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Abstract In this work, we follow the recently revisited f(R)
theory of gravity for studying the interaction between quan-
tum scalar particles and the gravitational field of a general-
ized black hole with an f(R) global monopole. This back-
ground has a term playing the role of an effective cosmologi-
cal constant, which permits us to call it as Schwarzschild-
Anti-de Sitter (SAdS) black hole with an f(R) global
monopole. We examine the separability of the Klein–Gordon
equation with a non-minimal coupling and then we discuss
both the massless and massive cases for a conformal cou-
pling. We investigate some physical phenomena related to
the asymptotic behavior of the radial function, namely, the
black hole radiation, the quasibound states, and the wave
eigenfunctions.

1 Introducing the Schwarzschild-Anti-de Sitter black
hole with an f(R) global monopole

In a recent paper, Caramês et al. [1] obtained a class of exact
solutions for the modified field equations in the presence of
a global monopole for regions outside its core, which gener-
alize some previous results in the f(R) theory of gravity. In
this section, we will give a brief review about their results
and then setup the background in which we want to inves-
tigate the behavior of quantum scalar fields following the
Vieira–Bezerra–Kokkotas method [2,3].

This paper has three broad goals. First, to obtain a metric
which describes the Schwarzschild-Anti-de Sitter black hole
with an f(R) global monopole. Second, to discuss the separa-
bility of the Klein–Gordon equation in the background under
consideration. Third, to compute the Hawking radiation, the
quasibound states, and the wave eigenfunctions.

a e-mails: horacio.santana.vieira@hotmail.com; hora-
cio.santana-vieira@tat.uni-tuebingen.de (corresponding author)

The action of the f(R) theory of gravity is given by

S = 1

2κ

∫
d4x

√−g[ f (R) + L], (1)

where g is the determinant of a 4×4 matrix constructed from
the metric tensor, L is the Lagrangian density, and κ = 8π .
Note that we are adopting the natural units, namely, G ≡
c ≡ h̄ ≡ 1. Now, this action is extremized with respect to the
metric tensor, which leads to the following field equations

κTμν = F(R)Rμν − 1

2
f (R)gμν − ∇μ∇ν[F(R)]

+�[F(R)]gμν, (2)

where F(R) = d f (R)/d R. On the other hand, the global
monopole spacetime model is described by the following
Lagrangian density

L = 1

2
∂μφa∂μφa − 1

4
λ(φaφa − η2)2, (3)

whereλ is a positive coupling constant,η is the energy scale at
which the symmetry is broken, and the Higgs field φa is given
by an isotriplet of scalar fields, whose form corresponds to the
well-known hedgehog Ansatz. Then, a spherically symmetric
line element, which describes the spacetime around a static
source, can be written, in general, as

ds2 = −B(r) dt2 + A(r) dr2 + r2 dθ2 + r2 sin2 θ dφ2, (4)

where A(r) and B(r) are functions to be determined; they
are related by Y (r) ≡ A(r)B(r). In this model, the energy-
momentum tensor has a very simple form. It is given by

T ν
μ ≈ diag

(
η2

r2 ,
η2

r2 , 0, 0

)
. (5)

Now, an alternative parametrization for F(R) is adopted,
namely, F(R(r)) = F(r) = 1+ψ(r), where ψ(r) = ψ0r is
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a function encoding the deviation from the Einstein’s general
relativity. From this parametrization, we get

Y (r) = A(r)B(r) = Y0, (6)

where Y0 is a constant. Thus, after some algebra, it can be
found the following expression for the metric coefficient
B(r):

B(r) = Y0(1 − 8πη2) +
(

ψ0

2
− 1

3r

)
c1

−rψ0[Y0(1 − 16πη2) + ψ0c1]
+r2

2

{
ψ2

0 Y0(3 − 32πη2) + 2c2

+2ψ2
0 [Y0(1 − 16πη2) + ψ0c1] ln

(
ψ0 + 1

r

)}
, (7)

where c1 and c2 are constants (of integration) to be deter-
mined (or to be opportunely chosen). In fact, it is worth notic-
ing that this solution is more general than that ones found in
the literature, since it carries corrections that are absent in
all other approaches (including the ones where the approx-
imations |ψ0r | � 1 and the weak field limit were taken
into account). Thus, Caramês et al. found a set of black hole
solutions, which are displayed in Table 1 of Ref. [1].

Now, we will take some useful approximations into
account in order to establish a new particular black hole back-
ground. This will be possible due to the suitable choice of the
constants c1 and c2, as follows. First of all, we set Y0 = 1,
which implies that A(r) = [B(r)]−1. Then, by assuming a
small correction on the Einstein’s general relativity, we can
keep just the linear terms in ψ0r by considering the constant
ψ0 very tiny, which means that ψ2

0 ∼ 0. Furthermore, we
can throw away all the crossing terms involving ψ0 and η2.
Thus, we can choice c1 = 6M and c2 = �̃/3, which means
that they are associated to the Newtonian potential and to the
effects of an effective cosmological constant, respectively
(for details, see Ref. [4] and references therein). Finally, we
get

B(r) = 1 − 8πη2 + 3Mψ0 − 2M

r
− ψ0r + �̃

3
r2, (8)

where M represents the total mass centered at the origin of
the system of coordinates, �̃ is an effective cosmological
constant playing the same role as the standard cosmological
constant (3/�2) in the dynamics of the universe. Therefore,
we have obtained a metric corresponding to the SAdS black
hole with an f(R) global monopole. From now on, due to the
choice of approximations described above, we will use the
following values for the involved parameters: ψ0 = 0.02,
8πη2 ∼ η2 = 10−6, �̃ = 0.12 (�ISCO = 5), and M = 1. In
fact, these are the values expected within the Grand Unified

Theories (GUT) for the potential appearance of topological
defects in the early universe.

For the sake of simplicity, let us rewrite Eq. (8) as

B(r) = B0 + B1

r
+ B2r + B3r2. (9)

Thus, the event horizons are the solutions of the surface equa-
tion given by

B(r) = B3

r
(r3 + a2r2 + a1r + a0) = 0, (10)

where

a2 = B2

B3
, (11)

a1 = B0

B3
, (12)

a0 = B1

B3
. (13)

Its solutions are given by [5]

r1 = −1

3
a2 + 1

3
(I + J ), (14)

r2 = −1

3
a2 + 1

3
(ρ I + ρ2 J ), (15)

r3 = −1

3
a2 + 1

3
(ρ J + ρ2 I ), (16)

where

I = 3

√
−27

2
v + 3

2

√−3d, (17)

J = −3y

I
, (18)

ρ = e2π i/3, (19)

ρ2 = e−2π i/3, (20)

with

v = 1

27
(2a3

2 − 9a2a1 + 27a0), (21)

d = −4y3 − 27v2, (22)

y = 1

3
(3a1 − a2

2). (23)

Therefore, we can rewrite the function B(r) as

B(r) = B3

r
(r − r1)(r − r2)(r − r3). (24)

In this representation, the only positive real root is r1, which
corresponds to the exterior event horizon. The behavior of
the exterior event horizon r1 is shown in Fig. 1. In the limit
when �̃ → 0, the complex roots r2 and r3 go to infinity and
hence they decouple from the general solution.

123



Eur. Phys. J. C (2021) 81 :1143 Page 3 of 13 1143

Fig. 1 The exterior event horizon r1 as a function of �̃

For the chosen values, the exterior event horizon is at
r1 = 1.74401. The (unphysical) apparent event horizons are
located at r2 = −0.62201+5.31814i and r3 = −0.62201−
5.31814i . It is worth noticing that the parameter B3 must
be non-zero, i.e., �̃ 	= 0, which means that the term play-
ing the role of an effective cosmological constant necessarily
contributes to the energy density of such a spacetime.

In the next section, we will study the behavior of quantum
scalar particles propagating outside the exterior event horizon
of the SAdS black hole with an f(R) global monopole.

The outline of this paper is the following. In Sect. 2, we
discuss the separability of the Klein–Gordon equation and
then solve it in terms of the Heun functions. In Sect. 3, we
examine the Hawking radiation of scalar particles. In Sect. 4,
we investigate the quasibound states by obtaining the spec-
trum of resonant frequencies. In Sect. 5, we analyze the radial
wave eigenfunctions. Finally, in Sect. 6, we present our con-
cluding remarks. In Appendix A, we present the general Heun
functions, as well as its deformed case.

2 Klein–Gordon equation

In order to discuss the motion of quantum scalar particles
propagating in a curved spacetime, we will consider the
covariant Klein–Gordon equation with a non-minimal cou-
pling, which is given by

{
1√−g

∂σ (gστ√−g∂τ ) − (μ2 + ξ R)

}
�(r) = 0, (25)

whereμ is the mass of the scalar particle, and ξ is the coupling
constant. In the background under consideration, the Ricci
curvature scalar R is given by

R = − 1

r2

[
r2 d2 B(r)

dr2 + 4r
d B(r)

dr
+ 2B(r) − 2

]

= −12B3 − 2(B0 − 1)

r2 − 6B2

r
. (26)

Thus, by substituting the metric (4) into the Klein–Gordon
equation (25), we get
{
− r2

B(r)

∂2

∂t2 + ∂

∂r

[
r2 B(r)

∂

∂r

]
− (μ2 + ξ R)r2

+ ∂2

∂θ2 + cot θ
∂

∂θ
+ csc2 θ

∂2

∂φ2

}
�(t, r, θ, φ) = 0. (27)

Now, we need to choose a suitable separation for the
dependent variables of the scalar wave function �(t, r, θ, φ).
Due to the spherical symmetry, we will write the scalar wave
function as

�(t, r, θ, φ) = e−iωt u(r)Ylm(θ, φ), (28)

where ω is the frequency (energy) of the scalar particle,
Ylm(θ, φ) is the spherical harmonic function, and u(r) =
U (r)/r is the radial function. Thus, Eq. (27) is separated in
two parts, namely,

1

sin2 θ

∂2Ylm(θ, φ)

∂φ2 + 1

sin θ

∂

∂θ

[
sin θ

∂Ylm(θ, φ)

∂θ

]
= 0 (29)

and

d2U (r)

dr2 + 1

B(r)

d B(r)

dr

dU (r)

dr

+
{

ω2

[B(r)]2 − 1

r2 B(r)

[
λlm + (μ2 + ξ R)r2

+r
d B(r)

dr

]}
U (r) = 0, (30)

where λlm = l(l+1) is a separation constant, with l being the
azimuthal quantum number. In what follows, we will discuss
and solve the radial part.

2.1 Effective potential

At this point, we would like to analyze the behavior of the
effective potential, Vef f (r). The radial equation given by
Eq. (30) can be written as

d2U (r)

dr2∗
+ [ω2 − Vef f (r)]U (r) = 0, (31)

where

Vef f (r) = B(r)

[
λlm

r2 + μ2 + ξ R + 1

r

d B(r)

dr

]
. (32)

As we can see, Eq. (31) looks like an one-dimensional
Schrödinger equation, where we have introduced the tortoise
coordinate r∗ defined by dr∗ = dr/B(r). The behavior of
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Fig. 2 The effective potentials for μ = 0, ξ = 1/6, and different
values of the azimuthal quantum number l(= 0, 1, 2)

the effective potential Vef f (r) is shown in Fig. 2, for some
values of the azimuthal quantum number.

From Eq. (32) and Fig. 2, we see that the effective potential
approaches to zero only in the case when l = 0; it crosses
the r -axis at r = 100.002. For l > 0, the effective potential
approaches to a (finite) constant as r goes to infinity; it tends
to r = 0.079 for l = 1, and to r = 0.239 for l = 2.

2.2 Radial equation

Now, let us solve the radial part of the Klein–Gordon equa-
tion. To do this, we substitute the function B(r), given by
Eq. (24), into the radial equation, given by Eq. (30), in order
to get

d2U (r)

dr2 +
(

−1

r
+ 1

r − r1
+ 1

r − r2
+ 1

r − r3

)
dU (r)

dr

+
{

1

3r2 B3(r − r1)(r − r2)(r − r3)
{r(B0 − 3λlm − 1)

+3r2[B2 + B3(r1 + r2 + r3)] − 3r3μ2 − 3B3r1r2r3}
+ r2ω2

B2
3 (r − r1)2(r − r2)2(r − r3)2

}
U (r) = 0, (33)

where we have chosen the conformal coupling (ξ = 1/6),
and used the Ricci curvature scalar given by Eq. (26).

Equation (33) seems to be a Fuchsian second-order equa-
tion with four finite regular singularities at the points r =
(0, r j ), with j = 1, 2, 3. Thus, it can be transformed into a
kind of Heun equation. To do this, we have to define a new
radial coordinate, z, by using the following homographic sub-
stitution

z = r − r1

r
ζ, (34)

where

ζ = r2

r2 − r1
. (35)

This transformation brings the singularities (r1,r2,r3) to the
points (0,1,b), where the singularity parameter b is given by

b = r3 − r1

r3
ζ. (36)

In addition, this transformation gives two important limits:
when r → r1 implies that z → 0, and when r → ∞ implies
that z → 1. It means that we will obtain a solution which
is analytical in the range 0 ≤ z ≤ 1, that is, valid for r1 ≤
r ≤ ∞. Therefore, it totally agrees with the fact that we
are interested on the motion of scalar particles propagating
outside the exterior event horizon.

Thus, by substituting Eq. (34) into Eq. (33), we obtain

d2U (z)

dz2 +
(

1

z
+ 1

z − 1
+ 1

z − b

)
dU (z)

dz

+
[ 3∑

j=0

L j

z − z j
+

2∑
j=0

Q j

(z − z j )2

− μ2

B3(z − ζ )2

]
U (z) = 0, (37)

where j = 0, 1, 2, 3 labels the singularities z = 0, 1, b, ζ .
The parameter ζ is called an apparent singularity, since it can
be removed (or have its power reduced) by performing some
suitable transformations. Thus, Eq. (37) is almost a Heun-
type, where we just need to remove (or reduce the power)
that apparent singularity. It is easy to see that there are two
ways to do this: the simplest one is set μ = 0, and the other
is to choose μ2 ∝ B3 together with a specific transformation
of the dependent variable U (z). In fact, this was first noted
by Kraniotis [6], when he studied the massive Dirac equation
in Kerr–Newman black hole spacetimes. Therefore, in what
follows, we will solve the covariant Klein–Gordon equation
with a conformal coupling in the SAdS black hole with an
f(R) global monopole for both massless and massive scalar
particles.

2.3 Case 1: massless scalar particles

For massless scalar particles (μ = 0), we define a new depen-
dent variable U by performing the following F-homotopic
transformation

U (z) = z A1(z − 1)A2(z − b)A3 Z(z), (38)
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where the exponents A j obey to the following indicial equa-
tion

F(s) = s(s − 1) + s + Q j = s2 + Q j = 0, (39)

whose roots are given by

sz=0
1,2 = ±i

(ζ − 1)(ζ − b)ω

B3r1b
≡ A1, (40)

sz=1
1,2 = ±i

(ζ − 1)(ζ − b)ω

B3r1(b − 1)
≡ A2, (41)

sz=b
1,2 = ±i

(ζ − 1)(ζ − b)ω

B3r1b(b − 1)
≡ A3. (42)

Thus, by substituting Eqs. (38)–(42) into Eq. (37), we get

d2 Z(z)

dz2 +
(

1 + 2A1

z
+ 1 + 2A2

z − 1
+ 1 + 2A3

z − b

)
d Z(z)

dz

+ A4z − A5

z(z − 1)(z − b)
Z(z) = 0, (43)

where the coefficients A4, and A5 are given by

A4 = 2(A1 + A2 + A3 + A1 A2 + A1 A3 + A2 A3)

− B2(b + 1 − ζ )

B3ζr1

− (b + 1 − 2ζ )[(2ζ − 1)b − 2(ζ − 1)ζ ]
(ζ − 1)ζ(b − ζ )

−2(ζ − 1)2ω2[(b − 1)b + 1](b − ζ )2

B2
3r2

1 (b − 1)2b2
, (44)

A5 = A1 + A3 + A1 A3 + (A1 + A2 + 2A1 A2)b

−2(ζ − 1) +
(

1

ζ
− 2

)
b

+ (ζ − 1)(b − ζ )(B0 + 3B2r1 − 3λlm − 1)

3B3ζr2
1

−2(ζ − 1)2ω2(b + 1)(b − ζ )2

B2
3r2

1 b2
. (45)

The massless radial equation, given by Eq. (43), is similar
to the general Heun equation (see Eq. (A.1) in Appendix A).
Therefore, its analytical solution is given by

U (z) = z A1(z − 1)A2(z − b)A3

×{C1 HeunG(b, q;α, β, γ, δ; z)

+C2 z1−γ HeunG(b, q2;α2, β2, γ2, δ; z)}, (46)

where C1 and C2 are constants (to be determined). The
parameters α, β, γ , δ, ε, and q are given by

α = 1 + A1 + A2 + A3, (47)

β = 1 + A1 + A2 + A3, (48)

γ = 1 + 2A1, (49)

δ = 1 + 2A2, (50)

ε = 1 + 2A3, (51)

q = A5. (52)

Furthermore, the auxiliary parameters α2, β2, γ2, and q2 are
given by

α2 = α + 1 − γ, (53)

β2 = β + 1 − γ, (54)

γ2 = 2 − γ. (55)

q2 = q + (αδ + ε)(1 − γ ). (56)

These are two linearly independent solutions of the general
Heun equation since γ is not a positive integer, and they
correspond to the exponents 0 and 1 −γ at z = 0. It is worth
emphasizing that the final expressions for these parameters
depend on the signs to be chosen for the exponents A j , which
are given by Eqs. (40)–(42).

2.4 Case 2: massive scalar particles

For massive scalar particles (μ = √
3B3/2), the dependent

variable U is now transformed as

U (z) = z A1(z − 1)A2(z − b)A3
Z(z)

(z − ζ )
1
2

, (57)

where the coefficients A1, A2, and A3 are the same as for the
Case 1, that is, theu are given by Eqs. (40)–(42). Thus, by
substituting Eq. (57) into Eq. (37), we get

d2 Z(z)

dz2 +
(

1 + 2A1

z
+ 1 + 2A2

z − 1
+ 1 + 2A3

z − b

− 1

z − ζ

)
d Z(z)

dz
+

[−D1 − D2 − D3 + D3ζ + D2b

(z − 1)(z − b)

+ (D1 + D3 − D3ζ )b

z(z − 1)(z − b)

+ D3(ζ − 1)ζ

z(z − 1)(z − ζ )

]
Z(z) = 0, (58)

where the coefficients D1, D2, and D3 are given by

D1 = −2A1 A3 + A1 + A3

b

−4A1 A2ζ + 2A1ζ − 2A1 + 2A2ζ − 2ζ L1 − 1

2ζ
,

(59)

D2 = L3 + 2A2 A3 + A2 + A3

b − 1
+ 2A1 A3 + A1 + A3

b

− 2A3 + 1

2(b − ζ )
, (60)

D3 = 2A3 + 1

2(b − ζ )
+ −2A1ζ + 2A1 − 2A2ζ − 2ζ + 2ζ 2L4

2(ζ − 1)ζ

+ 1 − 2ζ L4

2(ζ − 1)ζ
, (61)

123
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with

L1 = 5(ζ − 1)ζ − 5ζb + b

4ζb

− (ζ − 1)(b − ζ )(B0 + 3B2r1 − 3λlm − 1)

3B3ζr2
1 b

+2(ζ − 1)2ω2(b + 1)(b − ζ )2

B2
3r2

1 b3
, (62)

L2 = (5ζ − 4)b + 4 − 5ζ 2

(4ζ − 4)b + 4 − 4ζ

+ (b − ζ )[B0(ζ − 1) + 3ζ B2r1]
3B3ζr2

1 (b − 1)

+ (1 − ζ )(3λlm + 1)]
3B3ζr2

1 (b − 1)

−2(ζ − 1)2ω2(b − 2)(b − ζ )2

B2
3r2

1 (b − 1)3
, (63)

L3 = 4(b − 1)b − 5(ζ − 1)ζ

4(b − 1)b(b − ζ )

+ (ζ − 1)ζ(B0 + 3B2r1 − 3λlm − 1)

3B3ζr2
1 (b − 1)b

+ (ζ − 1)b(3λlm + 1 − B0)

3B3ζr2
1 (b − 1)b

−2(ζ − 1)2ω2(2b − 1)(b − ζ )2

B2
3r2

1 (b − 1)3b3
, (64)

L4 = 1

4

(
1

1 − ζ
+ 1

b − ζ
− 4B2

B3r1ζ
− 1

ζ

)
. (65)

The massive radial equation, given by Eq. (58), is similar to
the deformed Heun equation (see Eq. (A.26) in Appendix A),
where ζ plays the role of an apparent singularity. Therefore,
its analytical solution is given by

U (z) = z A1(z − 1)A2(z − b)A3(z − ζ )−
1
2

×{C1 HeunG(b, q;α, β, γ, δ; z)

+C2 z1−γ HeunG(b, q2;α2, β2, γ2, δ; z)}, (66)

where C1 and C2 are constants (to be determined). In this
case, the parameters α, β, γ , δ, ε, and q are now given by

α = 1 + A1 + A2 + A3

−1

2

[
2(2A2

1 + 2A1 + 2A2
2 + 2A2 + 2A2

3 + 2A3

+2L1 − 2L3b + 2L3 − 2ζ L4 + 2L4 + 5)

] 1
2

, (67)

β = 1 + A1 + A2 + A3

−1

2

[
2(2A2

1 + 2A1 + 2A2
2 + 2A2 + 2A2

3 + 2A3

+2L1 − 2L3b + 2L3 − 2ζ L4 + 2L4 + 5)

] 1
2

, (68)

γ = 2 + 2A1, (69)

δ = 2 + 2A2, (70)

ε = 1 + 2A3, (71)

q = −(D1 + D3 − D3ζ )b, (72)

It is worth emphasizing that we have already added the
unitary shifting to the parameters γ and δ, as described
in Appendix A, as well as that the final expressions for
these parameters also depend on the signs to be chosen for
the exponents A j , which are given by Eqs. (40)–(42). The
auxiliary parameters α2, β2, γ2, and q2 are given by the
same relations as for the Case 1, that is, they are given by
Eqs. (53)–(56).

Next, we will use these analytical solutions of the radial
equation, in the SAdS black hole with an f(R) global
monopole, and some properties of the general Heun functions
to discuss some interesting physical phenomena, namely, the
Hawking radiation, the spectrum of quasibound state fre-
quencies and its corresponding wave eigenfunctions.

3 Hawking radiation

In order to discuss the Hawking radiation, we will obtain the
wave solutions describing quantum scalar particles near the
exterior event horizon of a SAdS black hole with an f(R)
global monopole. To do this, first we need to choose the
signs of the exponents A j given by Eqs. (40)–(42); the neg-
ative sign is the correct choice, which will be proved in the
discussion of the quasibound states.

In the limit when r → r1, which implies that z → 0,
we can evaluate the corresponding Heun functions from
the expansion given by Eq. (A.2), and hence we get
HeunG(b, q;α, β, γ, δ; 0) ∼ 1. Thus, the radial solutions
for the Cases 1 and 2, which are given by Eqs. (46) and (66),
respectively, have the (same) asymptotic behavior at the exte-
rior event horizon given by

u(r) ∼ C1 (r − r1)
A1 + C2 (r − r1)

−A1 , (73)

where all remaining constants were included in C1 and C2. In
fact, this algebraic expression is the same for the Cases 1 and
2, but the constants C1 and C2 have different contents in each
case. Note that we recovered the original radial coordinate r ,
as well as the original radial function u(r).

Now, by taking into account the contribution of the time
coordinate, on the exterior surface of the SAdS black hole
with an f(R) global monopole, the full wave solution can be
written as

�(r, t) ∼ C1 �in + C2 �out, (74)
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where the solutions describing the ingoing and outgoing
scalar waves are given, respectively, by

�in(r > r1) = e−iωt (r − r1)
− i

2κ1
ω

(75)

and

�out(r > r1) = e−iωt (r − r1)
i

2κ1
ω
. (76)

The gravitational acceleration on the exterior horizon, κ1, is
defined as

κ1 ≡ 1

2

d B(r)

dr

∣∣∣∣
r=r1

= B3(r1 − r2)(r1 − r3)

2r1
, (77)

such that, from Eq. (40), we get

A1 = − i

2κ1
ω. (78)

Therefore, we follow the method described by Vieira et
al. [7] to compute the relative scattering probability, �1, and
the Hawking radiation spectra, N̄ω. They are given by

�1 =
∣∣∣∣�out (r > r1)

�out (r < r1)

∣∣∣∣
2

= e
− 2π

κ1
ω
, (79)

and

N̄ω = �1

1 − �1
= (e

2π
κ1

ω − 1)−1. (80)

From these results, we conclude that the Hawking radiation
spectrum, for both massless and massive scalar particles in
the SAdS black hole with an f(R) global monopole, is analo-
gous to the black body spectrum, which has a thermal char-
acter. It is worth noticing that we used the definition of the
Hawking temperature given by kB T+ = h̄κ+/2π , where kB

is the well know Boltzmann constant.
These results were obtained from the analytical solu-

tions of the Klein–Gordon equation in the background under
consideration. In fact, that is a semi-classical field theory
approach.

4 Quasibound states

The quasibound states, also known as quasistationary levels
or resonance spectra, are solutions of the equation of motion
that tend to zero far from the black hole at spatial infinity.
This means that they are localized in the potential well of
the black hole. Thus, that is a boundary value problem with
two associated boundary conditions, which gives rise to a

characteristic resonance equation for the frequency (energy)
of the quantum particle.

In this physical phenomenon, the flux of quantum particles
crosses into the black hole event horizon, by resulting in a
spectrum that has complex frequencies, so that it is called
a quasispectrum of resonant frequencies and expressed as
ω = ωR + iωI , where ωR and ωI are the real and imaginary
parts of the frequencies, respectively. The real part describes
the oscillation frequency, while the imaginary part is related
to the decay (if Im[ω] < 0) or growth (if Im[ω] > 0) rate
with the time.

There are some different approaches used to derive the
characteristic resonance equation [8–11]. In the present
work, we will use the Vieira–Bezerra–Kokkotas method [2,3]
to obtain the spectrum of quasibound state frequencies.

Thus, the first boundary condition is such that the radial
solution should describe an ingoing wave at the exterior event
horizon. Then, we have to impose that C2 = 0 in Eq. (74), as
well as in Eqs. (46) and (66). On the other hand, the second
boundary condition is such that the radial solution should
tend to zero far from the black hole at asymptotic infinity. In
order to fully satisfy this condition, we have to take the limit
r → ∞ on the radial solutions given by Eqs. (46) and (66),
for the Cases 1 and 2, respectively. To do this, we will write
these solutions in terms of the α and β exponent solutions
given by Eqs. (A.6) and (A.7). After some algebra, we get
the following asymptotic behavior

u(r) ∼ C1
1

r
+ C2

1

r
(Case 1), (81)

and

u(r) ∼ C1
1√
r

+ C2
1√
r

(Case 2). (82)

However, since C2 = 0 from the first boundary condition,
we have that

u(r) ∼ C1
1

r
(Case 1), (83)

and

u(r) ∼ C1
1√
r

(Case 2). (84)

Thus, the radial solutions given in terms of the general and
deformed Heun functions tend to zero far from the black hole
at asymptotic infinity, as required by the quasibound states.

Now, the final step is to use a matching procedure in order
to bring the two different asymptotic regions into their com-
mon overlap region. To do this, we will use the polynomial
condition of the Heun functions as described in the Vieira–
Bezerra–Kokkotas method [2,3], that is, we will obtain the
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Table 1 Values of the massless
scalar resonant frequencies ωn

Case 1

n ωn

0 −0.22077 − 0.06881i

1 −0.44155 − 0.13763i

10 −2.42853 − 0.75700i

Fig. 3 The massless scalar resonant frequencies ωn

spectrum of resonant frequencies by using the fact that the
general Heun functions become a polynomial of degree n if
they satisfy the so-called α-condition given by Eq. (A.8).

4.1 Case 1: massless scalar particles

In this case, the parameter α is given by Eq. (47), which can
be simply written as

α = 1 − 2i E1ω, (85)

where the coefficient E1 is given by

E1 = (b − ζ )(ζ − 1)

B3r1(b − 1)
= r2

B3(r1 − r2)(r2 − r3)
. (86)

Note that the coefficient E1 is a complex number (E1 ∈
C). Then, by imposing the polynomial condition given by
Eq. (A.8), we obtain the following expression for the mass-
less scalar resonant frequencies

ωn = −i
n + 1

2E1
, (87)

where n = 0, 1, 2, . . . is now the principal quantum number.
Therefore, this is the spectrum of quasibound states for mass-
less scalar particles propagating in the SAdS black hole with
an f(R) global monopole. We shown some values of ωn in
Table 1, and its behavior in Fig. 3 as function of the principal
quantum number n.

Table 2 Values of the massive scalar resonant frequencies ω
(±)
n for

μ = 0.17320

Case 2

n ω
(−)
n ω

(+)
n

0 −0.11038 − 0.03440i −0.11038 − 0.03440i

1 −0.26234 − 0.32400i −0.39998 + 0.11754i

10 −2.10050 − 1.42075i −2.53575 − 0.02445i

From Table 1 and Fig. 3, we see that the modulus of both
real and imaginary parts of the massless scalar resonant fre-
quencies increase with n, for fixed values of the parameters
related to the f(R) global monopole. Therefore, the quasista-
tionary levels consist of an infinite sequence of discrete lev-
els, which are equally spaced. The imaginary part is always
negative, which means damped oscillations and that the sys-
tem may be stable.

4.2 Case 2: massive scalar particles

Now, let us analyze the case of massive scalar particles. In
this case, the parameter α is given by Eq. (67), which can be
simply written as

α = 1 − 2i E1ω − 1

2

√
3 − 8i E1ω. (88)

Then, by imposing the polynomial condition given by
Eq. (A.8), we obtain the following expressions for the mas-
sive scalar resonant frequencies

ω(−)
n = i(2n + 1) − 2

√
n

4E1
(89)

and

ω(+)
n = i(2n + 1) + 2

√
n

4E1
. (90)

This quasistationary levels are also complex, where (±)

labels the solutions; (−) is the “minus” solution, while (+) is
the “plus” solution. Indeed, we obtained two solutions due to
the fact that the α-condition, in this case, leads to a second-
order equation for ω. Therefore, this is the spectrum of qua-
sibound states for massive scalar particles propagating in the
SAdS black hole with an f(R) global monopole. We shown
some values of ω

(±)
n in Table 2, and its behavior in Fig. 4 as

function of the principal quantum number n.
From Table 2 and Fig. 4, we see that the modulus of both

real and imaginary parts of the massive scalar resonant fre-
quencies ω

(−)
n increase with n, for fixed values of the param-

eters related to the f(R) global monopole, and therefore we
can conclude that ω

(−)
n are damped oscillations, and that the
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Fig. 4 The massive scalar resonant frequencies ω
(±)
n for μ = 0.17320

system may be stable. On the other hand, if the particles have
resonant frequencies ω

(+)
n , the system may present instabil-

ity for some excited states (1 ≤ n ≤ 9), since the imaginary
part of ω

(+)
n change its sign.

It is worth commenting that both massless and massive
scalar resonant frequencies were obtained directly from the
general Heun functions, by using a polynomial condition,
and, to our knowledge, there is no similar result in the litera-
ture for the SAdS black hole with an f(R) global monopole.

5 Wave eigenfunctions

In order to analyze the wave eigenfunctions related to the
massless and massive scalar resonant frequencies obtained in
the previous section, we will use some properties of the gen-
eral Heun functions and then obtain their polynomial expres-
sions, which are presented in Appendix A.

5.1 Case 1: massless scalar particles

For massless scalar particles, the radial function U (z) is given
by Eq. (38). Thus, the radial wave eigenfunctions, for mass-
less scalar particles propagating in the SAdS black hole with
an f(R) global monopole, are given by

Un;s(z) = Cn;s z A1(z − 1)A2(z − b)A3 Hpn;s(z), (91)

where Cn;s is a constant (to be determined). It is worth notic-
ing that these radial wave eigenfunctions are degenerate,
since the accessory parameter qn;s must be properly deter-
mined for each value of s, where 0 ≤ s ≤ n.

Therefore, by using Eqs. (A.17), (A.23), and (A.24), we
can plot the first three squared massless radial wave eigen-
functions, which are presented in Fig. 5.

From Fig. 5, we see that the massless radial wave eigen-
functions present the desired behavior, that is, the decaying

Fig. 5 The first three squared massless radial wave eigenfunctions
un;s(r) = Un;s(r)/r related to ωn . The units are in multiples of Cn;s

Fig. 6 The first three squared massive radial wave eigenfunctions
un;s(r) = Un;s(r)/r related to ω

(−)
n for μ = 0.17320. The units are in

multiples of Cn;s

quasibound states (with Im[ωn] < 0) have a radial solution
tending to zero at infinity and diverging at the exterior event
horizon, so that it mathematically reaches a maximum value
(see this in the log plot) and then crosses into the black hole.

5.2 Case 2: massive scalar particles

For massive scalar particles propagating in the SAdS black
hole with an f(R) global monopole, the radial function U (z)
is given by Eq. (57), so that we can write their radial wave
eigenfunctions as

Un;s(z) = Cn;s z A1(z − 1)A2(z − b)A3
Hpn;s(z)

(z − ζ )
1
2

, (92)

where Cn;s is a constant (to be determined). Thus, by using
Eqs. (A.17), (A.23), and (A.24), we can show the first three
squared massive radial wave eigenfunctions in Figs. 6 and 7.
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Fig. 7 The first three squared massive radial wave eigenfunctions
un;s(r) = Un;s(r)/r related to ω

(+)
n for μ = 0.17320. The units are in

multiples of Cn;s

From Fig. 6, we conclude that the massive scalar resonant
frequencies ω

(−)
n describes quasibound states. On the other

hand, in Fig. 7 we can see that only massive scalar particles in
the fundamental mode, with resonant frequencies ω

(+)
0 , are

quasibound states. Otherwise, for ω
(+)
n≥1, the radial solutions

go to zero at the exterior event horizon and then they are not
quasibound states.

6 Final remarks

In this work, we presented analytical solutions for both angu-
lar and radial parts of the covariant Klein–Gordon equa-
tion with a conformal coupling in the SAdS black hole
with an f(R) global monopole. The angular solution is given
in terms of the spherical harmonic function. On the other
hand, the radial solution is given in terms of the general and
deformed Heun functions for massless and massive scalar
fields, respectively.

We studied three very important physical phenomena
related to the radial solution, namely, the Hawking radiation
spectrum, which we found that is similar to the black body
radiation, the resonant frequencies, where we imposed the
boundary conditions related to the quasibound states, and
the wave eigenfunctions, which describes the behavior of
quantum scalar particles near the exterior event horizon and
far from the black hole at the asymptotic infinity.

The resonant frequencies ωn and ω
(−)
n , which corresponds

to the massless and massive scalar particles, respectively,
have similar behavior, that is, their imaginary parts are always
negative, do not change their signs, and hence they describes
quasibound states in stable systems. On the other hand, the
massive scalar resonant frequencies ω

(+)
n have a positive

imaginary part in the fundamental mode (n = 0), but their
first nine excited modes (1 ≤ n ≤ 9) cross down the horizon-

tal axis and then become negative, which may indicate some
kind of phase transition and/or instability in the system.

It is worth calling attention to the fact that this quasista-
tionary levels are associated with the interaction of quantum
scalar fields and the curvature of the spacetime under consid-
eration and therefore it is an very interesting semi-classical
phenomena, which can give us some insights in the physics
of black holes, and larger astrophysical systems as well, and
for this reason should be investigated from a theoretical point
of view. We hope that, in a near future, it may be used to fit
some astrophysical data.

More generally, there has been considerable activity in
recent years in the area of quantum gravity phenomenology,
which seeks to find observational signatures of the quantum
nature of spacetime. These studies may shed some light on
the physics of black holes, and they can indicate a possible
path to the construction of a quantum theory of gravity.

Finally, it is worth commenting that, in principle, we can
use this approach to study quantum scalar fields propagat-
ing in a Schwarzschild-de Sitter (SdS) black hole spacetime.
However, in such a case, there exist three event horizons,
which means that we have to take into account the spatial
region between the exterior event horizon and the cosmolog-
ical horizon; it would be interesting to extend our analysis to
this context. In fact, some preliminary investigations which
concern this extension were already done, and we expect to
publish some results in the near future.
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Appendix A: The general and deformed Heun equations

Here we present some features about the general Heun equa-
tion and its deformed case.
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Appendix A.1: The general Heun equation

The Heun equation, also called general Heun equation, is a
Fuchsian type, with regular singularities at z = 0, 1, b,∞.
Its canonical form is given by [12]

d2 y(z)

dz2 +
(

γ

z
+ δ

z − 1
+ ε

z − b

)
dy(z)

dz

+ αβ − q

z(z − 1)(z − b)
y(z) = 0, (A.1)

where y(z) = HeunG(b, q;α, β, γ, δ; z) is the general Heun
function, which is simultaneously a local Frobenius solution
around two singularities s1 and s2, where s1, s2 ∈ {0, 1, b}. It
is analytic in some domain including both these singularities.
The parameters b, q, α, β, γ , δ, and ε are generally complex
and arbitrary, where b is such that b 	= 0, 1, and they are
related by γ + δ + ε = α + β + 1. If γ 	= 0,−1,−2, . . .,
the general Heun function is analytic in the disk |z| < 1, and
the following Maclaurin expansion applies [13]

HeunG(b, q;α, β, γ, δ; z) =
∞∑
j=0

c j z
j , (A.2)

where

bγ c1 − qc0 = 0,

X j c j+1 − (Q j + q)c j + Pj c j−1 = 0 (for j ≥ 1), (A.3)

with c0 = 1 and

Pj = ( j − 1 + α)( j − 1 + β),

Q j = j[( j − 1 + γ )(1 + b) + bδ + ε],
X j = b( j + 1)( j + γ ). (A.4)

Thus, these expressions leads to

HeunG(b, q;α, β, γ, δ; 0) ∼ 1. (A.5)

In addition, the solutions of Eq. (A.1) corresponding to the
exponents α and β at z = ∞ are given, respectively, by

z−αHeunG

(
1

b
, α(β − ε) + α

b
(β − δ) − q

b
;

α, α − γ + 1, α − β + 1, δ; 1

z

)
(A.6)

and

z−βHeunG

(
1

b
, β(α − ε) + β

b
(α − δ) − q

b
;

β, β − γ + 1, β − α + 1, δ; 1

z

)
. (A.7)

On the other hand, the general Heun function becomes a
polynomial of degree n if it satisfies the so-called α-condi-
tion, which is given by [12]

α = −n, (A.8)

where n = 0, 1, 2, . . . Such polynomial solutions are denoted
by Hpn(z) = HeunG(b, q;−n, β, γ, δ; z) and can be written
as

Hpn(z) =
∞∑

ν=0

cνzν, (A.9)

where the coefficients cν are given by

−(Q0 + q)c0 + Xνc1 = 0, (A.10)

Pνcν−1 − (Qν + q)cν + Xνcν+1 = 0, (A.11)

for ν = 1, 2, . . . , n − 1, where the parameters Pν , Qν , and
Xν are given by Eq. (A.4). These equations are consistent if,
and only if, the accessory parameter q was chosen properly,
which means that there is a polynomial equation of degree
n + 1 for the determination of such a parameter. We will
choose the following notation for these eigenvalues: qn;m ,
where m runs from 0 to n. Thus, the corresponding general
Heun polynomials are now denoted as Hpn;m(z).

The explicit form of the first three general Heun polyno-
mials can be obtained as follows. For n = 0, we have

Hp0;m(z) = c0 = 1, (A.12)

where the eigenvalues q0;m must obey

c1 = 0, (A.13)

where

−qc0 + bγ c1 = 0, (A.14)

which implies

c1 = q

bγ
, (A.15)

and then we have that

q0;0 = 0. (A.16)

Thus, the first general Heun polynomial is given by

Hp0;0(z) = 1. (A.17)

Now, for n = 1, we have

Hp1;m(z) = c0 + c1z = 1 + q1;m
bγ

z, (A.18)

where the eigenvalues q1;m must obey

c2 = 0, (A.19)
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where

P1c0 − (Q1 + q)c1 + R1c2 = 0, (A.20)

which implies

c2 = [γ (1 + b) + bδ + ε + q]q − bαβγ

2b2γ (1 + γ )
, (A.21)

and then we have that

q1;m = −[γ (1 + b) + bδ + ε] ± √
�

2
, (A.22)

where � = [γ (1+b)+bδ+ε]2+4bαβγ . Note that the signs
− and + stand for m = 0 and m = 1, respectively. Thus,
the second and third general Heun polynomials are given,
respectively, by

Hp1;0(z) = 1 + −[γ (1 + b) + bδ + ε] − √
�

2bγ
z (A.23)

and

Hp1;1(z) = 1 + −[γ (1 + b) + bδ + ε] + √
�

2bγ
z. (A.24)

Finally, the corresponding HamiltonianH in classical mechan-
ics is given by

H(q, p, t) = −1

t (t − 1)
{q(q − 1)(q − t)p2

+[γ (q − 1)(q − t) + δq(q − t)

+ εq(q − 1)]p + αβq}. (A.25)

From now on, q and p are the canonical coordinate and
momentum, respectively, and t is the scaling parameter
(which can be considered as time). Then, if q and p are quan-
tum observables, we can write H(q, p, t)y = λy, where λ is
the eigenvalue (which can be considered as energy).

Appendix A.2: The deformed Heun equation

Next, let us talk about the deformed Heun equation. In fact,
Slavyanov and Lay [14] presented the Heun class of equa-
tions, which includes the confluent cases, in an extended form
by adding an apparent singularity to each equation. However,
none of these forms fits our case. Then, we will follow their
ideas in order to discuss a particular case of the deformed
Heun equation, which can be written as

d2 y(z)

dz2 +
(

γ

z
+ δ

z − 1
+ ε

z − t
− 1

z − q

)
dy(z)

dz

+
[

αβ

(z − 1)(z − t)
+ ht (t − 1)

z(z − 1)(z − t)

+ pq(q − 1)

z(z − 1)(z − q)

]
y(z) = 0. (A.26)

Note that it differs from the (general) Heun equation (A.1) by
two additional terms proportional to z −q, which is a simple
pole at z = q and plays the role of an apparent singularity.
The parameters h and p obey to the following relations

h = Resz=t
ht (t − 1)

z(z − 1)(z − t)
, (A.27)

p = Resz=q
pq(q − 1)

z(z − 1)(z − q)
. (A.28)

Now, an analytical solution of the deformed Heun equation
given by Eq. (A.26) can be written as a Taylor expansion,
namely,

y(z) =
∞∑

k=0

gk(z − q)k, (A.29)

where g0 = 1. For simplicity, we will rewrite Eq. (A.26) as

d2 y(z)

dz2 + P(z)
dy(z)

dz
Q(z)y(z) = 0, (A.30)

where the coefficients P(z) and Q(z) are given in term of
the following Laurent expansions

P(z) =
∞∑

k=−1

pk(z − q)k = p0 + p−1

z − q
, (A.31)

Q(z) =
∞∑

k=−1

qk(z − q)k = q0 + q−1

z − q
. (A.32)

Thus, substituting Eqs. (A.29)–(A.32) into Eq. (A.26), we
obtain

gkk(k − 1)(z − q)k−2 + p−1gkk(z − q)k−2

+p0gkk(z − q)k−1 + q−1gk(z − q)k−1

+q0gk(z − q)k = 0, (A.33)

from which we arrive at the following recurrence relation

k(k + 2)gk+2 + [p0(k + 1) + q−1]gk+1 + q0gk = 0, (A.34)

where k ≥ 0. From this recurrence relation, we obtain

p−1g1 + q−1g0 = 0,

2(1 + p−1)g2 + (p0 + q−1)g1 + q0 = 0. (A.35)

On the other hand, the values for the coefficients pk and qk

are directly obtained from Eq. (A.26). They are given by

p−1 = −1, (A.36)

p0 = γ

q
+ δ

q − 1
+ ε

q − t
, (A.37)

q−1 = p, (A.38)
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q0 = αβ

(q − 1)(q − t)
+ ht (t − 1)

q(q − 1)(q − t)

−p

(
1

q
− 1

q − 1

)
. (A.39)

In these terms, Eq. (A.35) take the following form

0 = −g1 + p,

0 =
(

γ

q
+ δ

q − 1
+ ε

q − t
+ p

)
p + αβ

(q − 1)(q − t)

+ ht (t − 1)

q(q − 1)(q − t)
− p

(
1

q
− 1

q − 1

)
. (A.40)

Therefore, the necessary condition for the point z = q to be
an apparent singularity is

h(q, p, t) = −1

t (t − 1)
{q(q − 1)(q − t)p2

+[(γ − 1)(q − 1)(q − t)

+(δ − 1)q(q − t) + εq(q − 1)]p

+αβq}. (A.41)

It is easy to see that this function h(q, p, t) coincides with
the classical Hamiltonian given by Eq. (A.25), concerning to
the general Heun equation. However, it differs by an unitary
shifting in the parameters γ and δ. It can be written as

h(q, p, t;α, β, γ, δ, ε) = H(q, p, t;α, β, γ − 1, δ − 1, ε).

(A.42)

The Slavyanov and Lay’s explanation for this shifting is that
the parameters α, β, γ , δ, and ε satisfy different Fuchs condi-
tions related to the different cases (general and deformed) of
the Heun equations. In the case of a deformed Heun equation,
the condition is γ + δ + ε = α + β + 3.
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