG
)
, (56a)

℘3 = 1

2α

1

YYrF
(2ArY + AYr ) . (56b)

Note that A and Y are functions of r and w̄, and F and G
are functions of r , w̄, A(r, w̄) and Y (r, w̄) in (56a), while A
and Y are functions of r and w, and F is a function of r , w,

A(r, w) and Y (r, w) in (56b). We substitute (55) into (41) to
obtain the potential function B given by

B = − αAYrF

βYtF + A

(
G − exp

(∫ t
1 ℘2dw̄

)

R1−
∫ t

1 exp(
∫ w

1 ℘2dw̄)℘3dw

) . (57)

We now consider particular cases where we can show that
the potential A can be found explicitly by solving (54).

5.1 Solution I

We set

β = 0, (58a)

F = F (r, t) , (58b)

G = 0, (58c)

Y = (n1R2T1 + n2R3)
n3 , (58d)

where R2 and R3 are arbitrary functions of r , T1 is an arbi-
trary function of t and n1 to n3 are arbitrary constants. We
substitute (58) into (54) to obtain the restriction

2n1n3℘
4n3−1
4 R2T ′

1 At + A3
(
	℘

4n3
4 − ℘

2n3
4 + Q2

)

+ n1n3℘
4n3−2
4 R2A

(
n1(2−3n3)R2T ′2

1 −2℘4T ′′
1

)
= 0,

(59)

where

℘4 = n1T1R2 + n2R3 (60)

We note that (59) is a Bernoulli equation in A which can be
solved to yield

A = ∓
√

3n1n3R2T ′
1 ℘

2n3
4√

℘2
4

(
−3Q2 + ℘

n3
4

(
3n2

1n
2
3R2

2R4 + 	℘
3n3
4 − 3℘

n3
4

)) ,

(61)

where R4 is an arbitrary function of r .
Substituting A, using (61), in (57) yields

B = αn3℘
n3−1
4

(
n1T1R′

2 + n2R′
3

)
exp

(
−

∫ t

1
℘5dw̄

)

×
(
R1 −

∫ t

1
exp

(∫ w

1
℘5dw̄

)
℘6dw

)
F , (62)
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where

℘5 = Fw̄

F
+ (

2α (n1R2T1 + n2R3)
(
(n1R2T1 + n2R3)

n3

× (
3n2

1n
2
3R2

2R4 + 	(n1R2T1

+ n2R3)
3n3 − 3 (n1R2T1 + n2R3)

n3
) − 3Q2)

× (
n1R′

2T1 + n2R′
3

))−1 (
n1(α − 2β)T ′

1

× (
(n1R2T1 + n2R3)

n3
(
3n2

1n
2
3R3

2 ((3n3 − 2)

× R4
(
n1R′

2T1 + n2R′
3

)

− (n1R2T1 + n2R3)R′
4

) + 2	n2 (n1R2T1 + n2R3)
3n3

× (
R3R′

2 − R2R′
3

)

− 6 (n1R2T1 + n2R3)
n3

(
n2(n3 − 1)R2R′

3

+ (n1R2T1 + n2R3)R′
2

))

+ 6Q
(
R2

(
Q′(n1R2T1 + n2R3) + n2(1 − 2n3)QR′

3

)

− (n1R2T1 + n2R3) QR′
2

)))
, (63a)

℘6 = √
3n1T ′

1 (n1R2T1 + n2R3)
n3+2

× (
2αF

(
(n1R2T1 + n2R3)

2 (
(n1R2T1 + n2R3)

n3

× (
3n2

1n
2
3R2

2R4 + 	(n1R2T1 + n2R3)
3n3

− 3 (n1R2T1 + n2R3)
n3

) − 3Q2))3/2

× (
n1R′

2T1 + n2R′
3

))−1 ((± (n1R2T1 + n2R3)
n3

× (
3n2

1n
2
3R3

2

(
2(2n3 − 1)R4

(
n1R′

2T1 + n2R′
3

)

− (n1R2T1 + n2R3)R′
4

) − 3 (n1R2T1

+ n2R3)
n3

(
R′

2(3n1n3R2T1 + 2n2R3)

+n2(3n3 − 2)R2R′
3

) + 	(n1R2T1

+ n2R3)
3n3

(
n2(n3 − 2)R2R′

3 + (n1R2T1 + n2R3)R′
2

))

+ 3Q2 (
n2(2 − 5n3)R2R′

3 − (n1R2T1 + n2R3)R′
2

)

+ 6 (n1R2T1 + n2R3) QR2Q
′)) , (63b)

F is a function of r and w̄, and T1 is a function of w̄ in (78)
while F is a function of r and w, and T1 is a function of w

in (63b). This is a new solution of the master equation (42)
We can regain the gravitational potential Y of Ivanov [28]

if we set

n1 = n2 = 1, (64a)

T1 = t, (64b)

n3 = 2

3
, (64c)

in (58d). However, the potential function Y obtained in [28]
corresponds to a geodesic model of the junction condition
excluding charge and a cosmological constant. Therefore the
gravitational potential B in [28] is different from (62) which
corresponds to an accelerating model. We have thus shown
that the Ivanov [28] geodesic model with A = 1 can be
extended to a larger class of nongeodesic models with A �= 1.

5.2 Solution II

We set

β = 0, (65a)

F = F (r, t,Y ) , (65b)

G = 0, (65c)

in (54) to obtain the restriction

2AtY
3Yt + A3

(
	Y 4 − Y 2 + Q2

)

−AY 2
(
Y 2
t + 2YYtt

)
= 0, (66)

which is again a Bernoulli equation in A and can be solved
to obtain

A = ∓ YYt√
R2Y + 1

3	Y 4 − Y 2 − Q2
, (67)

where R2 is an arbitrary function of r . Note the non-
appearance of F in (66).

Using (57), (65) and (67) we express B as

B = αYrF exp

(
−

∫ t

1
℘7dw̄

)

×
(

−
∫ t

1
exp

(∫ w

1
℘7dw̄

)
℘8dw + R1

)
, (68)

where

℘7 = 1

F (Yw̄FY + Fw̄) + 1

2

1

Yr
(2Yrw̄

+ Yw̄

(
Y

(
−3Q2 + Y

(
	Y 3 − 3Y + 3R2

)))−1

×
(
Yr

(
3R2Y − 2	Y 4 − 6Q2

)

− 3Y
(−2QQ′ + R′

2Y
)))

, (69a)

℘8 = ∓√
3

(
2αYrF

(
−3Q2 + Y

(
	Y 3 − 3Y + 3R2

))
3/2

)−1

×
(

2YYrw
(
−3Q2 + Y

(
	Y 3 − 3Y + 3R2

))

−Yw

(
3Y

(−2QQ′ + YR′
2
)

+ Yr
(

9Q2 + Y
(
	Y 3 + 3Y − 6R2

))))
, (69b)

F is a function of r w̄, and Y , and Y is a function of r and
w̄ in (69a) while F is a function of r , w and Y , and Y is a
function of r and w in (69b).

We regain the result of Mahomed et al. [32] if we setF = 1
in (65b). Since they also solved (66), the potential A is the
same. However, our potential B differs from their result. We
can regain the potential B in [32] by setting F = 1 in (68).
We summarise our results in the following theorem:

Theorem 2 The boundary condition

Ht + L4H
2 + L5H = 0, (70)
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which is a Bernoulli equation in H can be solved in general
withF = F (r, t, A,Y ) and G = G (r, t, A,Y ) for a general
relativistic radiating star. The potential B is found explic-
itly and the potentials A and Y satisfy a constraint equation
which can be solved.

Corollary 2.1 Known solutions are regained ifF = F (r, t)
and G = G (r, t) in models with accelerating particles.

6 Reduction of order

We now place restrictions on the arbitrary constants that will
allow us to eliminate all second order derivatives from (23),
thereby allowing us to reduce the order of (23) from a sec-
ond order equation to a first order equation. This reduction
will also assist with simplifying the Bernoulli equation (53),
thereby allowing us to obtain a simpler version of the restric-
tion (54) to solve. We consider the special case of the trans-
formation (27) that transforms (23) into a first order equation
in all of the dependent variables. We obtain this special case
by placing restrictions on the arbitrary parameters in (27).
We set α = β to obtain the special case

H =
(
Yr
B

+ Yt
A

)
F + G, (71)

which we solve for B to obtain

B = − AYrF
YtF + AG − AH

. (72)

We substitute (72) into (23) to obtain

Ht + L4H
2 + L5H + L6 = 0, (73)

where

L4 = −1

2

1

YYrF
(2ArY + AYr ) , (74a)

L5 = − 1

AYYrF
(A (Yr (Y (AtFA + YtFY + Ft ) − YtF)

−2ArYG) − ArYYtF − A2YrG
)

, (74b)

L6 = G
F (AtFA + YtFY + Ft ) − ArG2

YrF
− AtGA − ArYtG

AYr

−1

2

1

Y 3F A
(
F2

(
	Y 4 − Y 2 + Q2

)
+ Y 2G2

)

−YtGY − Gt − YtG
Y

. (74c)

A comparison between (23) and (73) reveals that both are
Riccati equations, however both of the second order terms Ytt
and Yrt that are present in (23) are absent in (73). Our trans-
formation (71) simplified (23) by transforming the equation
from a second order equation with two second order terms
into a first order equation.

Equation (73) admits exact solutions. We continue by
expressing (73) as a Bernoulli equation in H . We do not
consider expressing (73) as a linear equation in H , as the
restriction is the same as (44); we would not gain any new
solutions.

6.1 Bernoulli equation: L6 = 0

We can write (73) as the Bernoulli equation

Ht + L4H
2 + L5H = 0, (75)

subject to the restriction

G
F (AtFA + YtFY + Ft ) − ArG2

YrF
− AtGA − ArYtG

AYr

−1

2

1

Y 3F A
(
F2

(
	Y 4 − Y 2 + Q2

)
+ Y 2G2

)
− YtGY

−Gt − YtG
Y

= 0. (76)

The restriction (76) is simpler to solve than (54), as there are
no second order derivative terms present. We first solve (75)
to obtain

H =
exp

(∫ t
1 ℘9dw̄

)

R1 − ∫ t
1 exp

(∫ w

1 ℘9dw̄
)
℘10dw

, (77)

where R1 is an arbitrary function of r and

℘9 = 1

AYYrF
(A (Yr (Y (Aw̄FA+Yw̄FY +Fw̄) − Yw̄F)

−2ArYG) − ArYYw̄F − A2YrG
)

, (78a)

℘10 = 1

2YYrF
(2ArY + AYr ) . (78b)

In the above A and Y are functions of r and w̄, and F and G
functions of r , w̄ A(r, w̄), and Y (r, w̄) in (78a) while A and
Y are functions of r and w, and F and G are functions of r ,
w A(r, w) and Y (r, w) in (78b). We substitute (77) into (72)
to obtain

B = − AYrF

YtF + A

(
G − exp

(∫ t
1 ℘9dw̄

)

R1−
∫ t

1 exp(
∫ w

1 ℘9dw̄)℘10dw

) . (79)

We now demonstrate that exact solutions to the restriction
(76) exist.

We set

F = F (r, t, A) , (80a)

G = 0, (80b)

in (76) to obtain

	Y 4 − Y 2 + Q2 = 0. (81)
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We solve the algebraic Eq. (81) to obtain the two cases

Y 2 =
{

Q2, 	 = 0
1

2	
± 	

2

√
1 − 4	Q2, 	 �= 0

(82)

The solution (82) gives an explicit functional form for
Ywhich is a function of r only. Observe that (82) allows
for positive and negative 	. It is important to note that in this
example the potential A is arbitrary. The model obtained by
Mahomed et al. [32] is contained in our results.

We summarise our results in the following theorem.

Theorem 3 The boundary condition

Ht + L4H
2 + L5H + L6 = 0, (83)

can be transformed to a first order equation in Y when α =
β, F = F (r, t A,Y ) and G = G (r, t, A,Y ) in a general
relativistic star. The potential B is given explicitly, and A
and Y satisfy a constraint equation.

Corollary 3.1 Solutions foundpreviously related to thehori-
zon function

H = Yr
B

+ Yt
A

, (84)

are special cases with F = F (r, t) and G = G (r, t) in (71).

7 Equation of state

A physical analysis of the results generated in this paper
should yield new physical insights. As an example, Paliatha-
nasis et al [23] studied the dissipative effects and temporal
solution of radiating stars during the collapse phase. One
could also analyse energy conditions which are important
quantities in a physical treatment. This will be the object
of future research for solutions of the generalised Riccati
equations arising in this paper. For now, we concentrate on
an equation of state.

We can express the equation of state as a partial differential
equation by substituting (17a) and (17b) into (26) to obtain

At B2Y 2Yt
A

+ Ar AY
2Yr

+ A2

BY

(
−BrY

3Yr + B3
(
	Y 4 − Y 2 + Q2

)

+BY 2
(
Y 2
r + YYrr

))

−BY
(
Y (BtYt + BYtt ) + BY 2

t

)
= 0. (85)

Note that although (85) represents a linear stiff equation of
state, it is a nonlinear partial differential equation.

In the same manner in which we utilised the generalised
transformation discussed in this paper, we use special cases
of the transformation (27) to solve the system of equations

consisting of (85) and the junction condition (23). We obtain
three exact models in which solutions of the junction condi-
tion admit a linear stiff equation of state. The three models
are listed in Table 2. Note that n in Table 2 is an arbitrary con-
stant. The Restrictions column represents the conditions we
placed on (27). The Transformation column represents the
resulting new generalised transformation (27). The Space-
time column gives the explicit line element with forms of
the potential functions that satisfy the junction condition and
admit a linear equation of state. The existence of these exact
solutions with an equation of state indicates that the gen-
eralised transformation (27) leads to physically acceptable
models for radiating stars.

8 Discussion

We have introduced a generalised transformation relating the
gravitational potential A, B and Y for a spherically sym-
metric relativistic fluid. In this transformation new general
functions F = F (r, t, A,Y ) and G = G (r, t, A,Y ) appear.
This new transformation, which has not been considered in
previous investigations, reduces to the case of Ivanov [32],
called the horizon function and Mahomed et al [28], called
the generalised horizon function, in the relevant limits. The
generalised transformation leads to a new form of the bound-
ary condition at the surface of the relativistic radiating star.
The boundary condition now also depends on the functions
F and G. This dependence allows us to obtain new solutions
under certain conditions. We show that earlier results are con-
tained in our treatment by placing appropriate restrictions on
the parameters and choosing particular forms for F and G.
Solutions to the new generalised Riccati equation are also
found by writing the new generalised equation as Bernoulli
and linear equations. It should be pointed out that an advan-
tage of our approach is that the gravitational potential B can
be given explicitly in all models while the potentials A and Y
satisfy constraint equations for which exact solutions exist.
We also demonstrated that our approach permits reduction
of order: the boundary condition can be written as a first
order equation where all second order terms have been elim-
inated. Finally we showed that particular forms of our new
generalised transformation simplifies the system of nonlin-
ear partial differential equations consisting of an equation of
state and boundary condition. We comment that reduction of
order calculations for ordinary differential equations can be
performed using Lie symmetries [45]. Lie symmetries also
generate group invariant solutions under Lie groups [45].
Lie symmetries have been previously used to great effect in
studying radiating relativistic stars [46–50]. We will study
the relationship between our new generalised transformation
and Lie group analysis in future work.
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