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Abstract We study R2-Higgs inflation in a model with two
Higgs doublets in which the Higgs sector of the Standard
Model is extended by an additional Higgs doublet, thereby
four scalar fields are involved in the inflationary evolutions.
We first derive the set of equations required to follow the infla-
tionary dynamics in this two Higgs doublet model, allowing
a nonminimal coupling between the Higgs-squared and the
Ricci scalar R, as well as the R2 term in the covariant formal-
ism. By numerically solving the system of equations, we find
that, in parameter space where a successful R2-Higgs infla-
tion are realized and consistent with low energy constraints,
the inflationary dynamics can be effectively described by
a single slow-roll formalism even though four fields are
involved in the model. We also argue that the parameter
space favored by R2-Higgs inflation requires nearly degen-
erate masses for mH, mA and mH± , where H, A, and H±
are the extra CP even, CP odd, and charged Higgs bosons in
the general two Higgs doublet model taking renormalization
group evolutions of the parameters into account. Discovery
of such heavy scalars at the Large Hadron Collider (LHC)
are possible if they are in the sub-TeV mass range. Indirect
evidences may also emerge at the LHCb and Belle-II exper-
iments, however, to probe the quasi degenerate mass spectra
one would likely require high luminosity LHC or future lep-
ton colliders such as the International Linear Collider and the
Future Circular Collider.

1 Introduction

The cosmic inflation [1–3] can successfully account for the
observed flatness, horizon and the absence of the exotic-
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relics and, can seed the condition required for the subsequent
hot big bang via the reheating process. The primordial den-
sity perturbations generated during inflation [4–7] can sub-
sequently develop into large scale structure of the Universe
and the cosmic microwave background (CMB) anisotropies
measured by experiments such as Planck [23]. While the cos-
mic inflation is indeed a well established paradigm for the
very early epoch of the Universe, however, the mechanism
behind it is still unknown.

The Higgs inflation [8–14] (for earlier works which
employed essentially the same idea, see [15–22]) is one of
the candidates that best fits the CMB data [23] and, draws sig-
nificant attention due to its direct connection to the physics
at the LHC. In the Standard Model (SM) Higgs inflation,
the Higgs field � couples to the Ricci scalar R via ξ�†�R
term, where ξ is dimensionless nonminimal coupling, and
can account for the amplitude of the primordial perturbation
along with the spectral index and the tensor-to-scalar ratio
within the experimentally measured values [23]. While the
Higgs inflation can fit the CMB data without requiring any
additional degrees of freedom between the electroweak and
Planck scale, however, a unitarity violating scale emerges
below the Planck scale [24–27]. Because the energy scale for
inflation lies below such cut-off scale, it does not pose any
problem for inflationary dynamics during the inflation [10].
However, during preheating stage i.e., when the inflaton field
oscillates around the potential minima, longitudinal gauge
bosons with momenta beyond the unitarity cut-off scale are
produced violently [28–30]. The perturbative unitarity of the
Higgs inflation can be restored up to the Planck scale by intro-
ducing additional scalars at the inflationary scale [31,32] or,
by scalaron degree of freedom due to the presence of R2 term
(R2-Higgs inflation) in the Jordan frame [33] (see also for
e.g. [34–43]).

In this article we study the R2-Higgs inflation in the gen-
eral two Higgs doublet model (g2HDM) where the SM is
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extended by an additional scalar doublet �′. After the discov-
ery of 125 GeV Higgs boson h [44,45] the existence of addi-
tional scalar doublet seems plausible as all known fermions
appear in nature with more than one generation. In addition,
it is known that the electroweak vacuum is metastable for the
current central values of the SM parameters [46], especially
for top quark mass, which also could pose a threat for the
SM Higgs inflation.1 If the scale of the instability is smaller
than the required mass scale of the scalaron M � 10−5MP

(MP ≡ 1/
√

8πG � 2.4 × 1018 GeV) to fit the Planck mea-
surement of the scalar power spectrum amplitude, just adding
R2 term may not be enough to solve the problem [33,36,49].
This partially motivates us to consider extension of the Higgs
sector, in addition to the R2 term of the SM Higgs inflation.

In this paper we study the inflationary dynamics and pri-
mordial fluctuations in the R2-Higgs inflation in the frame-
work of the g2HDM based on the covariant formalism. The
work here also remedies the shortcomings of Ref. [50] where
inflationary dynamics was also under scrutiny due to the
unitarity violation by the required large nonminimal cou-
plings O(104 − 6 × 104) as in the SM.2 As we will argue,
the parameter sets consistent with current observations of
Planck and low energy constraints give almost the same pre-
dictions for primordial power spectrum, we take four bench-
mark points as representative ones to show the inflationary
dynamics and the evolutions of perturbations. For two bench-
mark points (PBs), we take the nonminimal coupling of the
scalaron degree of freedom to be much larger than Higgs
nonminimal coupling (R2-like scenario) i.e., akin to the orig-
inal Starobinsky model [55], whereas for the other BPs, we
take both the Higgs and scalaron nonminimal couplings rel-
atively large (denoted as mixed R2-Higgs scenario). We fur-
ther provide sub-TeV parameter space for R2-Higgs inflation
in the g2HDM that can satisfy all observational constraints
from Planck 2018 [23] and discuss the possibility of prob-
ing such parameter space at the current experiment such as
the LHC and future lepton colliders such as the International
Linear Collider (ILC) and the Future Circular Collider (FCC-
ee). Moreover, indirect evidences of such additional Higgs
bosons may also emerge in the ongoing flavor experiments
such as LHCb and Belle-II.

The paper is organized as follows. In Sect. 2 we first dis-
cuss the model framework of the g2HDM. We outline the
framework to follow the inflationary dynamics and perturba-
tions based on the covariant formalism in Sect. 3 followed
by numerical study in Sect. 4. We discuss possible discover-
ies and probes for the parameter space required for R2-Higgs

1 If one demands the stability up to Planck scale, the required upper
limit on the top quark pole mass is mpole

t � 171.4 GeV [47], which is
consistent at 1.6σ with the current combined result 172.5 ± 0.7 GeV
[48].
2 See also Refs. [51–54] for discussions on inflation in the 2HDM.

inflation at the collider experiments in Sect. 5. We summarize
our results with an outlook in Sect. 6.

2 Model framework

The most general CP-conserving two Higgs doublet model3

potential can be given in the Higgs basis as [58,59]

V (�,�′) = μ2
11|�|2 + μ2

22|�′|2 − (μ2
12�

†�′ + h.c.)

+ η1

2
|�|4 + η2

2
|�′|4 + η3|�|2|�′|2 + η4|�†�′|2

+
[η5

2
(�†�′)2 +

(
η6|�|2 + η7|�′|2

)
�†�′ + h.c.

]
,

(1)

where the vacuum expectation value v arises from the dou-
blet � via the minimization condition μ2

11 = − 1
2η1v

2, while
we take 〈�〉 = (0, v/

√
2)T ,

〈
�′〉 = 0 (hence μ2

22 > 0), and
ηi s are quartic couplings. A second minimization condition,
μ2

12 = 1
2η6v

2, removes μ2
12, and the total number of param-

eters are reduced to nine. The mixing angle γ is given by,
when diagonalizing the mass-squared matrix for h, H,

c2
γ = η1v

2 − m2
h

m2
H − m2

h

, sin 2γ = 2η6v
2

m2
H − m2

h

, (2)

with shorthand notation cγ = cos γ . The physical scalar
masses can be expressed in terms of the parameters in
Eq. (13),

m2
h,H = 1

2

[
m2

A + (η1 + η5)v
2

∓
√(

m2
A + (η5 − η1)v2

)2 + 4η2
6v

4

]
, (3)

m2
A = 1

2
(η3 + η4 − η5)v

2 + μ2
22, (4)

m2
H± = 1

2
η3v

2 + μ2
22. (5)

The scalars h, H, A and H± couple to fermions by [58]

L = − 1√
2

∑
F=U,D,L

F̄i

[( − λF
i j sγ + ρF

i j cγ

)
h

+ (
λF
i j cγ + ρF

i j sγ
)
H − i sgn(QF )ρF

i j A

]
PR Fj

− Ūi

[
(VρD)i j PR − (ρU†V )i j PL

]
DjH+

− ν̄iρ
L
i j PR L jH+ + h.c., (6)

3 See Refs. [56,57] for pedagogical reviews on the two Higgs doublet
model.
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where PL ,R ≡ (1 ∓ γ5)/2, i, j = 1, 2, 3 are generation
indices, V is Cabibbo–Kobayashi–Maskawa matrix, sγ =
sin γ and U = (u, c, t), D = (d, s, b), L = (e, μ, τ) and
ν = (νe, νμ, ντ ) are vectors in flavor space. The matrices
λF
i j (= √

2mF
i /v) are real and diagonal, whereas ρF

i j are in
general complex and non-diagonal.

In general, one may allow data to constrain different ele-
ments of ρF

i j matrices. However, it is likely that ρF
i j matrices

follow the same flavor organization principle as in SM. This
means ρF

i j ∼ λF
ii i.e., ρU

tt ∼ λUt , ρD
bb ∼ λD

b , ρL
ττ ∼ λL

τ etc.
with suppressed off diagonal elements. While apart from get-
ting involved in the RGE, the additional Yukawa couplings
ρF
i j do not play any major role in the inflationary dynamics,

they are essential for possible discovery of the heavy Higgs
bosons H, A and H±. For all practical purposes we shall set
all ρF

i j couplings to zero except for ρU
tt and ρU

tc throughout

this paper, however, the impact of turning on different ρF
i j

couplings and their constraints will be discussed in Sect. 5 of
this paper. In this work, we primarily focus on the sub-TeV
mass range i.e.mA,mH,mH± in the range of 200–800 GeV in
the urge of finding complementarity between R2-Higgs infla-
tion and the ongoing collider experiments such as the LHC,
although heavier Higgs bosons are also possible in principle.

3 Inflationary dynamics of R2-Higgs inflation

In this section, we outline the required formalism for R2-
Higgs inflation in the g2HDM and analyze perturbation the-
ory using the covariant formalism [60–67].

3.1 The action in R2-Higgs inflation

The model can be understood as a particle-physics motivated
generalization of R2-Higgs inflation model. In the Jordan
frame, the action is given by

S =
∫

d4x
√−gJ

[
− gμν

J

(
∂μ�†∂ν� + ∂μ�′†∂ν�

′
)

+
(
M2

P

2
+ ξ11|�|2 + ξ22|�′|2 + (

ξ12�
†�′ + h.c.

) )
RJ

+ ξR

4
R2
J − V (�,�′)

]
, (7)

with gJ = det gJμν , Ricci scalar RJ and (−1,+1,+1,+1)

metric convention and we adopt the natural unit h̄ = c =
1. The ξi j s are nonminimal couplings between Higgs’ and
Ricci Scalar and ξR is the self coupling of Ricci scalar. In
the following we would turn off the nonminimal coupling
ξ12 = ξ22 = 0 for simplicity however we shall return to their
impacts in the latter half of the paper.

We introduce an auxiliary field s for which the action in
Eq. (7) can be rewritten as

S =
∫

d4x
√−gJ

[(
M2

P

2
+ ξ11|�|2 + 1

2
ξRs

)
RJ − ξR

4
s2

− gμν
J

(
∂μ�†∂ν� + ∂μ�′†∂ν�

′) − V (�,�′)
]
, (8)

such that the variation of the action with respect to s gives
s = RJ . For inflationary dynamics we choose the Higgs
fields in the electromagnetic preserving direction:

� = 1√
2

(
0
ρ1

)
and �′ = 1√

2

(
0

ρ2 + iρ3

)
. (9)

We now perform the Weyl transformation to find the action
in Einstein frame via

gμν = F2gJμν, (10)

where the conformal factor F2 reads as

F2 = 1 + ξ11ρ
2
1 + ξRs

M2
P

. (11)

The action of Eq. (8) can be written in the Einstein frame as

SE =
∫

d4x
√−g

[
M2

P

2
R − 3M2

P

4
(∂μ log(F2))2

− 1

2

(∂μρ1)
2 + (∂μρ2)

2 + (∂μρ3)
2

F2 − VE

]
, (12)

where

VE = V (ρ1, ρ2, ρ3) + 2ξRs2

8F4 , (13)

with

V (ρ1, ρ2, ρ3) =
[
η̃1ρ

4
1 +η̃2

(
ρ2

2 +ρ2
3

)2+2η̃5

(
ρ2

2 − ρ2
3

)
ρ2

1

+ 2 (η̃3 + η̃4)
(
ρ2

2 + ρ2
3

)
ρ2

1

+ 4ρ2ρ1

{
η̃6ρ

2
1 + η̃7

(
ρ2

2 + ρ2
3

)} ]
. (14)

Here, η̃i s correspond to the renormalization group evolution
(RGE) of the parameters ηi at the inflationary scale ∼ O(H).
Details of the running of the parameters are discussed in
Sect. 4.

Let us perform following field redefinition [51]:

ϕ =
√

3

2
MP ln(F2), (15)
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resulting in a simple form of the action

SE =
∫

d4x
√−g

[
R

2
− 1

2
GI J g

μν∂μφI ∂νφJ − VE (φ I )

]
,

(16)

where φ I = {ϕ, ρ1, ρ2, ρ3} and GI J is field space metric,
with only non-vanishing components are diagonal:

Gφ1φ1 = 1, Gφ2φ2 = Gφ3φ3 = Gφ4φ4 = e
−

√
2
3

ϕ
MP . (17)

Finally, we have the following action in the Einstein frame
as

SE =
∫

d4x
√−g

[
M2

P

2
R − 1

2
(∂μϕ)2 − 1

2
e
−

√
2
3

ϕ
MP

× (
(∂μρ1)

2 + (∂μρ2)
2 + (∂μρ3)

2) − VE

]
, (18)

with

VE (ϕ, ρ1, ρ2, ρ3) = 1

8
e
−2

√
2
3

ϕ
MP

[
V (ρ1, ρ2, ρ3) + 2

M4
P

ξR

×
(
e

√
2
3

ϕ
MP − 1 − ξ11

M2
P

ρ2
1

)2]
. (19)

During numerical analysis, to remain in the perturbative
regime, we also demand the upper bound on the scalaron
mass as discussed in Refs. [33,36,49].

The equation of motions for the fields φ I can also be found
by varying the action in Eq. (16) with respect to φ I as

gμν∂ν∂μφ I + gμνΓ I
J K ∂μφ J ∂νφ

K − GIK VE,K = 0, (20)

where Γ I
J K (φM ) is the Christoffel symbol for the field space

manifold GIK and VE,K denotes derivative of VE with
respect to field φK . Explicit elements of Γ I

J K in our model
are given in the Appendix A. The background dynamics is
governed by the Friedmann equations:

H2 = 1

3MP
2

(
1

2
GI J φ̇

I φ̇ J + VE (φ I )

)
, (21)

Ḣ = − 1

2MP
2 GI J φ̇

I φ̇ J , (22)

where an overdot represents the derivative with respect to
time.

3.2 Background dynamics and the perturbation theory:
covariant formalism

In this section we outline the covariant formalism [60–68]
for our inflationary model, which includes four scalar fields

φ I = {ϕ, ρ1, ρ2, ρ3}. We closely follow the formalism for
multi-field inflation as discussed in Ref. [68]. We divide the
fields into classical background part (ϕ̄ I ) and perturbation
part (δφ I ) as

φ I (xμ) = φ̄ I (t) + δφ I (xμ). (23)

The perturbed spatially flat Friedmann-Robertson-Walker
(FRW) metric can be expanded as [69–71]

ds2 = −(1 + 2A)dt2 + 2a(t)(∂i B)dxidt

+ a(t)2 [
(1 − 2ψ)δi j + 2∂i∂ j E

]
dxidx j , (24)

where a(t) is scale factor and t is the cosmic time. A, B, ψ

and E characterize the scalar metric perturbations.
The φ I (xμ) field value in Eq. (23) depends on the back-

ground field value φ̄ I (t) and, gauge dependent field fluctu-
ation δφ I (xμ). This motivates one to consider gauge inde-
pendent Mukhanov–Sasaki variables for the field fluctuations
expressed as [70,72,73]

QI = QI +
˙̄φ I

H
ψ, (25)

with Dκφ I |κ=0 = dφ I

dκ
|κ=0 ≡ QI [62], where κ is the tra-

jectory in the field space. The field fluctuations δφ I can be
expressed in series of QI [62,74] as

δφ I = QI − 1

2
Γ I
J KQIQJ + 1

3!
(
Γ I
MNΓ N

JK − Γ I
J K ,M

)

× QIQJQM + · · · , (26)

with Christoffel symbols Γ I
J K evaluated with background

field. We remark that, while φ̄ I are not vectors in the field-
space manifold, QI , ˙̄φ I and QI all transform as vectors in
the field-space manifold. At this point it is useful to define the
covariant derivative of vectors SI and SI in the field-space
as

DJ S
I ≡ ∂J S

I + Γ I
J K S

K , DJ SI ≡ ∂J SI − Γ K
I J SK . (27)

One can also define covariant derivative with respect to cos-
mic time t as [63,75–78]

Dt S
I ≡ ˙̄φ JDJ S

I = Ṡ I + Γ I
J K S

J ˙̄φK . (28)

With these definitions, one can find that the background field
equations can be written as

Dt
˙̄φ I + 3H ˙̄φ I + GIK VE,K = 0. (29)

Numerically we solve these set of background equations of
motion for four fields {ϕ, ρ1, ρ2, ρ3} along with Eq. (21).
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While solving these equations we always check that the Ḣ2

estimated from these solutions and, directly from the Eq. (22)
are equal with high precision. Here, we remark that both in
Eqs. (21) and (22), all field dependent quantities are evaluated
with the background ones.

On the other hand, the equations for gauge invariant field
fluctuations QI are given by

D2
t Q

I + 3HDt Q
I +

(
k2

a2 δ IJ + MI
J − 1

MP
2a3

× Dt

(
a3

H
˙̄φ I ˙̄φJ

))
QJ = 0, (30)

where

MI
J = GIMDJDMVE − RI

MN J
˙̄φM ˙̄φN (31)

with RI
MN J being field-space Riemann tensor, and we denote

δMI
J = − 1

MP
2a3

Dt

(
a3

H
˙̄φ I ˙̄φJ

)
(32)

for future use. Here in both Eqs. (29) and (30) quantities such
as GIK , Γ I

J K , VE etc. all are evaluated with the background
quantities.

One can re-express Eqs. (21) and (22) as

H2 = 1

3MP
2

(
1

2
σ̇ 2 + VE

)
, (33)

Ḣ = − 1

2MP
2 σ̇ 2, (34)

where σ̇ is the length of the velocity vector ˙̄φ I in field-space
defined as

σ̇ =
√
GI J

˙̄φ I ˙̄φ J . (35)

We also introduce a unit vector σ̂ I given as

σ̂ I =
˙̄φ I

σ̇
. (36)

The equation of motion reads as

σ̈ + 3H σ̇ + VE,σ = 0, (37)

where VE,σ ≡ σ̂ I VE,I . Together with Eqs. (33) and (34),
Eq. (37) simply conforms of a single-field model with canon-
ically normalized kinetic term. The slow-roll parameters ε

and ησσ can be defined as

ε ≡ − Ḣ

H2 = 3σ̇ 2

σ̇ 2 + 2VE
, (38)

ησσ ≡ MP
2 Mσσ

VE
, (39)

where Mσσ ≡ σ̂I σ̂
JMI

J = σ̂ I σ̂ J (DIDJ VE ). The energy
density �(t) and pressure p(t) of the scalar field multiplets
can be written as

� = 1

2
σ̇ 2 + VE , (40)

p = 1

2
σ̇ 2 − VE . (41)

The field space directions orthogonal to σ̂ I are expressed
as

ŝ I J = GI J − σ̂ I σ̂ J . (42)

The σ̂ I and ŝ I J vectors are related by the relations

σ̂ I σ̂I = 1,

ŝ I J ŝI J = N − 1,

σ̂I ŝ
I J = 0 for each J, (43)

where N is the number of scalar fields which is four in our
case.

One can now decompose the perturbations in the direc-
tions of σ̂ I and ŝ I J as

Qσ = σ̂I Q
I , (44)

δs I = ŝ IJ Q
J , (45)

where Qσ and δs I are respectively called adiabatic and
entropy perturbations.

In our four field case, there are three independent δs I s. It
is convenient to define three additional unit vectors by which
one can identify these independent entropy directions. Here
we follow the decomposition as discussed in Ref. [68] which
essentially can reproduce the kinematical basis of Refs. [63,
77,78]. In this regard, we first define turning vector ωI which
can be defined as the covariant rate of change of σ̂ I i.e.,

ωI = Dt σ̂
I . (46)

It is also clear that with the definition above the turning vector
is orthogonal to the σ̂ I i.e. ωI σ̂

I = 0. The unit turning vector
is defined as

ω̂I = ωI

ω
, (47)

with ω = |ωI | = √
GI JωIωJ . We now can construct a new

projection operator γ I J

γ I J = GI J − σ̂ I σ̂ J − ω̂I ω̂J . (48)
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Next vector is defined as

Π I = 1

ω
Mσ Jγ

I J , (49)

with Mσ J = σ̂IMI
J . Π I is orthogonal to both σ̂I and ω̂I .

The corresponding unit vector can be defined as π̂ I = Π I /Π

with Π = |Π I | and, a projection operator defined as q I J =
γ I J − π̂ I π̂ J . The final vector for our four field scenario is
τ I which is defined as

τ I = 1

Π

(
Ms J + σ̇

ω
σ̂ K σ̂N (DKMN

J )

)
q I J , (50)

and its corresponding unit vector is τ̂ I = τ I /|τ I |. With the
unit vectors ω̂I , π̂ I and τ̂ I , we now are ready to define three
independent components of entropy perturbations as

Qs = ω̂I Q
I , (51)

Qu = π̂I Q
I , (52)

Qv = τ̂I Q
I . (53)

The gauge-invariant curvature perturbation R is defined
as [70,71]

R = ψ − H

� + p
δq, (54)

where � and p are defined in Eqs. (40) and (41) and, δq is
the energy density flux defined by T 0

i ≡ ∂iδq. Utilizing

δq = −GI J
˙̄φ I δφ J = −σ̇ σ̂I δσ

I , (55)

and, Eqs. (23) and (44) we find that R can be given by

R = H

σ̇
Qσ . (56)

The normalized entropy perturbations [68,79–81] can be
derived as

S = H

σ̇
Qs, (57)

U = H

σ̇
Qu, (58)

V = H

σ̇
Qv. (59)

At this point we remark that in our numerical analysis we
always check that the orthogonality conditions of Eq. (43)
and, as well as for the other unit vectors ω̂I , π̂ I and τ̂ I as
given in Ref. [68] are satisfied.

Our focus of interest is the power spectrum of the gauge
invariant curvature perturbation defined as [70,82]

〈R(k1)R(k2)〉 = (2π)3δ(3)(k1 + k2)PR(k1) (60)

and PR(k) = |R|2. The dimensionless power spectrum for
the adiabatic perturbation is given by

PR(t; k) = k3

2π2 PR(k). (61)

Similarly the power spectrum for the entropy perturbations
are expressed as

PS(t; k) = k3

2π2 |S|2, (62)

PU (t; k) = k3

2π2 |U |2, (63)

PV (t; k) = k3

2π2 |V|2. (64)

In order to find the power spectrum of the adiabatic and
entropy perturbations given in Eqs. (61)–(64), we utilize the
quantities H , ε and unit vectors such as σ̂ I , ω̂I etc. from the
solutions of the Eqs. (21) and (29) while Qσ , Qs , Qu and
Qv are evaluated using the solutions of mode equations from
Eq. (30). For a given Fourier mode k, we calculate the differ-
ent power spectra at the t = tend numerically as a function
of k as

PR(k) = PR(tend; k), (65)

PS(k) = PS(tend; k), (66)

PU (k) = PU (tend; k), (67)

PV (k) = PV (tend; k), (68)

where tend denotes the time when inflation ends i.e. when
ε = 1.

The spectral index ns of the power spectrum of the adia-
batic fluctuations is defined as

ns = 1 + d lnPR(k)

d ln k
. (69)

As will be discussed in the next section, although four fields
are involved during inflation in our model, we argue that in
the parameter space where Planck and low energy constraints
are satisfied, the power spectrum can effectively be described
by the single field-like inflation. In such a case, the spectral
index can be calculated as

ns(t∗) ≈ 1 − 6ε(t∗) + 2ησσ (t∗), (70)

where t∗ denotes the time when the reference scale exited the
horizon and the tensor-to-scalar ratio is given by r = 16ε.
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Table 1 Benchmark points chosen for our analysis. See text for details

BPs η̃1 η̃2 η̃3 η̃4 η̃5 η̃6 η̃7 ξ11 ξR

a 0.72459 0.834059 −0.287252 0.489654 −0.010900 −0.510739 0.333532 1 2.4 × 109

b 0.845674 1.281688 0.017365 0.611085 −0.776203 −0.361704 0.050345 1800 2.25 × 109

c 2.08746 1.11479 2.56305 −1.93179 −0.0412796 −0.521398 −0.0743505 10−3 2.42 × 109

d 0.634249 2.98825 0.083228 0.087188 0.152301 −0.494063 0.679174 200 2.4 × 109

Table 2 The low energy parameters for the BPs shown in Table 1 along with the masses of heavy Higgs bosons and mixing angle cγ between the
CP even Higgs h and H

BPs η1 η2 η3 η4 η5 η6 η7 mH+ mA (GeV) mH (GeV)
μ2

22
v2 (GeV) cγ

a 0.258353 0.214212 −0.104774 0.321234 −0.00339535 −0.0474321 0.132779 424 436 435 3.017 0.0165

b 0.257981 0.363637 −0.026754 0.194828 −0.225193 −0.0337426 0.0418302 429 443 428 3.043 0.0122

c 0.259349 0.245545 0.469357 −0.579992 −0.014849 −0.050576 0.061887 347 322 321 1.756 0.0352

d 0.258161 0.40482 0.134086 0.028604 0.059236 −0.066433 0.086559 681 681 683 7.581 0.0089

To solve field fluctuations given in Eq. (30) we utilize the
Bunch–Davies vacuum

QI (kτc −→ −∞) =
√

1

2k
e−ikτc . (71)

Here τc is conformal time related to cosmological time t via
dt = adτc. Such exact initial conditions need to be imposed
in the infinite past which is numerically impractical. Here we
utilize the approximate initialization of the field fluctuations
and impose them in the sufficiently past such that the Hubble
parameter at that time remains approximately constant. The
conditions is [83]

QI (tin) � H√
2k3

(
i + k

aH

)
ei

k
aH , (72)

where k is the corresponding Fourier mode.4 One can also
use the approximate initial condition as in Ref. [84]

QI (tin) �
√

1

2k
e−i k

aH ζ , (73)

where ζ is a numerical prefactor which we assumed to be 100
to ensure the field fluctuations are initialized sufficiently early
times i.e. well within sub-horizon scale for each k mode. We
have also checked numerically that both these initial condi-
tions as in Eqs. (72) and (73) give the same power spectrum.

4 For each mode, we initialize QI about 5 e-foldings before they exit
horizon.

Fig. 1 The running of η1 (solid) and η2 (dotted) for BPa, b, c and d
are shown in blue, red, green and cyan lines respectively

4 Numerical results

4.1 Benchmark parameters and RG running

We consider four BPs for illustrative purpose which are
shown in Table 1. The BPa and c correspond to scenarios
where the Higgs nonminimal coupling ξ11 is small (denoted
as R2-like scenario). In BPb and BPd we consider param-
eter space where ξ11 is relatively large (denoted as mixed
Higgs-R2 like scenario). The low energy values for the cor-
responding parameters in Table 1 are presented at low scale
(y = 0) in Table 2.5

We require the dynamical parameters in Eq. (13) to satisfy
the unitarity, perturbativity, and positivity constraints at the

5 Here we provide the values of the quartic coupling η̃i in Table 1 up to
six decimal place. As one should expect, we remark that η̃i values are
highly sensitive to the corresponding low scale values of ηi as given in
Table 2, for which we also consider six decimal place.
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Fig. 2 The time evolution of each background field φ̄ I in MP units for
the BPa. The solid line in left panel correspond to the evolution of ϕ

field while dot-dashed, dotted and dashed lines in right panels corre-
spond to the evolution for ρ1, ρ2 and ρ3 fields respectively. To find the

background evolution we have used initial field values ϕ1(tin) = 5.5,
ϕ2(tin) = 0.002306, ϕ3(tin) = 0.001227 and ϕ4(tin) = 0. The pre-
scription for finding the initial conditions are discussed in Appendix B
and the analytic relations between ϕ and ρi are given in Appendix C

low scale (μ = mW ) for which we utilized 2HDMC [85].
To match the convention of 2HDMC, we take −π/2 ≤ γ ≤
π/2. For more details on the convention, parameter counting
and low energy scanning we redirect readers to Refs. [86–
89]. The low energy parameter sets for all BPs are further
checked to satisfy the electroweak precision observables [90]
within the 2σ error [91]. While they do not directly play
significant role in inflationary dynamics, we assumed ρU

tt =
0.5, ρU

tc = 0.2, λUt = √
2mt

v
at low scale and set all other

Yukawa couplings to zero for simplicity for RG running.
It has been found that for parameter sets where |ηi | > 1 at

the low scale get generally excluded after imposing pertur-
bativity criteria at the high scale [50]. Therefore, we simply
adopt the strategy as in Ref. [50] and considered all bench-
mark points such that at low scale all |ηi |s are ≤ 1.

For the RGE of the parameters in Eq. (13) as well as the
Yukawa couplings ρF and λF in the Eq. (6) we utilized the
βx functions (βx ≡ ∂x/∂y with y ≡ ln(μ/mW ) where μ is
the renormalization scale) for g2HDM given in Ref. [92,93].
Here we take the low scale as y = 0 and, take y ≈ 26 as
inflationary scale or high scale.6 After finding the parameters
satisfying the constraints such as unitarity, perturbativity, sta-
bility and electroweak precision observables at the low (EW)
scale, the same parameters are then evolved from low scale
to high scale via the RG equations.

At the high scale, we also demand |η̃i | and the Yukawa
couplings to be within [−π, π ]. To ensure the positivity of the
potential in Eq. (14) the quartic couplings η̃1,2 are required to
be positive, which is true for all four BPs as is evident from
Fig .1.

6 To be precise in our numerical analysis we performed the RG evolu-
tion from y = 0 to y = 26.3.

4.2 Background dynamics and power spectrum

The background field evolutions are obtained by solving
the Eqs. (20) and (21) with the initial field values at t = tin
providing e-folding number between CMB pivot scale and
the time at the end of inflation ΔNCMB ≡ ln a(tend)

a(tCMB)
larger

than about 50-60. In what follows we set MP = 1.
We show the time evolution of the background field φ̄1 =

ϕ for BPa in the left panel of Fig. 2 in blue solid lines. In the
right panel of Fig. 2 we plot the evolution of the background
fields of ρ1, ρ2 and ρ3 by dot-dashed, dotted and dashed
lines respectively. For the sake of illustration here we only
provide figures for BPa however we have checked other BPs
also produce similar trajectories and inflationary dynamics.
The evolutions of H (in MP unit) and ε are displayed in
Fig. 3 in the left and right panels respectively. Inflation ends
via breakdown of slow-roll condition i.e. when ε(tend) = 1.

Instead of t , we interchangeably use the number of e-
foldings before the end of inflation

N ≡ ln
a(t)

a(tend)
(74)

as a cosmological evolution variable to understand the infla-
tionary dynamics. With this definition, tend corresponds to
zero e-foldings, whereas negative and positive N denote the
amount of e-foldings before and after the end of inflation
respectively.

At the pivot scale k = k∗, the amplitude of PR(k) should
match the scalar amplitude measurement of Planck 2018
As = (2.099 ± 0.014) × 10−9 at 68% CL [23]. We find
that the pivot scale k∗ exit horizon at around N ∼ −57 for
all BPs. However, it should be reminded that the relation
between the number of e-foldings before the end of inflation
and the pivot scale k∗ depends on the thermal history after
inflation.

In Fig. 4 we plot the power spectrum of the curvature
perturbation PR(k) vs log10(k/k∗) for BPa, which shows
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Fig. 3 The evolution of H/MP
(left) and ε (right) with respect
to N for BPa

Fig. 4 The power spectrum PR(k) for the curvature perturbation as
given in Eq. (65) for BPa for illustration

Fig. 5 The square roots of the eigenvalues of MI
J + δMI

J in Eq. (30)
for three heavy modes for four BPs during the inflation normalized by
the Hubble parameter H

nearly scale invariant but clearly red-tilted nature. We find
that the entropy perturbations PS(k), PU (k) and PV (k) to
be tiny during inflation blue for BPa, BPb, and BPd.

Indeed, this can be seen from the fact that the square roots
of the eigenvalues of the mass matrixMI

J +δMI
J in Eq. (30)

for three modes are heavier than the Hubble scale during the
inflation for each BPs, as depicted in Fig. 5. These corre-
spond to entropy modes and this implies that fluctuations of
the entropy modes are exponentially suppressed during the
inflation. Also, in these kind of parameters, the valley approx-
imations can be adopted in which, by integrating out heavy
modes, and inflation dynamics can be described by a single

field-like one. Some details of the valley approximation is
given in Appendix C.

On the other hand, for BPc, one can see that the masses
of other modes other than adiabatic one are almost the
same or smaller than the Hubble scale. For parameters with
light masses like BPc, one generally cannot adopt the val-
ley approximations, and one in principle has to solve all
background and perturbation equations exactly. However, we
explicitly checked that the isocurvature power spectra for
BPc are not exponentially suppressed during inflation, and
still does not affect the adiabatic fluctuation significantly.
Therefore even with the parameter set such as BPc, we can
calculate the inflationary observables in the same manner as
the single-field case.

For explicit comparison we also plotted the evolution of
the power spectra for the adiabatic mode PR(k) and the
entropy mode PS(k) in Fig. 6 for all four BPs. The figure
illustrates that for all BPs the power spectrumPR(k) remains
much larger that of PS(k). We have checked this is also true
for the PU (k) and PV (k). This should be compared with the
corresponding eigenvalues of the mass matrix for each BPs
in Fig. 5. As mentioned above, for PBc, the mass eigenval-
ues for isocurvature modes are not heavier than the Hubble
scales, which explains the behavior that the size of PS(k)
is relatively large, although still smaller that the adiabatic
one, compared to the counterpart in other BPs. However, we
emphasize that even in the case of BPc the effects of isocur-
vature modes on the adiabatic one are small enough such
that the single-field description is valid. We remark that the
amplification of the entropy modes such as PS(k) at around
the end of inflation can happen as can be seen in Fig. 6, which
might have originated from preheating after inflation (see e.g.
Refs. [94–96]). We leave out a detailed analysis on this issue
for future work.

Finally, we plot the spectral index ns in Fig. 7. As the
entropy perturbations are tiny, while finding Fig. 7, we simply
utilize the approximate expression given for the single field
inflation in Eq. (70). We find that for N = −57.5 and −57.2
(i.e. at t = t∗) the spectral indices for all the BPs match with
the Planck 2018 observation i.e. ns = 0.9649 ± 0.0042 at
68% CL [23] as also can be seen from Fig. 7. The Planck
2018 data also obtained the bound for the tensor-to-scalar

123



18 Page 10 of 17 Eur. Phys. J. C (2022) 82 :18

Fig. 6 Evolution of the power
spectrum of adiabatic mode
PR(k) and entropy mode PS(k)
for pivot scale k∗ for BPa (upper
left), BPb (upper right), BPc
(lower left) and BPd (lower
right) respectively

Fig. 7 The nR vs N plot as in Eq. (70) for BPa

ratio as r < 0.056 [23]. By including the BICEP/Keck 2018
data, the constraint became tighter as r < 0.036 [97].

We find r ≈ 3.35 × 10−3 and ≈ 3.37 × 10−3 for the
respective BPs, which is well below the current observational
bounds, but can be detectable future CMB B-mode experi-
ments such as LiteBIRD [98] and the Simons Observatory
[99]. Although we do not discuss in detail and provide any
figures for other PBs, we have checked that the other cases
almost give similar values for ns and r .

5 Implications for collider experiments

Let us discuss implications of the R2-Higgs inflation for col-
lider experiments. For illustration, in Sect. 4, we have chosen
benchmark points for our analysis. Notwithstanding, there
exists larger sub-TeV parameter space for H, A and H± that
can account for R2-Higgs inflation in the g2HDM. In Fig. 8

we provide scanned parameter space for mA, mH and mH±
that can provide successful R2-Higgs inflation satisfying all
inflationary conditions and observational constraints from
Planck 2018 [23].

As can be seen from Fig. 8 for the successful R2-Higgs
inflation quasi-degenerate mass spectrum is required for the
heavy Higgs bosonsmH,mA andmH± . This finding is similar
to Higgs inflation in g2HDM but without the R2 term [50].
This is primarily due to the requirement of perturbativity for
the η̃i for inflationary dynamics at high scale. We find that
parameter points with ηi > 1 at low scale (i.e. y = 0) grow
too large at high scale and get excluded by the perturbativ-
ity requirements. Due to limited computational facility for
scanning we restricted all ηi at low scale to be < 1. With a
common μ2

22 terms, the mH, mA and mH± mass degeneracy
gets practically restricted due to these small values of ηi at
low scale which can be seen easily from Eqs. (3)–(5). This has
unique implications for collider experiments, that is, a future
discovery of quasi-degenerate mH, mA and mH± would pro-
vide a smoking gun signature for R2-Higgs inflation in the
g2HDM.

While the Yukawa couplings ρF
i j do not play significant

role in the inflationary dynamics and only enter in the β

functions of the quartic couplings ηi s, however, they could
play important role in the discovery and/or constraining the
parameter space forH, A andH±. Here we assumedρF

ii ∼ λF
i

with suppressed off diagonal elements for the ρF
i j matrices.

In particular, we assumed extra Yukawa couplings ρU
tt = 0.5

and ρU
tc = 0.2 for the RG running for all the BPs discussed

in the previous section and turned off other extra Yukawa
couplings for simplicity. In what follows we shall see that
for these values of extra Yukawa couplings are allowed by
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Fig. 8 The scanned parameter
space in the mA–mH (left) and
mA–mH± (right) plane that can
provide successful R2-Higgs
inflation

direct and indirect searches and may lead to discovery of the
heavy Higgs bosons.

5.1 Indirect searches

First we focus on the coupling measurements h boson at the
LHC. A nonvanishing cγ can alter the couplings of 125 GeVh
boson e.g. to fermions, as can be seen from Eq. (6). Following
the prescription given in Ref. [100] we find that |ρU

tt | = 0.5
is well allowed at 2σ by the current measurements of top
Yukawa coupling of h by ATLAS [101] and CMS [102] with
full Run 2 data. The limit is rather weak primarily due to the
small cγ values (see Table 2) for all the BPs. We remark that
such coupling measurements in general allows ρU

tt ∼ 0.5 if
cγ � 0.1.

The ρU
tt also receives stringent constraints from flavor

physics, e.g. nonvanishing ρU
tt enters in Bs,d mixing ampli-

tude as well as branching ratio of B → Xsγ (B(B → Xsγ ))
at one loop through tbH± vertex [103]. The strongest limit
arises however from the Bs,d mixing. Allowing 2σ error on
the UTfit results for Bs,d [104] and following the expression
given in Ref. [103], we find that |ρU

tt | � 0.5 is allowed at 2σ

for all the BPs. This suggest that for the ballpark value of ρU
tt

assumed here, flavor physics already provides indirect probe
for the inflationary dynamics in particular for mH± ∼ 200–
600 GeV, but the constraint becomes milder for heaviermH± .
In this regard future LHCb [105] and Belle-II [106] measure-
ments would offer a further stringent test for the sub-TeV
mH± if ρU

tt is not vanishingly small.
The flavor changing coupling ρU

tc does not enter h boson
couplings at tree level however it may induce top flavor
changing decay t → ch if cγ is nonzero. Such searches are
performed and strong upper limits on the branching ratios
of t → ch (B(t → ch)) are already set by both ATLAS
[107] and CMS [108]. We find that the CMS 95% CL upper
limit B(t → ch) < 7.3 × 10−4 [108] is mildly stronger than
the ATLAS one. Utilizing these limits it has been found that
ρU
tc � 0.75 is still allowed at 95% CL if cγ = 0.1 [109]. This

means that our chosen value ρU
tc = 0.2 is well allowed by

data. There also exist constraints on ρU
tc from flavor physics.

Relevant constraints arise also from B(B → Xsγ ) where
ρU
tc enters via charm loop through H+ coupling [103]. Rein-

terpreting results from Ref. [110] we find that ρU
tc � 1 is

excluded at 2σ if mH± ∼ 200–500 GeV. We remark that the
constraint is weak and becomes even milder for heaviermH± .

In general other ρF
i j couplings such as ρD

bb and ρU
tu could

still be large, e.g., extra Yukawa couplings |ρD
bb| � 0.1–

0.15 is still allowed by current data for mH,mA,mH± ∈
[200, 800] GeV [87,89,111]. Furthermore, we also remark
that there also exist some indirect measurements that provide
some constraints on ρU

tu . E.g., B → μν and D-meson mix-
ing provide some constraints but still allow ρU

tu ∼ 0.1 − 0.2
at 2σ level [112,113]. If they are nonvanishing they may
offer additional probes for the parameter space required for
R2-Higgs inflation in the g2HDM.

5.2 Direct searches

Nonzero ρU
tt can induce Vtb enhanced bg → t̄H+ and gg →

t̄bH+ processes (charge conjugate processes are implied).
The processes pp → t̄(b)H+ followed by H+ → t b̄ are the
conventional search program for the H± of ATLAS [114]
and CMS [115]. Further for mA/mH > 2mt , ρU

tt cou-
pling can initiate gg → H/A → t t̄ , which are already
being searched by ATLAS [116] and CMS [117]. In gen-
eral, such searches exclude ρU

tt � 0.6–1 at 95% CL for
mH,mA,mH± ∈ [200, 800] GeV [118].

There also exist direct searches that can constrain the fla-
vor changing coupling ρU

tc . The most relevant search in this
regard is CMS search for SM four-top production [119]. It
has been found [86,120] that ρU

tc coupling induced cg →
tH/t A → t t c̄ processes contribute abundantly to the con-
trol region of t t̄W background of the CMS search which
excludes |ρU

tc | � 0.4–0.6 in the mH,mA ∈ [200, 600] GeV
[86,88,109,118,120–124]. As our working assumption was
ρF
ii ∼ λF

i and suppressed off-diagonal elements, in general
couplings such as ρD

bb and ρL
ττ are below the sensitivity of

the LHC.

5.3 Probing the quasi-degeneracy

The processes mentioned above together may allow discov-
ery of the heavy Higgs bosons H, H± and A, however, one
could only attribute a parameter space in the g2HDM to the
R2-Higgs inflation if quasi-degeneracy is also observed. This
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would require tricky reconstruction of the masses of these
heavy Higgs bosons or finding out processes that are sen-
sitive to mass degeneracies. In this subsection we discuss
how to probe such quasi-degeneracy in LHC or future lepton
colliders.

For nonvanishing ρt t the H± can be reconstructed in the
sub-TeV range via bg → t̄(b)H+ followed by H+ → t b̄
decay as already discussed by ATLAS [114] and CMS [115].
In general reconstruction might be also possible e.g. via pro-
cess such as gg → H/A → t t̄ if mA/mH > 2mt . The
searches performed so far by ATLAS [116] and CMS [117]
assume decoupled mA and mH. Therefore while discovery
is possible, however, extraction of information on quasi-
degeneracy would be particularly difficult due to interfer-
ence between gg → A → t t̄ , gg → H → t t̄ and SM
gg → t t̄ . For nonvanishing ρU

tc and ρU
tt one may have dis-

covery via gg → H/A → t c̄ [103], however the interference
between gg → A → t c̄ and gg → H → t c̄ would again
obscure the information on mass degeneracy. Additionally
one may have discovery via cg → tH/t A → t t t̄ [122] or
cg → bH+ → btb̄ [118] at the high-luminosity LHC if both
ρU
tc and ρU

tt are nonzero.
It is clear that to probe quasi-degeneracy of H and A one

requires careful analysis due to multiple interfering contribu-
tions. In such scenarios we propose to study cg → tH/t A →
t t c̄ (denoted as same-sign top) at the LHC which may provide
smoking gun signature for the quasi-degeneracy between H
and A. It has been found that if H and A are both mass
and width degenerate the process cg → tH → t t c̄ and
cg → t A → t t c̄ cancel each other exactly due to destruc-
tive interference [122]. This is primarily due to the amplitude
for cg → t A → t t c̄ picks up a factor of i2γ5 compared to
cg → tH → t t c̄, as can be seen from Eq. (6). The can-
cellation diminishes if the mass and/or widths become non-
degenerate.

Let us briefly discuss the potential of the same-sign top
signature to probe quasi-degeneracy between H and A. For
illustration we consider BPa and BPc. Moreover, we assume
ρU
tt = 0.5 and ρU

tc = 0.5 which we have checked are
allowed by all direct and indirect searches mentioned above.
We turn off all other ρi j couplings, however shall return to
their impact on mass reconstruction at the end of this sec-
tion. Under the above mentioned assumptions the total decay
widths for A (H) are sum of partial rates of A → t c̄ + t̄ c
(H → t c̄ + t̄ c) and, A → t̄ t (H → t̄ t) for BPa. But for
BPc both A and H decays practically 100% to t c̄ + t̄ c. For
ρU
tt = 0.5 and ρU

tc = 0.5 we find the decay widths of A and
H are 2.43 (8.58) and 2.41 (6.04) GeV for BPc (BPa).

The same-sign top can be searched at LHC via pp →
t H/t A + X → t t c̄ + X with both the top quarks decaying
semileptonically comprising same-sign dilepton (ee, eμ,μμ)
plus at least three jets with at least two b-tagged and one non-
b-tagged, and missing energy (Emiss

T )

The SM backgrounds for the process are t t̄ Z , t t̄W , 4t , t t̄h
and t Z+ jets. Additionally, for the same-sign top signature
the SM t t̄ and Z/γ ∗+ jets processes would contribute if one
of the lepton charge is misidentified (Q-flip). Notwithstand-
ing, it has been found that the non-prompt background could
be ∼ 1.5 times of the t t̄W background for the same-sign top
signature [122].

In order to demonstrate the discovery potential we gen-
erate the signal and background events at

√
s = 14 TeV

via MadGraph5_aMC@NLO [125] with the parton distri-
bution function (PDF) set NN23LO1 [126] . The events are
then interfaced with PYTHIA 6.4 [127] for showering and
hadronization, and then fed into Delphes 3.4.2 [128] to incor-
porate detector effects (ATLAS based).

To suppress backgrounds and optimize for the same-sign
top signature we apply following event selection cuts. The
leading and subleading lepton transverse momenta pT should
be > 25 and > 20 GeV respectively, while the pseudo-
rapidity |η| < 2.5. For all three jets we require pT > 20
GeV and also |η| < 2.5, and Emiss

T > 30 GeV. The separa-
tion ΔR between any jets and a lepton (ΔR�j ), the two b-jets
(ΔRbb), and any two leptons (ΔR��) should be ΔR > 0.4.
Finally, we impose HT i.e. the sum of the pT of the two lead-
ing leptons included and two leading b-jets and the leading
non b-tagged jets should > 300 GeV.

The background cross sections after the application of
the above selection cuts are summarized in Table 3 while
the signal cross sections for the reference mass scenario
BPa (BPc) is 0.023 (0.18) fb. The corresponding statisti-
cal significances are ∼ 1σ and ∼ 4σ respectively with
3000 fb−1 luminosity; which are estimated by using Z =√

2[(S + B) ln(1 + S/B) − S] [129], where the S and B are
the number of signal and background events after selection
cuts. This simply illustrates that discovery of same-sign top
process is not possible for both the scenarios even at the
high luminosity LHC (HL-LHC). In general, same-sign top
signature for these reference mass ranges are expected to be
discovered much earlier than full HL-LHC data for ρU

tt = 0.5
and ρU

tc = 0.5 if H and A are degenerate [122]. Hence, dis-
coveries of gg → H/A → t t̄ , cg → tH/t A → t t t̄ and
cg → bH+ → btb̄ and non-observation or milder signifi-
cance of the same-sign top in the HL-LHC era may indicate
quasi-degeneracy of H and A whereas, the charged Higgs
mass can be reconstructed via bg → t̄(b)H+ → t̄(b)t b̄.

Probing the quasi-degeneracy at the LHC becomes partic-
ularly challenging if ρU

tc or ρU
tt are small. Furthermore, pro-

cesses such as gg → H/A → t t̄ and cg → tH/t A → t t t̄ are
only sensitive above mA/mH > 2mt threshold. In such cases
e+e− colliders such as ILC or FCC-ee could be useful for
discovery and, possibly even for probing quasi-degeneracy.
In this regard we propose to study e+e− → Z∗ → AH,
e+e− → Z∗/γ → H+H−, e+e− → Z∗ → Ah followed
by A/H → t c̄ + t̄ c/t t̄ or H+ → cb̄/t b̄. Depending on the
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Table 3 The background cross sections after selection cuts for the
same-sign top search. The backgrounds cross sections are all normal-
ized to either NLO or NNLO as in Ref. [122]

Backgrounds Cross section (fb)

t t̄W 1.31

t t̄ Z 1.97

4t 0.316

t Z+ jets 0.255

t t̄h 0.07

Q-flip 0.024

Nonprompt 1.5 × t t̄W

values of ρU
tc or ρU

tt , these processes may require ≥ 1 TeV CM
energy and/or high-luminosity e+e− collider for discovery,
while probing the quasi-degeneracy of H and A, H± would
perhaps require even higher statistics.

So far we have turned off other ρi j couplings for simplic-
ity. In general ρD

bb could be nonvanishing and would open up
new modes for mass reconstruction such as bg → bA →
bZh process at the LHC or at future lepton collider via
e+e− → Z∗ → AH, followed by A(H) → bb̄ decay. For
nonzero ρL

ττ discovery is possible via gg → H/A → τ+τ−
at the LHC or gb → t H+ → tτ+ντ processes. For finite
discussion, we however do not turn on all these ρi j cou-
plings together since they would initiate many new direct
and indirect signatures that are not discussed here. Such sce-
nario would nonetheless be interesting and require a more
dedicated analysis which is beyond the scope of the current
paper.

6 Discussion and summary

We have studied R2-Higgs inflation in the g2HDM where
the inflationary dynamics consists of four fields ϕ, ρ1, ρ2

and ρ3 using the covariant formalism. We first discussed rel-
evant background dynamics and perturbation theory for the
field fluctuations for our four field model. We found that, by
numerically solving the set of equations for the background
and perturbation evolutions, primordial power spectra for the
parameter sets consistent with Planck observations [23] and
low energy constraints can be well described by a single-
field approximation where the field ϕ nearly plays the role of
inflaton, whereas ρ1, ρ2 and ρ3 play isocurvature fields dur-
ing inflation and those isocurvature modes scarcely affect
the adiabatic one by appropriately choosing the initial val-
ues for isocurvature fields. However, we note that there may
exist parameter space where the entropy modes affect the
power spectrum for the adiabatic one and/or primordial non-
Gaussianities. This shall be studied elsewhere.

Throughout the paper we have just turned on one nonmin-
imal couplings ξ11 for simplicity. In general the nonminimal
couplings ξ12 and ξ22 can also drive inflation as discussed
in Ref. [50]. In the 2HDM inflation without the R2 term, the
inflationary dynamics for the nonminimal couplings ξ22 (and
ξ12) is quite similar to that of ξ11 [50]. However, a similar
conclusion can not be drawn here. As the parameterization
of Eq. (9) of the current article is different than the one in
Ref. [50] the different ξi j couplings may have very distinct
inflationary dynamics. While it would indeed be interesting
to see the impacts of these nonminimal couplings individu-
ally or, when they are turned on together, however, we leave
out a detailed analysis on this for future.

For illustration we chose four benchmark points for our
analysis with mH, mA and mH± ∼ 400 GeV. To satisfy the
normalization to CMB power spectrum [23], in the R2-like
BPa and c we have assumed the scalaron self couplings ξR
to be large. In the mixed R2-Higgs like BPb and d the nor-
malization to CMB data is achieved by considering both ξR
and nonminimal coupling ξ11 to be relatively large. For all
the BPs, the predicted spectral index ns and tensor-to-scalar
ratio r are within their experimental bounds [23].

Although for all the benchmark points we considered mH,
mA and mH± ∼ 400 GeV, there exists parameter space for
a successful inflationary scenario in the sub-TeV range i.e.
mH, mA and mH± ∈ [200, 800] GeV, as found in Ref. [50].
This mass range has a unique impact for the ongoing collider
experiments such as the LHC(b) and Belle-II. We discussed
a discovery scope for these bosons at the upcoming LHC run
and, plausible indirect probes at the flavor machines such as
LHCb and Belle-II. A discovery of these additional bosons
along with the confirmation of their quasi-degeneracy may
hint the g2HDM as a likely mechanism for the cosmic infla-
tion. Here we also remark that we have assumed all ρF

i j cou-
plings to be real. In general, along with the quartic couplings
η5,6,7 they can be complex in nature. The implications of
such complex couplings during (and after) inflation includ-
ing baryogenesis are yet to be analyzed in the g2HDM. (See
Ref. [130] for a baryogenesis scenario during the reheating in
Higgs inflation.) However, they are already within the reach
[89] of CP sensitive measurements such as electron electric
dipole moment of ACME collaboration [131] and the CP
asymmetry for B → Xsγ decay at Belle [132].

We also further remark on the unitarity problem of the
2HDM inflation model. The cut-off scale for 2HDM inflation
at low field regime is given by min

(
MP/ξi j

)
with i, j = 1, 2

[51]. As already mentioned in the introduction, inflationary
dynamics with large field values does not suffer the unitarity
violation due to field-dependent cut-off. However, it is known
that the issue of unitarity arises again during the preheating
stages since the produced particles have energy larger than
the cut-off scale due to the existence of the large non-minimal
coupling [28–30]. Even though a detailed study of the reheat-

123



18 Page 14 of 17 Eur. Phys. J. C (2022) 82 :18

ing in 2HDM inflation is not the scope of the current paper,
it is reasonable to think that there may be a similar issue in
the 2HDM inflation without the R2 term; this is because the
violent preheating is a generic feature of large non-minimal
coupling. (However, see also Ref. [133]) A more complete
discussion of the unitarity violation of 2HDM inflaton will be
further studied elsewhere. Moreover, we remark that regard-
less of the unitarity violation, if one wants to have a theory
valid up to Planck scale for entire field range, R2-2HDM
inflation perhaps can be considered as a UV completion of
the model as well.

One key implications of R2-Higgs inflation in the g2HDM
is quasi-degenerate mass spectrum for H, A and H±. With-
out the confirmation of such quasi-degeneracy, a discovery of
heavy Higgs bosons may not be sufficient to make a connec-
tion to the inflationary scenario. Depending on the magnitude
of the additional Yukawa couplings ρU

tt , ρU
tc , ρD

bb etc. such
mass reconstruction may be partially possible at the LHC
in certain scenarios, however, one may need future electron-
positron collider such as ILC or FCCee.
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Appendix A: Field space metric and Christoffel symbols

The nonvanishing Christoffel symbols (with MP = 1) are

Γ
φ1
φ2φ2

= Γ
φ1
φ3φ3

= Γ
φ1
φ4φ4

= e−
√

2
3 ϕ

√
6

Γ
φ2
φ1φ2

= Γ
φ2
φ1φ2

= − 1√
6
,

Γ
φ3
φ1φ3

= Γ
φ3
φ3φ1

= − 1√
6
,

Γ
φ4
φ1φ4

= Γ
φ4
φ4φ1

= − 1√
6
. (A.1)

Appendix B: The approximate initial conditions

Let us perform following field redefinition [51]:

ρ =
√

ρ2
2 + ρ2

3

ρ1
, τ = s

ρ2
1

, cχ = ρ2√
ρ2

2 + ρ2
3

ϕ =
√

3

2
MP ln

(
F2

)
(B.2)

where we have used shorthand notation cos χ = cχ . The
conformal factor becomes

1

F2 =
M2

P

(
1 − e

−
√

2
3

ϕ
MP

)

ξ11ρ
2
1 + ξRs

. (B.3)

The potential VE in Eq. (13) can now be expressed in terms
of (ϕ, ρ, χ, τ ) as

VE (ϕ, ρ, τ, χ) = M4
P

(
ηeff + 2ξRτ 2

)

8(ξ11 + ξRτ)2

×
(

1 − e
−

√
2
3

ϕ
MP

)2

. (B.4)

with

ηeff = η̃1 + η̃2ρ
4 + 2ρ2(η̃3 + η̃4 + (2c2

χ − 1)η̃5
)

+ 4cχρ
(
η̃6 + η̃7ρ

2
)

. (B.5)

The potential in Eq. (B.4) is now in the single field attrac-
tor form with ϕ playing the role of the inflaton once it is
minimized with respect to ρ, τ and cχ . Here for sake of sim-
plicity we minimize first ηeff with respect to ρ and χ . This
is essentially minimizing the potential V in the ρ and cχ

direction as discussed in the context of Higgs inflation in
2HDM in Ref. [50]. We follow the same numerical mini-
mization procedure as in Ref. [50]. The ηeff has a extremum
at (ρ0, cχ0), which is found by solving ∂V/∂ρ = 0 and
∂V/∂cχ = 0 simultaneously. The extremum is considered a
minimum if both the determinant and trace of the covariant
matrix Xi j = ∂2V/∂xi∂x j (with xi, j = ρ and cχ ), calcu-
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lated at the minima (ρ0, cχ0), are > 0. We find the ηmin
eff as

ηmin
eff = η̃1 + η̃2ρ

4
0 + 2ρ2

0

(
η̃3 + η̃4 + (2c2

χ0
− 1)η̃5

)

+ 4cχ0ρ0

(
η̃6 + η̃7ρ

2
0

)
. (B.6)

One can now insert ηmin
eff in Eq. (B.4) and minimize with

respect to τ where the minimum is found as

τ0 = ηmin
eff /(2ξ11). (B.7)

Substituting τ0 we find

VE = M4
P

4

1

(
2ξ2

11
ηmin

eff
+ ξR)

(
1 − e

−
√

2
3

ϕ
MP

)2

. (B.8)

We can now utilize Eq. (B.8) to find the ϕ value that would
satisfy the Planck 2018 measurements once the kinetic terms
are canonically normalized. We do not perform slow roll
approximation, however, follow the covariant formalism and
solve background field equations Eq. (29) with the initial
conditions of ϕ, ρ1, ρ2 and ρ3 being simply translated from
these minimized values of ρ ,cχ and τ and ϕ via Eq. (B.2).
Here we stress the all four fields ϕ, ρ1, ρ2 and ρ3 start at the
top of the ridge with these initial conditions but they quickly
settles to the trajectories such that ϕ essentially plays the role
of inflaton.

Appendix C: Valley approximations

When there is a well-defined trajectory of the inflaton with
valley shaped potential, we have single field-like behavior
and ρi (i = 1, 2, 3) fields can be represented as a function
of ϕ. In this Appendix, we present analytic understanding of
these approximations.

The potential in the Einstein frame is given by

VE (ϕ, ρ1, ρ2, ρ3) = 1

8
e
−2

√
2
3

ϕ
MP

[
V (ρ1, ρ2, ρ3)

+ 2
M4

P

ξR

(
e

√
2
3

ϕ
MP − 1 − ξ11

M2
P

ρ2
1

)2]
, (C.9)

with

V (ρ1, ρ2, ρ3) = η1ρ
4
1 +η2

(
ρ2

2 +ρ2
3

)2+2η5

(
ρ2

2 − ρ2
3

)
ρ2

1

+ 2 (η3 + η4)
(
ρ2

2 + ρ2
3

)
ρ2

1 + 4ρ2ρ1

×
{
η6ρ

2
1 + η7

(
ρ2

2 + ρ2
3

)}
(C.10)

where we did not explicitly put tildes for ηs. From this, we
have the following set of equations for the valley:

∂VE

∂ρ1
/

(
1

2
e−2

√
2
3 ϕ

)
= η1ρ

3
1 +2

ξ11

ξR
ρ1

(
1−e

√
2
3 ϕ + ξ11ρ

2
1

)

+ 3η6ρ
2
1ρ2 + η5ρ1(ρ2 − ρ3)(ρ2 + ρ3)

+ (η3 + η4)ρ1(ρ
2
2 + ρ2

3 ) + η7ρ2(ρ
2
2 + ρ2

3 ) = 0, (C.11)

∂VE

∂ρ2
/

(
1

2
e−2

√
2
3 ϕ

)
= η6ρ

3
1 + ρ2

[
(η3 + η4 + η5)ρ

2
1

+ 3η7ρ1ρ2 + η2ρ
2
2

] + (η7ρ1 + η2ρ2)ρ
2
3 = 0, (C.12)

∂VE

∂ρ3
/

(
1

2
e−2

√
2
3 ϕ

)
= ρ3

[
(η3 + η4 − η5)ρ

2
1 + 2η7ρ1ρ2

+ η2ρ
2
2 + η2ρ

2
3

] = 0. (C.13)

From the last equation Eq. (C.13), we have ρ3 = 0.
Then Eq. (C.12) reduces to

η2x
3 + 3η7x

2 + (η3 + η4 + η5)x + η6 = 0, (C.14)

where x ≡ ρ2
ρ1

. For our parameters, we have one real solution,
which is denoted by x = C . Then we have ρ2 = Cρ1. Finally,
by having ρ3 = 0 and ρ2 = Cρ1, Eq. (C.11) gives

ρ1 = D

√
e

√
2
3 ϕ − 1 with,

D ≡
√

2ξ11√
ξR(C3η7 + C2(η3 + η4+η5)+3Cη6 + η1) + 2ξ2

11

.

(C.15)
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