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Abstract In this work we explore the characteristics of a
polytropic solution for the anisotropic stellar object within
the framework of Einstein–Gauss–Bonnet (EGB) gravity. We
introduce anisotropy via the minimally gravitational decou-
pling method. The analysis of the exact solution of the gov-
erning equation for the gravitational potentials reveals novel
features of the compact object. We find that the EGB coupling
constant and the decoupling parameter play important roles
in enhancing and suppressing the effective density and radial
profiles at each interior point of the bounded object. An analy-
sis of the effective tangential pressure reveals a ‘changeover’
in the trends brought about by the EGB and decoupling con-
stants which may be linked to the cracking observed in clas-
sical 4D stellar objects proposed by Herrera (Phys Lett A
165:206, 1992).

1 Introduction

For over a century, Einstein’s formulation of the general
theory of relativity (GTR) has rewarded us graciously with
explanations of the bending of light in the vicinity of a mas-
sive gravitating object [1], precession of Mercury’s perihe-
lion [2], prediction and observational of gravitational waves
[3], observations of black hole shadow [4], to name just a few.
On the cosmological front GTR has provided us with a wide
spectrum of explanations of physical phenomena including
but not limited to gravitational lensing [5], the age of the
Universe, baryogenesis, amongst others [6,7]. With the rich-
ness and successes of GTR, also comes several shortcomings.
These include the observed acceleration of the Universe, the
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horizon problem, flatness problem, physics surrounding the
initial Big Bang, inflation, etc. [8]. In order to solve some of
these shortcomings, researchers have come up with a multi-
tude of concoctions which include dark matter, dark energy,
phantom fields, scalar fields, strings and much more. In addi-
tion to conjuring up exotic matter fields to explain observa-
tions within astrophysical and cosmological contexts, it was
necessary to modify GTR. This led to a plethora of modified
theories of gravity including Lovelock gravity [9,10], f (R),
f (T ), f (R; T ) [11], scalar tensor theories [12], to highlight
a few.

The interest in higher dimensional theories was sparked
by ground-breaking work by Kaluza [13] and Klein [14].
While exploring GTR in five dimensions, Kaluza, on impos-
ing the cylinder condition, which is equivalent to treating the
5th dimension as a closed loop, rather than an infinitely long
straight line, led to an interesting interpretation of the matter
source. The resulting field equations in five dimensions in the
absence of forces, described a Maxwell-like source in 4D.
Klein on the other hand explored the idea of higher dimen-
sions within the context of quantum mechanics. The Kaluza–
Klein theory served as a springboard for other higher dimen-
sional theories including the search for a quantum theory
of gravity, string theory and M-theory. The search for large
extra dimensions via the Large Hadron Collider experiments
failed to reveal any signature of their existence. Researchers
have turned their attention to small extra dimensions of the
order of the Planck length. To date, there is no experimental
evidence for higher dimensions. We are reminded of predic-
tions and later confirmations of the existence of anti-matter,
quarks, neutrinos and more recently, quadruplets [15] that
we must continue to exploit higher dimensional theories for
their mathematical richness parallel to the development of
technology and experimental design.

The EGB gravity formalism is appealing for various rea-
sons, some of which include the preservation of salient fea-
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tures of a theory of gravity viz., Bianchi identities, diffeo-
morphism invariance and second-order quasi-linear equa-
tions of motion. In the weak-field limit, EGB gravity reduces
to classical 5D Einstein gravity. The Tolman–Oppenheimer–
Volkoff equation adjusted appropriately carries over to extra
dimensions and has played a key role in revealing the forces at
play within the core to maintain static equilibrium. The cou-
pling constant arising in EGB gravity is linked to heterotic
string theory and is viewed as the string tension. Despite
the nonlinearity of the EGB field equations, there have been
several studies of compact objects within the 5D EGB frame-
work. The resulting models of stellar objects have revealed
interesting properties in terms of mass, radii and surface red-
shifts compared to their classical 5D counterparts [16–19].
On the other hand, Hansraj et al. [20] have demonstrated
that the contributions from extra dimensions allow for higher
densities (increased packing of mass per unit volume). In this
connection, recently Maharaj and his collaborators [21] have
proposed new solution-generating scheme via gravitational
decoupling for isotropic matter distributions in the context
of five and six dimensional EGB gravity.

The equation of state (EoS) which connects the pressure
to the density plays an important role in studying the physi-
cal viability of stellar structures. There are various EoS’s that
have been employed to study pulsars, neutron stars, strange
star candidates within 4D Einstein gravity some of which
include linear EoS, colour-flavoured-locked in (EoS), poly-
tropic EoS and generalisations thereof. It is interesting to
note that the imposition of an EoS of the form pr = pr (ρ),
where pr is the radial pressure and ρ is the energy den-
sity, respectively, of the star leads to a simple quadrature,
thus reducing the problem of finding an exact solution to the
EGB field equations featuring anisotropic stresses to a single-
generating function of the gravitational potentials [22].

Recently, the minimal geometric deformation (MGD)
method, proposed originally by Jorge Ovalle [23,24] has
been successfully applied to the construction of compact
stellar objects featuring pressure anisotropy. The essence of
the gravitational decoupling (GD) method is to complexify
a simple matter configuration through extrapolation while
preserving spherical symmetry. Continuing this procedure
we can extrapolate the simple matter source to more general
matter distributions. This is also a conduit which allows for
the introduction of anisotropy into the system. On the other
hand, we can begin with the metric associated with a par-
ticular matter configuration and solve the field equations to
obtain the seed gravitational potential which we then utilise
to solve the field equations with pressure anisotropy. The
effective energy–momentum tensor (EMT) can be expressed
as

T eff
μν = Tμν + β T ∗

μν, Gμν = κ2Tμν (1)

Fig. 1 Schematic diagram of extending the EGB solution via minimal
geometric deformation (MGD) approach

where T ∗
μν is the source EMT and T̄μν is the appended source

term with anisotropy. We obtain the metric potential, geff
μν

associated with the energy momentum tensor, T eff
μν by merg-

ing gμν and g∗
μν . We can go through several iterations of this

method to produce more complex anisotropic solutions. The
MGD technique and its subsequent generalisation, the so-
called complete geometric deformation (CGD) [25] have led
to a vast increase in the solution space of anisotropic solu-
tions in general relativity. The MGD scheme can be under-
stood by Fig. 1 which shows that how any known solution can
be deformed and generalized in to more complex domain by
adding an extra source in the original matter distribution. A
natural generalisation of the MGD and CDG techniques is to
extend them to higher dimensions. This has been successfully
accomplished in 5D EGB gravity. It has been demonstrated
that the EGB coupling constant and the decoupling param-
eter play crucial roles in the behaviour of the density and
pressure profiles.

Recent work on EGB stars via the MGD technique has
shown that it is possible to obtain stable neutron star models
[26] as well as beyond the conventionally observed upper
limit of two solar masses [27]. In addition, a first detailed
study of the CGD approach in 5D EGB gravity is also dis-
covered by Maurya et al. [28]. Some of the rigorous works
in different contexts except 5D gravity under gravitational
decoupling via MGD approach and its extension can be found
in the following works [29–54].

In this paper we apply gravitational decoupling via MGD
formalism to discover a new minimally anisotropic poly-
tropic solution in the framework of five-dimensional EGB
gravity. For this purpose, we deform the radial component
of the 5D spherically symmetric space-time by combining a
deformation function via coupling constant β. As usual, this
scheme splits the effective system into two subsystems: the
first system corresponds to pure EGB which is solved by tak-
ing Buchdahl ansatz using generalized polytropic equation
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of state and second system, (due to the extra source con-
taining the deformation function) is solved by applying the
mimic approach i.e. ε = θ0

0 . The minimally deformed poly-
tropic solution predicts different stellar behaviors compared
to MGD approach such as compactness and gravitational
red-shift.

The article is organized as follows: in Sect. 2, we pro-
vide a review of the decoupled field equations together with
the MGD scheme for five dimensional EGB gravity. The
minimally deformed anisotropic polytropic solution in 5D
EGB gravity mimicking the density constraint (ε = θ0

0 )
is discussed in Sect. 3. In Sect. 4, the matching conditions
using suitable exterior spacetime for determining the con-
stants involved in the solution have been derived in the con-
text of MGD scheme. The physical analysis of the minimally
deformed anisotropic solution using graphical representa-
tions is discussed in Sect. 5. Finally, in Sect. 6 we close with
an overview of our findings and pivotal results of our work.

2 Review of gravitationally decoupled field equations
via MGD under Einstein–Gauss–Bonnet gravity

The gravitationally decoupled field equations under Einstein–
Gauss–Bonnet (EGB) gravity can be given by the fol-
lowing modified D-dimensional action by adding an extra
Lagrangian for the new source as:

IG = 1

16π

∫
dDx

√−g [R − 2	 + αLGB] + Smatter

+β

∫
Sθ

√−g d4x, (2)

whereR and 	 represent the D-dimensional Ricci scalar and
the cosmological constant, respectively. Here, the Lagrangian
corresponding to the matter field and new source are denoted
by Smatter and Sθ respectively while the constant α is called
Gauss–Bonnet (GB) coupling constant. In addition, we have
chosen this constant α to be positive definite in this study
because it relates with the inverse string tension with dimen-
sion of [length]2. Moreover, we would like to highlight that
the different values of α have been chosen for studying the
EGB solutions in different contexts due to unavailablity of
experimental values for GB constant α. The constant β is
called the decoupling constant having no dimension which
connects the new Lagrangian in the EGB action. Also, if
β −→ 0 then we can recover action for pure EGB gravity.

Now we write the Gauss–Bonnet Lagrangian LGB which
is the combination of Riemann curvature tensor (Rμνkl ),
Ricci tensor (Rμν), and Ricci scalar (R) as

LGB = RμνklRμνkl − 4RμνRμν + R2. (3)

Then the equation of motion for the decoupled system is
obtained by the varying of the action (2) with respect to metric

tensor gμν as,

Gμν + αHμν = 8πG

c4 T eff
μν , where T eff

μν = Tμν − β θμν, (4)

whereGμν and Hμν represent the Einstein tensor and Gauss–
Bonnet (GB) tensor, respectively while Tμν and θμν are called
the energy momentum tensor corresponding to the matter
distribution and the new source. These tensor quantities can
expressed as follows

Gμν = Rμν − 1

2
R gμν (5)

Hμν = 2
(
RRμν − 2RμkRk

ν − 2RμνklRkl − RμklδRklδ
ν

)

−1

2
gμν LGB, (6)

Tμν = −2√−g

δ
(√−g Smatter

)
δgμν

, and

θμν = 2√−g

δ
(√−g Sθ

)
δgμν

. (7)

In addition, we would like to mention that the GB coupling
constant α can take high values up to order of 1023 in the
context of solar system tests under EGB gravity theory [55].
Also, in the presence of the higher curvature Gauss–Bonnet
invariants, Dehghani [56] utilised a negative value for α to
explain accelerated cosmic expansion. Now, we assume a D
dimensional static and spherically symmetric line element for
determining the minimally deformed solution for a compact
star of the form,

ds2
D = −W (r) c2dt2 + H(r)dr2 + r2d�2

D−2, (8)

where W ≡ W (r) and H ≡ H(r) are the metric functions
which depend on radial coordinate r only and d�2

D−2 is the
metric on the unit (D − 2)- dimensional sphere. Moreover,
we consider that the matter distribution is anisotropic then
energy momentum tensor can be cast as

T eff
μν = (εeff + peff

t ) uμuν + peff
t gμν + (peff

r − peff
t )χμ χν,

(9)

Here, ε, peff
r , and peff

t denote the energy density, radial pres-
sure, and tangential pressures, respectively for the effective
energy tensor (T eff

μν ). On the other hand, the contravariant
5-velocity uν and unit space-like vector χμ in the radial
direction satisfy the following relation: uνuν = −1 and
χμ = √

1/H(r) δ
μ
1 . Then the EGB field equations for the

line element (9) can be written as

εeff = (2 − D)(H − 1)[α(D − 5)(H − 1) + (D − 3) Hr2]
2H2r4

+ (D − 2)H ′[4α(H − 1) + Hr2]
2H2r3W

, (10)

peff
r = (D − 2)(H − 1)[α(D − 5)(H − 1) + (D − 3) Hr2]

2H2r4
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+ (D − 2)W ′[4α(H − 1) + Hr2]
2H2r3W

, (11)

peff
t = (2 − D)

12H3r4W 2

×
[
Hr2{

W ′2Hr2 + r(−4W ′H + H ′W ′r − 2W ′′

×Hr)W + 2(D − 3)[(H − 1)H + H ′r ]W 2} + 2α
{
2W ′2

×(H − 1)Hr2 + 2W ′r [12H + H ′(H − 3)r ]W − (H − 1)

×W
(
4W ′′Hr2 + (D − 5)[(H − 1)H − 2H ′r ]W )}]

, (12)

where ′ denotes the derivative with respect to the radial coor-
dinate r , only. Here it is important to mention that the EGB
theory is a higher dimensional and higher curvature proposal
generating up to second equations of motion and the GB term
does not show any effect on the gravitational dynamics in D-
dimensional spacetime whenever D ≤ 4 due to the Gauss–
Bonnet invariants becoming a total derivative. Whereas, it is a
known fact that the EGB term has no effect on gravitational
field for N ≤ 4 and becomes dynamic for N > 4 where,
N = (D−1)

2 is related to the dimensionality of the spacetime.
The solutions of compact and bounded objects can be found
for critical odd and even (D = 2N + 1 and 2N + 2) dimen-
sions as shown by Dadhich and his colleagues. It is well
known that Nth-order, odd dimensional (D = 2N + 1) pure
Lovelock spacetimes do not admit models of self-gravitating
bounded objects as there is no finite boundary for which
the pressure vanishes. In addition, it has been demonstrated
that bounded orbits do not exist for critical odd dimensions
in pure Lovelock gravity. The existence of stable orbits is
a requirement for having stable structures such as compact
stars and black holes [57]. Several earlier works have shown
that the odd dimensions Lovelock spacetimes are not nec-
essarily kinematic [58–61]. In a more recent study Hansraj
and Gabuza [62] investigated a class of cosmological models
arising in (2N + 1) pure Lovelock gravity thus demonstrat-
ing that such spacetimes are dynamic rather than kinematic.
They were able to solve the governing field equations for
various ansatzes and further explored the physical viability
of the resulting cosmological fluids. On the other hand, the
stellar models with dimension D = 5, 6 in EGB gravity
and Einstein gravity for D = 3, 4 have similar behaviour
as suggested by Dadhich et al. [63]. Recently, Glavan and
Tomozawa [64,65] have made efforts to find the effects of the
GB terms in 4-dimensional gravity via dimensional regulari-
sation process but this method is facing some kind of valuable
criticisms and it is not still free of controversy [66,67]. There-
fore, by taking cognizance of the above points we move to
study higher-dimensional stellar structures, in particular 5D
EGB framework in this current exposition. Then the static
spherically symmetric line element (8) in five-dimensional
spacetime may be written as,

ds2
5 = −W (r) c2dt2 + H(r)dr2 + r2d�2

3, (13)

where d�2
3 = (

dθ2 + sin2 θ dφ2 + sin2 θ sin2 φ dψ2
)
. Now,

using the Eqs. (4) and (9) with (13) one could obtain the non-
vanishing components of the gravitational field equations as,

εeff = 12 αH ′(H − 1) + 3r H(H ′r + 2H2 − 2H)

2H3r3 ,

(14)

peff
r = 12α W ′(H − 1) + 3Hr(W ′r − 2(H − 1)W )

2H2r3W
,

(15)

peff
t = 1

4H3r2W 2

[
4α{W ′2(H − 1)H + H ′W ′(H − 3)

×W − 2 W ′′(H − 1) H W } + H
{
W ′2Hr2

+W ′r(H ′r − 4H)W − 2W [W ′′Hr2 + 2(H

−H2 − H ′r)W ]}]. (16)

Since it is already well-known that the Einstein tensor Gμν

and the Gauss–Bonnet tensor Hμν are individually conserved
[9,10]. Then due to this fact, the effective energy–momentum
tensor T eff

μν for decoupled system given by Eq. (4) will also
be divergence–free i.e. ∇μ T eff

μν = 0 that provides a general
hydrostatic equation in 5D Einstein–Gauss–Bonnet gravity
under the spacetime (13) as,

− W ′

2W
(εeff + peff

r ) − (peff
r )′ + 3

r
(peff

t − peff
r ) = 0. (17)

The above equation is also called a modified Tolman–
Oppenheimer–Volkoff (TOV) equation for effective system
under EGB gravity. In order to find the mass function formula
in 5D spacetime, we must firstly define an arbitrary function
A(r) by relating it to the energy density (εeff) [68] as,

2

3

∫ r

0
εeff(r̂) r̂3dx = (2 α A2 + r2 A), (18)

The Eq. (18) is also equivalent to A(r) = H(r)−1
H(r) . Now we

introduce the mass function in 5-dimensional proposed by
Ponce [69] as,

m(r) = 1

3

∫ r

0
εeff(r̂) r̂3dr̂ , (19)

Then using Eqs. (18) and (19), we arrive at the following
relation,

A = r2

4α

(
−1 +

√
1 + 16 α m

r4

)

	⇒ 1

H(r)
= 1 + r2

4α

(
1 −

√
1 + 16 αm

r4

)
. (20)

which is similar to the Boulware–Deser spatial potential. As
we are dealing with anisotropic stars, the temporal poten-
tial will not be related to the Boulware–Deser metric. By
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matching the appropriate components of the exterior (vac-
uum) Boulware–Deser metric [70] with interior metric (13)
at the boundary, the mass function (19) at the surface can be
obtained. This mass function is eventually the total mass of
the compact star. Now our next strategy is to solve the decou-
pled field equations for compact star model. Since decoupled
field equations are a system of highly non-linear differen-
tial equations, it is not easy to solve them exactly. There-
fore, we apply a well-known method known as gravitational
decoupling through minimal geometric deformation (MGD)
approach under a specific transformation along the gravita-
tional potentials,

W (r) −→ Y (r) + β ξ(r), (21)
1

H(r)
−→ X (r) + β ψ(r) (22)

where ψ(r) and ξ(r) are called the geometric deformation
functions along the spatial and temporal metric components,
respectively. This deformation can be set suitably through
the decoupling constant β. As usual, when β = 0, the stan-
dard EGB scenario is recovered. Now we need to choose the
suitable transformation along only one gravitational potential
due to minimal deformation. In particular, we set ξ(r) = 0
and ψ(r) �= 0 which generates a deformation of the radial
component only while the temporal evolution is unaffected.
By applying this MGD technique, the decoupled system gets
divided into two subsystems. The first system corresponds to
Tμν and other system for the new source θμν . In order to write
the first system, we consider the energy–momentum tensor
Tμν which describes the anisotropic matter distribution given
as,

Tμν = (ε + pt ) uνuν + pt gμν + (pr − pt )χμ χν, (23)

where ε represents a seed energy density while pr and pt
denote the seed radial pressure and seed tangential pressure,
respectively. Then the effective components for density and
stresses can be written in terms of seed density and pressures
components as:

εeff = ε + β θ0
0 , peff

r = pr − β θ1
1 , peff

t = pt − β θ2
2 .

(24)

Now the effective anisotropy takes the form,

�eff = peff
t − peff

r = (pt − pr ) + β(θ1
1 − θ2

2 ). (25)

From the above equation, we observe that the extra compo-
nent in the effective anisotropy β(θ1

1 − θ2
2 ) = �MGD (let)

due to gravitational decoupling along the radial deformation
(22) may produce strong anisotropy in the system but this
will solely depend on the behavior of �MGD . Now the sys-
tem (14)–(16) yields the following equations which depend

only on the gravitational potentials X and W when β = 0 as,

ε = 1

2r3 [12αX ′(X − 1) − 3r(X ′r + 2X − 2)], (26)

pr = 1

2r3W

(
12αW ′X (1 − X) + 3 r [W ′Xr

+2(X − 1)W ]), (27)

pt = 1

4r2W 2

[
W ′r(X ′r + 4X)W − W ′2r2T + 4α{W ′2

×(X − 1)X + X ′W ′(1 − 3X)W − 2W ′′(X − 1)

×XW } + 2W (W ′′r2X + 2(X ′r + X − 1)W )
]
. (28)

Then the solutions of the above system of equations can be
given by following line element,

ds2 = −W (r)dt2 + dr2

X (r)
+ r2d�2

3, (29)

where the mass function (mEGB) for pure EGB system (i.e.
when β = 0) can be determined by the formula,

X (r) = 1 + r2

4α

(
1 −

√
1 + 16 αmEGB

r4

)
, (30)

Moreover, the conservation equation for the system (26)–
(28) can be determined by substituting β = 0 in Eq. (17)
as,

− W ′

2W
(ε + pr ) − (pr )

′ + 3

r
(pt − pr ) = 0. (31)

We now move onto the process for determining the second
set of equations for the new source θi j which is obtained by
turning on the decoupling constant β as,

θ0
0 = 1

2 r3

(
3 β [4α X ′ ψ − r (2 ψ + ψ ′ r) + 4 α ψ ′

×(β ψ + X − 1)]), (32)

θ1
1 = 1

2 r3W

( − 3β ψ[4 α W ′ (1 − β ψ − 2X)

+r(W ′ r + 2W )]), (33)

θ2
2 = −β

4r2W 2

[
W ′r(4ψ + ψ ′r)W − W ′2ψr2 + 2W

×(W ′′ψr2 + 2(ψ + ψ ′r)W ) + 4α{W ′′ψ(β ψ

−1 + 2 X) − 2 W ′′ ψ (β ψ + 2 X − 1)W + W ′

×(ψ ′ − 3βψ ′ψ − 3X ′ψ − 3ψ ′X)W }]. (34)

Since the new source θi j is also conserved i.e. ∇μ θμν = 0
which leads to the following conservation equation,

− W ′

2W
(θ0

0 − θ1
1 ) + (θ1

1 )′ + 3

r
(θ1

1 − θ2
2 ) = 0. (35)

In view of the above equation, it is noted that gravitational
decoupling is free from the exchange of energy between these
two sources T̂μν and θμν in 5D and EGB gravity. Moreover,
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we also mention that the linear combination of the conser-
vation equations via decoupling constant β leads to the con-
servation equation (17). Since, the MGD has been applied
along the radial component of the line element, MGD may
also contribute some extra mass in the stellar object. This
extra component of the mass function, mψ due to the new
source θμν is given as,

mψ = 8πG

3 c2

∫ r

0
θ0

0 (x) x3dx, (36)

Moreover, the deformation function ψ can also be expressed
in terms of the mass function (mψ ) [27]

ψ(r) =
4α + r2 ±

√
16αβmψ + [r2 − 4α(X − 1)]2 − 4αX

4 α β
.

(37)

3 Minimally deformed polytropic solution in EGB
gravity

In this section, we wish to determine the solution for both
systems of equations (26)–(28) and (32)–(34) connected with
the sources Tμν and θμν . Since we have already specified
that the energy–momentum tensor Tμν which describes an
an anisotropic fluid matter distribution, then the presence of
extra source θμν in the matter distribution will enhance the
anisotropy of the system. Here we employ the generalized
polytropic equation of state (EoS)

pr = χ1 ε1+ 1
n + χ2 ε + χ3, (38)

to solve the seed system (20)–(22) related to energy–
momentum tensor Tμν . Here, χ1, χ2 and χ3 are EoS con-
stant parameters while n is a polytropic index. It is noted
that the EGB field equations are highly non-linear and it
is not possible to find the exact solution of the EGB field
equations under the EoS (37) for general values of n. There-
fore, we chose the polytropic index n = 1 for solving the
EGB field equations (20)–(22) and the EoS (37) becomes:
pr = χ1 ε2 + χ2 ε + χ3. On the other hand, it is important
to mention that if χ1 = 0, then EoS (38) will reduce to a lin-
ear EoS which also describes the MIT bag model EoS when
χ1 = 0, χ2 = 1

3 and χ3 = − 4B
3 , where B is a bag con-

stant. Now by taking into account EoS (38) for n = 1 with
equations (26) and (27), we get

−144α2X ′2χ1(X − 1)2W − 24αr(X − 1)(W ′r2X

+X ′(χ2r
2 − 3χ1(−2 + X ′r + 2X))W ) + r2[6W ′r3X

−{
9χ1(X

′r + 2X − 2)2 + 2r2(6 + 2χ3r
2 − 6X

−3χ2(−2 + X ′r + 2X))
}
W

] = 0. (39)

We note that Eq. (39) depends on the gravitational potentials
W (r) and X (r). In order to solve the above differential equa-

tion, we use the well-known potential function proposed by
Buchdahl of the form,

X (r) = 1 + Dr2

1 + Cr2 , (40)

whereC and D are constants with dimension length−2. Now
by plugging X (r) into differential equation (39) and integrat-
ing with respect to r , we obtain an exact solution for potential
W (r) as,

W (r) = A Exp

[
2Cχ3r2

6D
− 1

6(1 + Cr2)3 [24α(C − D)2χ1]

+ 1

(1 + Cr2)2 [9(C − D)(4αD − 1)χ1] − 1

6(1 + Cr2)
[36C

+18D(4αD − 3)χ1] − 1

6(C − D)

[
6
{
C(6Dχ1 − χ2) − D(9Dχ1

−12αD2χ1 − χ2)
}

ln(1 + Cr2)
] − 1

6(4αD − 1)
[2(C − D)(9χ1

−12α(1 + χ2) + 16α2χ3) ln(1 + 4αC − 4αD + Cr2)]
+ 1

6(C − D)D2(4αD − 1)

[
2
{
CD(72αD3χ1 + D(6 + 9χ2)

−12D2(3χ1 + αχ2) − 2χ3) + C2(9D2χ1 − 3D(1 + χ2) + χ3)

+D2(144α2D4χ1 − 144αD3χ1 − 3D (1 + 2χ2) + 12D2(3χ1

+αχ2) + χ3)
}

ln(1 + Dr2)
]]

. (41)

where, A is an arbitrary constant of integration. On inserting
of X (r) and W (r) into Eqs. (26)–(28) together with (40) and
(41) we find the expressions for ε, pr and pt as,

ε = 1

(1 + Cr2)3

[
3(C − D)(2 + 4a(C − D) + 3Cr2 + C2r4)

]
,

(42)

pr = 1

(1 + Cr2)6

[ − 144αD3χ1 + 144α2D4χ1 − 6Dχ2 + 12D2

×(3χ1 + αχ2) + χ3 + C6r8(9χ1 + 3χ2r
2 + χ3r

4) + 3C5r4

×(6χ2r
4 − Dχ2r

6 + 2χ3r
6 − 6χ1r

2(−3 + Dr2) + 4α(6χ1

+χ2r
2)) − 3C(24αD3χ1(8a + 3r2) + D(24χ1 + 8αχ2

+9χ2r
2) − 12D2(12αχ1 + 3χ1r

2 + αχ2r
2) − 2(χ2 + χ3r

2))

+3C4(48α2χ1 + 14χ2r
6 − 6Dχ2r

8 + 5χ3r
8 + 3χ1r

4(13

−12Dr2 + D2r4) + α(4χ2r
4(3 − 2Dr2) − 72χ1r

2(Dr2 − 1)))

+3C2(9χ2r
2 − 16Dχ2r

4 + 5χ3r
4 + 4αχ2(1 − 6Dr2 + 3D2r4)

+3χ1(4 + 96α2D2 − 24Dr2 + 13D2r4 − 8αD(6 − 9Dr2

+D2r4))) + 2C3(−288a2Dχ1 + 24χ2r
4 − 21Dχ1r

6 + 10χ3r
6

+9χ1r
2(6 − 13Dr2 + 3D2r4) + 6α(χ2r

2(3 − 6Dr2 + D2r4)

+6χ1(2 − 9Dr2 + 3D2r4)))
]
, (43)

We do not explicitly write the expression for pt due to it being
cumbersome and lengthy. The spacetime geometry for the
seed solution is completely determined. We now only need
to solve the second system corresponding to θ -sector which
depends on the undetermined deformation function ψ(r), in
order to find the complete solution for energy–momentum
tensor T eff

μν . In GR, a wide variety of approaches have been
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adopted to obtain the deformation function, ψ(r) [24,29–
31] but very few in the context of 5D EGB gravity [26–
28]. In this work we mimic the seed energy density ε(r) to
θ0

0 (r) i.e. ε(r) = θ0
0 (r). Now using the Eqs. (32) and (42)

and integrating w.r.t r , we get a closed form solution for
deformation function ψ(r) as,

ψ(r) = Cr2(1 + 4αC − 4αD + Cr2) − √
ψ1(r)

4α β C (1 + Cr2)
, (44)

where,

ψ1(r) = r4C2(1 + 4α(C − D) + Cr2)2 + 8(C − D)

×αβ[1 + 2Cr2 + 2C2r4 + C3r6 − 2α(C − D)

×(1 + 2Cr2)] + 16α2β2C2(1 + Cr2)2F1.

and F1 is a arbitrary constant of integration. In order to
achieve a regular model, the deformed gravitational potential
H(r) must be unity at the center i.e. H(0) = 1, which leads
to

H(0) = [X (0) + β ψ(0)]−1 = 1,

	⇒ ψ(0) = 0 due to X (0) = 1 [from Eq.(35)], (45)

confirming that the deformation function vanishes at the cen-
ter i.e. ψ(0) = 0. The value of the arbitrary constants F1 is
determined as,

F1 = D − C + 2αC2 − 4αCD + 2αD2

2αβC2 . (46)

Then by plugging the value of F1 in Eq. (44), we get

ψ(r) = r2 ψ2(r), (47)

where

ψ2(r) = 1

4αβ(1 + Cr2)
[1 + 4αC − 4αD + Cr2

−√
8α(1 + β)(C − D)ψ3(r),

ψ3(r) = [2α(C − D) + (1 + Cr2)] + (1 + Cr2)2]. (48)

Then the components of the θ -sector are,

θ0
0 = 1

(1 + Cr2)3

[
3(C − D)(2 + 4a(C − D)

+3Cr2 + C2r4)
]
, (49)

θ1
1 = 3ψ2(r)

2(1 + Cr2)

[
(1 + Cr2)(2 + r2 W1(r)) − 4α

×W1(r){1 + 2Dr2 + β ψ2(r) r
2 − Cr2

×(1 − βr2 ψ2(r))}
]
. (50)

where the expression for W1(r) is given in the Appendix. We
circumvent the presentation of θ2

2 due to its length.

4 Exterior space–time and matching conditions

For determining the constants involved in the effective sys-
tem we should match the interior deformed spacetime with
the suitable exterior spacetime at the boundary r = R. The
deformed interior spacetime can be given by the following
line element,

ds2
5 = −W (r) dt2 + dr2

X (r) + β �(r)
+ r2d�2

3, (51)

On the other hand, the suitable exterior spacetime in 5D is
given by Boulware–Deser [70] exterior (vacuum) solution
as,

ds2
5 = −F(r)dt2 + dr2

F(r)
+ r2d�2

3, (52)

where F(r) =
[
1+ 1

4α

(
r2−√

r4 + 16αM
)]

and M denotes

a total mass associated with gravitational mass of the object
at the surface. Moreover, the above exterior spacetime gives
a 5D Schwarzschild exterior spacetime in the limit α → 0.
Furthermore, it can be clearly observed that the presence
of the new source θμν inside the system could in principle
modify the exterior spacetime geometry as well as matter
content. Then, it may not be possible to embed the stellar
compact object to vacuum space–time. But, if we assume
that new contributions arising from θμν are confined within
the stellar interior [24,28], then the stellar compact object
will remain embedded into a true Boulware–Deser vacuum
space-time (52). Now we the fix easily the arbitrary constant
parameters by joining of the interior (51) and exterior (52)
spacetimes across the boundary. To do this, we consider the
manifolds which have the boundaries defined by the time-like
hypersurfaces

ds2
� = −dτ 2 + R2(dθ2 + sin2 θ dφ2 + sin2 θ sin2 φ dψ2),

(53)

where, τ is the proper time on the boundary. Now, we
can achieve the generalized Darmois–Israel formalism for
Einstein–Gauss–Bonnet theory by projecting of the field
equations on the shell �, as (for more details see Refs.
[71,72])

2〈Kμν − Khμν〉 + 4α〈3Jμν − Jhμν + 2Pikl j K
kl〉

= −κ2Sμν, (54)

where the 〈·〉 and J denote the jump of a defined quantity
across the hypersurface � and trace of Jμν , respectively
while hμν = gμν − nνnμ is called the induced metric on
�. Then divergence–free part of the Riemann tensor and Jμν

are given by

Rμνkl = Rμνkl + (Rνkhlμ − Rνl hkμ) − (Rμkhlν
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−Rμl hkν) + 1

2
R(hμkhlν − hμl hkν), (55)

Jμν = 1

3

[
2KKμk K

k
ν + Kkl K

kl Kμν − 2Kμk K
kl Klν

−K 2Kμν

]
, (56)

respectively. Hence, the extrinsic curvature Kμν in the
present scenario takes the following form,

K±
μν = −n±

μ

(
∂2Xμ

∂ξμ∂ξν
+ �

μ
αβ

∂Xα

∂ξμ

∂Xβ

∂ξν

)
r=R

, (57)

where ξμ = (τ, θ, φ, ψ) the intrinsic coordinates at the
boundary and the sign ± depends on the signature of the junc-
tion hypersurface. Now for smooth matching, we need the
continuity of the first and second fundamental forms across
the boundary. Then using the first fundamental form at the
boundary, we get

1

H(R)
= X (R) + βψ(R)

=
[

1 + 1

4α

(
R2 −

√
R4 + 16 αM

)]
, (58)

W (R) =
[

1 + 1

4 α

(
R2 −

√
R4 + 16 αM

)]
. (59)

where the seed metric function X (R) at r = R is given as:
X (R) = [

1+ 1
4 α

(
R2 −√

R4 + 16 α MEGB
)]

, and MEGB =
mEGB(R) denotes the mass of the compact object with radius
R in pure EGB gravity for the seed spacetime (29). Then, the
total mass for effective system is given as,

M=MEGB + βψ(R)

2

[
2αβψ(R)−

√
R4 + 16αMEGB

]
,

(60)

where the total mass in pure EGB gravity is given,

MEGB = 1

3

∫ R

0
ε r3 dr = (1 − X)

2

[
2 α (1 − X) + R2

]
.

(61)

Now we move onto the determining the second fundamental
form for present situation which is more complex. The con-
tinuity of second fundamental form at the boundary yields
[
(Gμν + α Hμν) r

ν
]
�

= 0, 	⇒ [
T eff

μν rν
]
�

= 0 (62)

where rν denotes a unit vector in the radial direction. Then
(62) implies,
[
peff
r

]
�

= 0 	⇒ [
pr − β θ1

1

]
�

= 0, (63)

where � denotes the bounding surface which is defined at
r = R. This matching condition then may be expressed as

pr (R) − β (θ1
1 )−(R) = −β (θ1

1 )+(R), (64)

where the (θ1
1 )−(R) and (θ1

1 )+(R) are called the θ -sector
components for interior and exterior space–times at the

surface, respectively. The condition (64) denotes a general
expression of the second fundamental form for the effective
system associated with the EGB equation of motion given by
Eq. (4). Now we obtain a modified second fundamental form
by plugging of the θ1

1 component for the interior spacetime,
determined via Eq. (33), into the Eq. (64) as,

pr (R) + 1

2 R3WR

(
3β ψR[4 α W ′

R (1 − β ψR − 2XR)

+R (W ′
R R + 2WR)]) = −β (θ1

1 )+(R), (65)

where the symbols denote as ψR = ψ(R), XR = X (R), and
W ′

R = ∂rW
∣∣
r=R . Now by inserting (θ1

1 )+(R) for the exterior
spacetime in Eq. (65), we get

pr (R) + 3β ψR[4 α W ′
R (1 − β ψR − 2XR) + R (W ′

R R + 2WR)]
2 R3WR

= 3 β ψ∗
R

R3

[ R

(√
R4 + 16 α M − R2

)

√
R4 + 16 α M

[
4 α +

(
R2 − √

R4 + 16 α M
)]

×
{

− 4 α β ψ∗
R − 8 α

[
1 + 1

4 α

(
R2 −

√
R4 + 16 α M

)]

+4 α + R2
}

+ R

]
, (66)

where ψ∗
R = ψ∗(R) denotes a decoupling function for the

exterior spacetime geometry at the surface when the extra
source θμν present in the matter distribution, which is deter-
mined by the following 5D spacetime as

ds2
5 = −

[
1 + 1

4 α

(
r2 −

√
r4 + 16 αM

)]
dt2 +

[
1 + 1

4 α

×
(
r2 −

√
r4 + 16 α M

)
+ β ψ∗(r)

]−1

dr2 + r2d�2
3,

(67)

Now the conditions (58), (59), and (66) are known as the nec-
essary and sufficient conditions for matching the deformed
interior spacetime (51) with the exterior spacetime (52) at the
boundary. As we already supposed the contributions from the
new source θμν are confined within the stellar interior only
and the exterior spacetime is given by the static and spheri-
cally symmetric Boulware–Deser solution. In this situation,
we must put ψ∗

R = 0 in Eq. (67). Then we find a final form
of the condition (66) as,

peff
r (R) = pr (R) + 1

16π r3W

[
3β ψ

{
4 α W ′ (1 − β ψ

−2X) + r(W ′ r + 2W )
}] = 0, (68)

which is equivalent to,

peff
r (R) = pr (R) − β θ1

1 (R) = 0. (69)

The above condition shows that the compact stellar object
will be in equilibrium in a true (Boulware–Deser) exterior
“vacuum” only if the effective radial pressure (peff

r ) vanishes
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Fig. 2 Variation of effective
energy density (εeff) versus
radial coordinate r/R. The left
figure is plotted for fixed
β = − 0.6 with different α

while right figure for fixed
α = 5 with different β

Fig. 3 Variation of effective
radial pressure (peff

r ) versus
radial coordinate r/R. The left
figure is plotted for fixed
β = − 0.6 with different α

while right figure for fixed
α = 5 with different β

at the surface of the object. The condition (69) determines
the size of the compact stellar object i.e. radius (r = R). We
can also say that the matter distribution is confined in a finite
spacetime region i.e. the star does not expand indefinitely
beyond the boundary.

5 Physical analysis for minimally deformed solution

In order to confirm that the solution obtained via the MGD
approach does indeed describe a compact stellar model, albeit
in higher dimensions, we subject our model to regularity and
stability tests. In Fig. 2, we have plotted the effective energy
density as a function of the scaled radial coordinate. The left
panel of Fig. 2. displays the effective density when the EGB
coupling constant is varied while the decoupling constant
is held fixed. The density is a smoothly decreasing function,
decreasing outwards as the stellar surface is approached. The
density increases everywhere inside the bounded object as
the EGB coupling constant is increased. This effect of pack-
ing more mass into a given volume has been observed in
many other works on EGB stars. The left panel shows the
variation of the density when α is kept constant and β is
varied. The monotonic decrease in the effective density is
noted. Furthermore, as β becomes more negative, the den-
sity is suppressed, i.e. the density decreases at each interior
point of the stellar fluid. The radial pressure is connected to
the density via the EoS. In Fig. 3 (left panel), we observe the
trend in the effective radial pressure when α is varied and β is
fixed. As expected, the effective pressure mimics the effective

density, i.e., an increase in α is accompanied by an increase
peff
r . Furthermore, the effective pressure vanishes for some

finite value of the radial coordinate. This signifies the bound-
ary of the compact object. On the right panel of Fig. 3, the
effective radial pressure is shown when β is varied and α is
held fixed. We note the suppression in the radial pressure as
the magnitude of β is increased. However, there is a distinct
change in behaviour of the effective radial pressure compared
to its corresponding effective energy density. The incremen-
tal change in the effective radial pressure is much smaller
than changes in the corresponding effective energy density.
It appears that the quadratic term in the EoS is ‘switched’ on
when β is varied. The effects of α and β on the density and
pressure profiles are calculated for a compact object of radius
R = 11km and are exhibited in Tables 1 and 2 below. We
observe that effective central density is increased by approx-
imately 2.34% for α = 20 as compared to its 5D classical
GR counterpart. From Table 2. we observe the suppressive
nature of β, particularly in the effective surface density of
the bounded object. The effective tangential pressure is plot-
ted in Fig. 4. In the left panel of Fig. 4, we observe that the
tangential pressure is strengthened as α is increased up to
some finite radius, r = R0. Beyond this radius, an increase
in α results in a decrease in peff

t . It is interesting to note the
trend when β is varied and the EGB coupling parameter is
kept constant (right panel). As β becomes more negative,
the effective tangential pressure decreases up to a certain
radius r = R1, thereafter, peff

t increases as the magnitude
of the decoupling constant increases. This ‘switch over’ in
the trend of peff

t is more dramatic than its EGB counterpart
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Fig. 4 Variation of effective
tangential pressure (peff

t ) versus
radial coordinate r/R. The left
figure is plotted for fixed
β = − 0.6 with different α

while right figure for fixed
α = 5 with different β

Fig. 5 Variation of anisotropy
contribution �MGD versus
radial coordinate r/R. The left
figure is plotted for fixed
β = − 0.6 with different α

while right figure for fixed
α = 5 with different β

Fig. 6 Variation of effective
anisotropy (�eff) versus radial
coordinate r/R. The left figure is
plotted for fixed β = − 0.6 with
different α while right figure for
fixed α = 5 with different β

(left panel). Figure 5 shows the anisotropy arising from the
MGD contribution. We note that �MGD is positive in both
the left panel (varying α) and the right panel (varying β).
A positive anisotropy parameter signifies a repulsive force
which helps stabilise the bounded configuration. It is inter-
esting to note that an increase in the EGB constant decreases
�MGD , with this effect enhanced in the surface layers of the
stellar object. When the decoupling constant is made more
negative, �MGD increases more significantly than the effect
that α has on �MGD . The effective anisotropy parameter is
plotted in Fig. 6. The left panel of Fig. 6 reveals that �eff

is positive everywhere inside the star and decreases as α is
increased. The right panel indicates that �eff becomes neg-
ative as β becomes less negative. This indicates that there
is a critical value of the decoupling constant which flips the
sign of �eff. This change in sign of the effective anisotropy
parameter from positive to negative tends to destabilise the
stellar configuration.

On the other hand, it was already claimed that when seed
density ε is mimicking the temporal component of the θ -
sector ı.e., ε = θ0

0 , the effective mass inside the fluid sphere
does not remain same due to change in energy density. To
see the effect of MGD on the gravitational mass, we write
effective gravitational mass formula in 5D EGB gravity as

M(R) = 1

3

∫ R

0
εeff(r̂) r̂3dr̂ , (70)

Since ε = θ0
0 , then the effective density will be (1+β) times

the seed density, i.e. εeff = (1 + β) ε, then Eq. (70) leads

M(R) = 1

3
(1 + β)

∫ R

0
εeff(r̂) r̂3dr̂ , (71)

M(R) =
(
1 + β

)
(1 − X)

2

[
2 α (1 − X) + R2

]
. (72)
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Fig. 7 Variation of
gravitational redshift (z) versus
radial coordinate r/R. The left
figure is plotted for fixed
β = − 0.6 with different α

while right figure for fixed
α = 5 with different β

From Eq. (72), it can be observed that the effective total
mass M(R) of the object is (1 + β) times of the total
mass MEGB(R) under pure EGB gravity, i.e. M = (1 +
β) MEGB(R). This implies that the object becomes less
dense in the presence of MGD since β is negative.

On the other hand, the compactness factor u in 5D-EGB
gravity is defined as,

u = M

R2 = (1 + β)
MEGB

R2 (73)

Furthermore, the Buchdahl limit in the context of 5D-EGB
gravity is given as, [68]

uEGB ≡ 2MEGB

R2 ≤ 3

4
+ 9

8R2 α ∀ α > − R2

3
, (74)

Since β is negative then u remains to satisfy the Buchdahl
limit in the context in 5D-EGB gravity, and u ≤ uEGB .

Now we discuss the measurement of an important physical
feature known as surface redshift (z) of the compact object. In
the context of EGB gravity, the Gauss–Bonnet terms modify
the upper bound of redshift of spectral lines from boundary
surface of uniform density [73]. Since this upper bound of
redshift is dependent on the value of density, and then it is not
always possible to discover an upper bound for the redshift
[68,73]. The gravitational redshift of the minimally deformed
compact object is given by

z = √
1/W (r) − 1, (75)

From the above formula, we can determine some information
about the central redshift zc. So we can write

zc = √
1/W (0) − 1 = [1 + 4α(C − D)]A1 eA2

√
A

− 1, (76)

where A1 = (C−D)(9χ2−12a(1+χ2)+16α2χ3)
2 (−3+12αD)

, and A2 =
1
4 [8αC2+C (15−28α)+D(−21+44αD)]χ1, while the sur-
face redshift can be found by formula (75) by taking r = R.
In Fig. 7., left panel, we observe the trend in the redshift
as α is varied and β is kept constant. Closer to the central

regions of the star, the redshift increases as α increases and
this impact of α vanishes as the surface of the star is reached.
The left panel of Fig. 7. shows the variation of the redshift
when β is varied. As the decoupling constant becomes more
negative, the redshift decreases for higher values of the radial
coordinate. The numerical values of all the discussed phys-
ical quantities are mentioned in Tables 1 and 2. We further
observe that the obtained values for surface redshift zs are
consistent with the bound proposed in the GR scenario [74].

6 Overview of findings

We now provide an over-arching commentary of the salient
and novel features of our anisotropic 5D EGB stellar model
obeying a quadratic EoS within the MGD formalism. Start-
ing off with the Buchdahl ansatz for one of the metric func-
tions together with a polytropic EoS we solved the governing
MGD equation exactly to obtain the complete gravitational
behaviour of an anisotropic stellar model within the frame-
work of EGB gravity. This solution was then matched to the
exterior vacuum Boulware–Deser solution which fixed the
arbitrary constants arising from the integration of the master
equation. We then subjected our model to physical viability
tests which brought out an interesting connection between
the EGB coupling constant, α, the decoupling parameter, β

and the thermodynamical variables. We observed an increase
in the EGB coupling constant resulted in an increase in the
effective density at each interior point of the stellar config-
uration. This effect of packing more mass per unit volume
brought about by increasing the ‘strength’ of α has been
observed in other works on EGB stars. An increase in the
decoupling constant, with α being held fixed leads to higher
core densities. Since β < 0, we can interpret this behaviour
in the effective density profile as a suppression effect of β

as it increases in magnitude. Similar trends are observed in
the effective radial pressure. This is expected as peff

r and ρeff

are connected via the EoS. Recently, it has been shown that
the effective density for a 4D compact object is increased
in the presence of a scalar field and charge. Could there be
some connection between the EGB coupling constant and
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Table 1 Numerical values of physical parameters of the MGD solution for C = 0.0021 km−2, D = 0.0015 km−2, R = 11 km, χ1 = 0.2 and
χ2 = 1/3 with different coupling parameters α for fix decoupling constant β = −0.6

α peff
rc (dyne/cm2) ρeff

c (g/cm3) ρeff
s (g/cm3) M/R2 zc zs χ3

α = 0 1.01646 × 1034 7.7328 × 1013 5.54135 × 1013 0.0289451 0.0703767 0.0117885 0.0000882561

α = 5 1.07347 × 1034 7.7792 × 1013 5.56487 × 1013 0.0290835 0.069431 0.0118174 0.0000678205

α = 10 1.12845 × 1034 7.82559 × 1013 5.58840 × 1013 0.029222 0.0685331 0.0118514 0.0000483482

α = 15 1.18217 ×1034 7.87199 × 1013 5.61192 × 1013 0.0293605 0.0676661 0.0118852 0.0000293858

α = 20 1.2347 ×1034 7.91839 × 1013 5.63544 × 1013 0.029499 0.0668283 0.0119187 0.0000109093

Table 2 Numerical values of physical parameters of the MGD solution for C = 0.0021 km−2, D = 0.0015 km−2, R = 11 km, χ1 = 0.2 and
χ2 = 1/3 with different decoupling constant β for fix coupling parameter α = 5 km2

β peff
rc (dyne/cm2) ρeff

c (g/cm3) ρeff
s (g/cm3) M/R2 zc zs χ3

β = − 0.4 1.23415 × 1034 1.1669 × 1013 8.34731 × 1013 0.0290835 0.0688023 0.0178678 − 0.000250134

β = − 0.5 1.14903 × 1034 9.7240 × 1013 6.95609 × 1013 0.0290835 0.0690888 0.0148305 − 0.0000920576

β = − 0.6 1.07347 × 1034 7.7792 × 1013 5.56487 × 1013 0.0290835 0.069431 0.0118174 0.0000678205

β = − 0.7 1.00764 × 1034 5.8344 × 1013 4.17366 × 1013 0.0290835 0.0698295 0.00882806 0.000229526

β = − 0.8 9.51697 × 1034 3.8896 × 1013 2.78244 × 1013 0.0290835 0.0702845 0.00586228 0.000393087

the decoupling parameter to a scalar field and electromag-
netic field? The effective tangential pressure has revealed
an interesting trend. When the EGB coupling constant was
increased while β was fixed, peff

t increased. At some interior
point, r/R = 0.708 this effect switches with peff

t decreasing
as α is increased. A similar switching is observed when β

changes, but the switching takes place for a smaller radius,
r/R = 0.549. The effective anisotropy parameter is posi-
tive throughout the star and decreases in strength when the
EGB parameter is increased. An increase in α renders the
configuration less stable. On the other hand, we observed
that increasing the magnitude (making β more negative) of
the decoupling constant results in an increase in the effective
anisotropy parameter. It is also possible to change the sign
of �eff thus resulting in an attractive force due to pressure
anisotropy. This attractive force is directed inwards and com-
bines with the gravitational force to destabilise the compact
object.

Introduction of anisotropy via the MGD formalism has
laid bare some interesting effects of the EGB coupling con-
stant and the decoupling parameter in terms of the stability of
a 5D anisotropic star. It is possible to have stars with greater
densities in the presence of increasing α. The effect of the
higher dimension seems to compress matter into smaller vol-
umes. At the same time, an increase in the effective density
is accompanied by a destabilization of the compact object as
can been elucidated from the trend in the effective anisotropy
parameter. On the other hand, the decoupling constant acts
to decrease the density and pressure within the fluid con-
figuration and in the process stabilizes it. One can think of
the β as contributing through the θ -sector a repulsive effect

at each interior point. There is a critical value of β where
the anisotropy changes sign which tends to render the fluid
unstable. This could be a possible mechanism for overturn-
ing (stable regions becoming unstable) as shown by Herrera
[75] and Di Prisco and collaborators [76,77] in 4D relativistic
compact objects.
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