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Abstract We consider the vacuum partition function of a
4d scalar QFT in a curved background as function of bare
marginal and relevant couplings. A local UV cutoff �(x)
transforming under Weyl rescalings allows to construct Weyl
invariant kinetic terms including Wilsonian cutoff functions.
The local cutoff can be absorbed completely by a rescaling
of the metric and the bare couplings. The vacuum partition
function satisfies consistency conditions which follow from
the Abelian nature of local redefinitions of the cutoff, and
which differ from Weyl rescalings. These imply a gradient
flow for beta functions describing the cutoff dependence of
rescaled bare couplings. The consistency conditions allow
to satisfy all but one Hamiltonian constraints required for a
holographic description of the flow of bare couplings with
the cutoff.

1 Introduction

In quantum field theories (QFTs) coupling constants includ-
ing masses can be promoted to local functions of space-time
in which case they become sources for corresponding oper-
ators. If QFTs are considered in curved space-time, local
Weyl transformations can be defined. These are sensitive to
the ultraviolet regularization and renormalization of QFTs,
i.e. to counter terms and beta functions. The Abelian nature of
local Weyl transformations implies consistency conditions on
coefficients of the vacuum partition function and beta func-
tions. This program was initiated by Osborn and Jack and
Osborn [JO] in [1–3]. Implied relations among coefficients
of β functions in dimensional regularization have been stud-
ied in [4–14] for the Standard Model and others.

In dimensional regularization classical Weyl invariance
is broken by the scale μ introduced for otherwise dimen-
sionless couplings. Here we consider a regularization by a
Wilsonian cutoff �, by which we understand a modification
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of kinetic terms in the action such that modes with momenta
p2 � �2 are suppressed, i.e. the kinetic terms become very
(e.g. exponentially) large for p2 � �2. We consider a local
cutoff �(x) transforming under local Weyl transformations
which allows to define local renormalization group equations
(RGEs). A local RGE was considered as early as 1987 in [15]
in two-dimensional curved spacetime sigma models in order
to derive consistency conditions on allowed backgrounds in
string theory. A local Wilsonian cutoff was considered e.g.
in [16,17], with the aim to study exact (functional) RGEs in
2 and 4 dimensions.

In the present paper we focus on the dependence of bare
couplings on the cutoff, and on the bare vacuum partition
function before adding counter terms. The dependence of
bare couplings on the cutoff is also described by beta func-
tions, which are functions of bare couplings and of the cutoff
in case of relevant couplings (such as masses) as considered
here. Via subdivergences, the bare vacuum partition function
is also sensitive to the cutoff dependence of bare couplings.
(A Wilsonian cutoff underlines the hierarchy problem, i.e.
renormalized and bare masses are naturally of the order of
the UV cutoff. For renormalized masses this might be solved
by fine tuning or by Supersymmetry; the subsequent results
do not depend on whether or how this issue is solved.1)

The introduction of a local Wilsonian cutoff transform-
ing under Weyl transformations allows to construct Weyl
invariant kinetic terms for scalars in 4d [18]; here the local
component of the cutoff plays the role of a compensator.
Assuming massive fields only, one finds that the local cut-
off dependence of the bare vacuum partition function can be
absorbed completely by rescalings of the space-time metric
and bare relevant couplings, a particular feature of a Wilso-
nian cutoff. This allows to express the dependence of the
bare vacuum partition function on the local cutoff in terms
of its dependence on the rescaled space-time metric and, via

1 We remark that we will not employ the (exact) Wilsonian renormal-
ization group.
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corresponding beta functions, on bare marginal and rescaled
relevant couplings.

The possibility to absorb the local cutoff by rescalings
of the space-time metric and bare relevant couplings does
not imply the absence of anomalies. Assuming massive
fields only, the cutoff appears in the form of logarithms
log(�2/m2

0), i.e. bare masses play the role of the renormal-
ization scale μ in dimensional regularization. After a rescal-
ing, bare masses squared m2

0 become �2m̂2
0 with m̂2

0 dimen-
sionless, hence logarithms log(�2/m2

0) become − log(m̂2
0).

In the bare vacuum partition function such logarithms, mul-
tiplying e.g. the Euler density which is not Weyl invariant,
indicate the presence of Weyl anomalies as studied (including
their dependence on dimensionless couplings) by [JO].

Local transformations of the cutoff are Abelian transfor-
mations similar to (but different from) local Weyl transforma-
tions. Accordingly they lead to consistency conditions simi-
lar to (but different from) local Weyl transformations. These
consistency conditions imply a gradient flow for the beta
functions describing the cutoff dependence of bare marginal
and rescaled relevant couplings. In an expansion to first non-
trivial order in derivatives the role of the potential of the
gradient flow is played by the coefficient of the Riemann
scalar R in the bare vacuum partition function.

Subsequently we turn to a possible holographic descrip-
tion of the flow of bare couplings with the cutoff. Soon after
the birth of the AdS/CFT correspondence it became clear
that a cutoff on the extra coordinate ρ for ρ → 0 of an
asymptotic AdS space can be related to a UV cutoff or a
RG scale of a conformal field theory (CFT) (see [19] for
an early review). A finite result for the CFT action on the
boundary is obtained only if the induced metric and the fields
are rescaled by appropriate powers of ρ. In addition, extra
counter terms are required to cancel logarithmic divergences
multiplying e.g. the Euler density. Requiring these counter
terms to be local and covariant, Henningson and Skenderis
have shown in [20] that the so obtained finite action on the
boundary still varies under conformal transformations of the
boundary metric, and that the corresponding Weyl anomalies
match the ones of the CFT. In the present approach counter
terms are omitted, and the Weyl anomalies appear directly
as non-invariance under conformal transformations of corre-
sponding terms in the bare action on the boundary. However,
within our expansion to second order in derivatives these
Weyl anomalies are not yet visible for a 4d QFT on the bound-
ary of a 5d bulk for which Weyl anomalies are of fourth order
in derivatives.

It was frequently underlined, however, that a better under-
standing of the precise relation between a UV cutoff on a
QFT and on the extra coordinate of an asymptotic AdS space
would be desirable (see e.g. [21–23]). It is clear that dimen-
sional regularization of a QFT is of little help here as the
notion of a UV cutoff does not exist.

In the framework of classical general relativity in a 5d
bulk, the flow with the fifth coordinate of fields living on a
4d boundary can be described within the Hamilton–Jacobi
formalism [24] (see also [25]). The Hamiltonian constraint
implies constraints on the coefficients of the action on the
4d boundary, and on the beta functions once the fields on
the boundary are identified with running bare couplings of
a 4d QFT. For these beta functions one of the Hamiltonian
constraints implies a gradient flow. Based on this feature a
condition for a holographic duality was proposed in [26].
(An interpretation of the renormalization group flow as a
Hamiltonian vector flow was already proposed by Dolan in
1994 [27].)

Only few studies concern the question whether the RG
flows of generic QFTs (non-CFTs) admit a holographic
description [28]. Confining oneself to classical general rela-
tivity in the 5d bulk, mostly two approaches were persued in
order to establish a link between 4d QFTs (conformal or non-
CFTs) and holography: One approach uses the formal simi-
larity between the Hamilton-Jacobi formalism (quadratic in
functional derivatives of the action on the boundary with
respect to fields) and Wilson’s (or Polchinski’s [29]) exact
RG, see e.g. [30–33]. Alternatively one can focus on the link
between Weyl transformations acting on the 4d QFT/CFT
vacuum partition function on the boundary and diffeomor-
phisms in an AdS5 bulk [34], see e.g. [35–40] for correspond-
ing studies. An approach towards quantum gravity in the bulk
from a matrix field theory via quantum RG has been persued
in [41].

A known issue is whether a description of a QFT on an
(inner) boundary of AdS in terms of a local Lagrangian in the
bulk is possible at all [42] (see also [43] and refs. therein).
Here we assume this to be the case, which corresponds to
the assumption that an expansion of a local covariant 5d
Lagrangian in derivatives exists allowing to obtain connected
N point functions of fields at different points. For points on
the boundary, these must match the N point functions of the
QFT after suitable rescalings.

Here we address the question whether the RG flow of
bare marginal and relevant couplings of a generic massive
(non-CFT) scalar QFT admits a holographic dual. The num-
ber of bare marginal and relevant couplings will be denoted
by ng . We review shortly the Hamilton–Jacobi formalism
leading to flow equations for fields and the Hamiltonian con-
straint on the action on the boundary of a 5d bulk. Given a
5d Lagrangian in the bulk, the Hamiltonian constraint leads
to constraints on coefficients of the action on the boundary.
Assuming this action to be given by the vacuum partition
function of a generic QFT expanded to second order in deriva-
tives, its coefficients seem to be heavily over-determined.

However, we find that this is not so if the following dic-
tionary is applied:
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1. The fields on the boundary of the 5d bulk are identified
with 4d bare marginal or rescaled relevant couplings, and
the boundary action with the 4d vacuum partition func-
tion.

2. The 4d metric on the boundary of the 5d bulk satisfies a
field dependent flow equation. Nevertheless, the 4d met-
ric on the boundary of the 5d bulk is identified with the 4d
QFT metric after its rescaling by the local cutoff �(x).
This implies that, implicitly, the fifth bulk coordinate on
the boundary is related in a field dependent way to the
local QFT cutoff �. (As expected, the 5d bulk metric is
AdS up to field dependent corrections.)

3. Then ng consistency conditions on coefficients of the
QFT originating from the Abelian nature of local cut-
off transformations coincide exactly with ng Hamilto-
nian constraints which seem to over-determine the vac-
uum partition function of a generic QFT. The remaining
Hamiltonian constraints allow to reconstruct a suitable 5d
bulk Lagrangian for a generic (massive) 4d QFT provided
one additional condition (within the considered order of
an expansion in derivatives) is satisfied. This is the main
result of the second part of this paper.

In Sect. 2 we construct Weyl invariant kinetic terms includ-
ing a Wilsonian cutoff as well as interaction terms following
[18]. We introduce a rescaled metric γ̂μν and rescaled bare
couplings ĝa0 in terms of which the explicit dependence of
the vacuum partition function ŜQFT on the local cutoff dis-
appears. A consistency condition to be satisfied by ŜQFT ,
expanded to second order in derivatives, following from the
Abelian nature of local variations of the cutoff is derived. This
consistency condition assumes the form of an exact gradient
flow for the beta functions.

In Sect. 3 we review the Hamilton-Jacobi formalism fol-
lowing to a large extend Refs. [24,25]. Parts of the derivation
are given in Appendix A. The corresponding flow equations
and Hamiltonian constraints are derived. In Sect. 4 we show
that, within the expansion up to second order in derivatives,
all Hamiltonian constraints up to one can be satisfied by an
arbitrary 4d scalar QFT thanks to the consistency condition
following from the local Wilsonian cutoff. A summary and
outlook is given in Sect. 5.

2 Gradient flow from Weyl invariant Wilsonian cutoff
functions

In this section we construct a Weyl invariant kinetic term,
including a Wilsonian UV cutoff, for a real scalar field ϕ in
d dimensions. The UV cutoff � is assumed to be local, i.e.

�(x), and to transform under Weyl rescalings together with
the background metric γμν and the scalar field:

δσ γμν = −2σγμν,

δσ ϕ = σ

(
d

2
− 1

)
ϕ,

δσ � = σ�. (2.1)

One may write the local cutoff �(x) in the form

�(x) = �eλ(x), δσ � = 0, δσ λ(x) = σ(x). (2.2)

λ(x) plays the role of a compensator: Due to the presence of
λ(x) the effective action satisfies a local RGE (see Eq. (2.21)
below), but in the “gauge” λ(x) = 0 this hold no longer.

For the construction of a kinetic term including a local
Wilsonian cutoff we start with the known expression for a
Weyl covariant generalization of the covariant Laplacian

∇2 − ξ R, ∇2 = 1√
γ

∂μ
√

γ γ μν∂ν,

γ = det(γμν), ξ = d − 2

4(d − 1)
, (2.3)

which satisfies

δσ

[
(∇2 − ξ R)O

]
=

(
d

2
+ 1

)
σ

[
(∇2 − ξ R)O

]
(2.4)

provided the operator O satisfies δσO = σ
( d

2 − 1
)O such

that, for O = ϕ, δσ (
√

γ ϕ(∇2 − ξ R)ϕ) = 0 (using δσ
√

γ =
−d σ

√
γ ). A Weyl invariant Wilsonian cutoff can be con-

structed with help of the operator

D� = �−2(∇2 − ξ R). (2.5)

Using δσ �−2 = −2σ�−2, any expression of the form

F(D�) (2.6)

satisfies

δσ (F(D�)ϕ) =
(
d

2
− 1

)
σ F(D�)ϕ. (2.7)

The possibility to construct F(D�) with this property under
local Weyl transformations requires the use of the x depen-
dent cutoff � transforming as in Eq. (2.1). An example is

F(D�) = e−D� (2.8)

which leads to an exponentially suppressed propagator for
large p2 in momentum space. The kinetic part Sk of the action
reads then

Sk(γ, ϕ,�) = 1

2

∫ √
γ dd x ϕ(−∇2 + ξ R) F(D�)ϕ (2.9)

and satisfies

σ(x)

{
−2γμν(x)

δ

δγμν(x)
+ ϕ(x)

δ

δϕ(x)
+ �(x)

δ

δ�(x)

}

Sk(γ, ϕ,�) = 0. (2.10)
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In terms of a rescaled metric

γ̂μν = γμν�
2 (2.11)

Equation (2.10) becomes

σ(x)

{
ϕ(x)

δ

δϕ(x)
+ �(x)

δ

δ�(x)

}
Sk(γ̂ , ϕ,�) = 0. (2.12)

As interactions we consider operators Oa(ϕ,∇) ≡
Oa(ϕ, γμν) which satisfy

{∫ √
γ dd z σ

(
−2γμν

δ

δγμν

+ ϕ
δ

δϕ

)}√
γ (x)Oa(x)

= −da0 σ(x)
√

γ (x)Oa(x). (2.13)

A typical case is Oa = ϕn for which da0 = d − n. The
interaction part Sint involving real scalar fields ϕ ≡ {ϕk}
(indices of fields will be suppressed for simplicity) reads

Sint (γ, ϕ, g0,�) =
∫ √

γ dd x
∑
a

ga0 (�, g)Oa(x) (2.14)

where ga0 (�, g) are bare marginal or relevant couplings of
canonical dimension da0 . They include counter terms depend-
ing on � and on renormalized couplings ga . (These counter
terms include polynomials in the renormalized couplings
and, for relevant couplings, derivatives of ga as well as of γ

in the form of suitable contractions of the curvature tensor.)
In the presence of massless fields ϕ a renormalization scale
μ has to be introduced; otherwise a μ-independent on-shell
renormalization scheme can be used.

A Weyl rescaling of Sint (γ, ϕ, g0,�) gives

σ(x)

(
−2γμν(x)

δ

δγμν(x)
+ ϕ(x)

δ

δϕ(x)
+ �(x)

δ

δ�(x)

)

× Sint (γ, ϕ, g0,�) = −σ(x)d0
a g

a
0

δ

δga0
Sint (γ, ϕ, g0,�).

(2.15)

In terms of rescaled bare couplings

ĝa0 = �−da0 ga0 (2.16)

and γ̂μν from (2.11), Ŝint (γ̂ , ϕ, ĝ0,�) satisfies

σ(x)

(
ϕ(x)

δ

δϕ(x)
+ �(x)

δ

δ�(x)

)

×Ŝint (γ̂ , ϕ, ĝ0,�) = 0. (2.17)

The rescaled couplings are still nontrivial functions of renor-
malized couplings g and the cutoff. After the rescaling the
beta functions for relevant couplings (see below) contain tree
level terms ∼ −da0 .

The full action S(γ, g0,�, ϕ) = Sk + Sint satisfies a local
RGE

σ(x)

{
−2γμν(x)

δ

δγμν(x)
+ ϕ(x)

δ

δϕ(x)

+�(x)
δ

δ�(x)
+ d0

a g
a
0

δ

δga0 (x)

}

×S(γ, g0,�, ϕ) = 0, (2.18)

whereas Ŝ(γ̂ , ĝ0,�, ϕ) satisfies

σ(x)

{
ϕ(x)

δ

δϕ(x)
+ �(x)

δ

δ�(x)

}

×Ŝ(γ̂ , ĝ0,�, ϕ) = 0. (2.19)

We consider the vacuum partition function S0
QFT (γ, g0,

�) given by

e−S0
QFT (γ,g0,�) = 1

N
∫

Dϕ e−S(γ,g0,�,ϕ). (2.20)

Since ϕ are dummy variables on the right hand side of
Eq. (2.20), Eq. (2.18) implies a local RGE for S0

QFT (γ, g0,

�)

σ(x)

{
−2γμν(x)

δ

δγμν(x)
+ �(x)

δ

δ�(x)
+ da0 g

a
0 (x)

δ

δga0 (x)

}

×S0
QFT (γ, g0,�) = 0. (2.21)

For � → ∞, the vacuum partition function S0
QFT (γ, g0,

�) suffers from subdivergences as well as from superficial
divergences. Subdivergences are removed if one expresses
the bare couplings g0(g,�) explicitly in terms of � and
renormalized cutoff independent couplings g, and S0

QFT

(γ, g0(g,�),�) becomes S0′
QFT (γ, g,�). The remaining

dependence of S0′
QFT (γ, g,�) on � concerns superficial

divergences which require extra counter terms SCT
QFT

(γ, g,�,μ); again a renormalization scale μ is required
in the presence of massless fields. (Anomalies for mass-
less CFTs originate from violations of the local RGE (2.21)
by SCT

QFT (γ, g,�,μ) and hence by the finite renormal-
ized vacuum partition function.) In the following we will not
add SCT

QFT (γ, g,�,μ) but consider S0
QFT (γ, g0,�) for

finite �.
From now on we consider d = 4, and assume all fields

to be massive. In an expansion of S0
QFT (γ, g0,�) up to

quadratic order in derivatives acting on γμν , g0 and �, S0
QFT

contains terms of the form

S0
QFT (γ, g0,�) =

∫
d4x

√
γ

(
V 0(g0,�) − L0(g0,�)R4

+ γ μν

{
1

2
K 0
ab(g0,�)∂μg

a
0∂νg

b
0 + K 0

aλ(g0,�)∂μg
a
0∂ν�

+1

2
K 0

λλ(g0,�)∂μ�∂ν�

})
(2.22)
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where R4 denotes the curvature scalar constructed from γμν .
The origin of derivatives ∂μ�(x) are vertices involving �(x)
in the field theory action in the kinetic action Sk via the cut-
off functions, and cannot be dropped for the computation of
S0
QFT since invariance under local Weyl variations ∼ σ(x)

would not hold.
On the other hand, in terms of ĝa0 and γ̂μν , ŜQFT (γ̂ , ĝ0)

satisfies

�(x)
δ

δ�(x)
ŜQFT (γ̂ , ĝ0) = 0, (2.23)

i.e. ŜQFT (γ̂ , ĝ0) does not depend explicitly on �(x) or its
derivatives. For a constant cutoff Eq. (2.23) corresponds just
to naive power counting involving the dimensionful rescaled
metric γ̂ and derivatives. However, the absence of derivatives
acting on � is not trivial. The expansion of ŜQFT (γ̂ , ĝ0) to
second order in derivatives reads

ŜQFT (γ̂ , ĝ0) =
∫

d4x
√

γ̂

×
(
V̂ (ĝ0) − L̂(ĝ0)R4(γ̂ ) + γ̂ μν 1

2
K̂ab(ĝ0)∂μĝ

a
0∂ν ĝ

b
0

)
.

(2.24)

It is straightforward to replace γ̂ by γ and ĝa0 by ga0 in
ŜQFT (γ̂ , ĝ0). This generates terms of the form K 0

aλ∂μga0∂ν�

and K 0
λλ∂μ�∂ν�, and a � dependence of V 0, L0 and all K 0.

Given the local Eq. (2.21), these terms have to match the ones
in S0

QFT (γ, g0,�).
Next we introduce transformations characterized by a

local parameter τ(x) which describe the dependence of γ̂

and ĝa0 on the local cutoff �(x) (and which differ from Weyl
transformations since γμν remains inert):

δτ� = τ�, δτ γ̂μν = 2τ γ̂μν,

δτ ĝ
a
0 = τβa

τ , βa
τ = �

δĝa0
δ�

. (2.25)

For rescaled relevant couplings ĝa0 , βa
τ contains a tree level

term −da0 as well as possible derivative terms. Recursion
relations ensure that βa

τ can again be expressed in terms of
bare couplings.

The τ variation of ŜQFT (γ̂ , ĝ0) is given by

δτ ŜQFT (γ̂ , ĝ0) = (
�γ

τ + �β
τ

)
ŜQFT (γ̂ , ĝ0) (2.26)

where

�γ
τ = 2τ γ̂μν

δ

δγ̂μν

, �β
τ = τβa

τ

δ

δĝa0
. (2.27)

As in the case of local Weyl transformations considered by
JO, the fact that local τ transformations are Abelian imposes
constraints on the coefficients of the vacuum partition func-
tion. (In [1–3] local Weyl transformations are applied to the
vacuum partition function as function of the renormalized
couplings in dimensional regularization, and after adding

counter terms SCT
QFT .) In the present case these consis-

tency conditions originate from[
(�

γ

τ ′ + �
β

τ ′), (�γ
τ + �β

τ )
]
ŜQFT (γ̂ , ĝ0)

!= 0. (2.28)

Inserting ŜQFT (γ̂ , ĝ0) from (2.24) into (2.28) one obtains
from terms proportional to

(
τ ′∂μτ − τ∂μτ ′) ∇μĝa0 :

6 ∂a L̂ − βb
τ K̂ba

!= 0 (2.29)

where ∂a denotes ∂/∂ ĝa0 . Eq. (2.29) corresponds to a gradient
flow for βb

τ , with K̂ba a metric in the space of couplings.
Within the considered order in derivatives this result holds
only for the terms without derivatives in βb

τ .
Some comments on the cutoff dependences are in order:

First, since L̂ does not depend explicitly on �, Eq. (2.29)
implies

�
d

d�
L̂ = 1

6
βa

τ K̂abβ
b
τ , (2.30)

i.e. an “l-theorem”

�
d

d�
L̂ > 0 iff the metric K̂ab is positive. (2.31)

Second, the coefficients V̂ (ĝ0), L̂(ĝ0) and K̂ab(ĝ0) in
ŜQFT are all dimensionless. After the replacement of γ̂

and ĝ0 as in Eqs. (2.11) and (2.16),
√

γ̂ scales as �4.
Rescaled bare masses m̂2

0 scale as m2
0/�

2. Subsequently
the coefficients V 0(g0,�), L0(g0,�) and K 0

ab(g0,�) in
S0
QFT assume their canonical dimensions which determine

their leading powers in � modified by powers of ln(m̂2
0) =

ln(m2
0/�

2). These divergences in V 0, L0 and K 0 include
both subdivergences and superficial divergences, i.e. the
information on subdivergences is present via the � depen-
dence of these coefficients. This information can be extracted
once the beta functions are computed via the consistency con-
dition (2.29). The beta functions for relevant couplings like
masses are cutoff dependent in general. Particular conditions
on the UV limit of couplings including relevant couplings do
not follow from the present formalism.

3 Towards a holograpic dual

In the first part of this section we review the construction of a
4d action on the boundary ∂M of a 5d bulkM following, to a
large extend, the Hamilton–Jacobi approach used in [24,25].
With ansätze for the 5d Lagrangian L5 and the action S̄ on
the boundary, both expanded to second order in derivatives,
we establish relations between the corresponding parameters
which follow from the Hamiltonian constraint H5 = 0.

For the metric in the bulk we take

ds2 = l2

4

dρ2

ρ2 + G4i j (x, ρ)dxi dx j . (3.1)

123
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From now on indices μ, ν refer to indices in 5 dimensions.
The 5d metric will be denoted by G5μν , and i, j will be
indices in 4 dimensions. The 5d Lagrangian L5 includes
scalars �a and reads, expanded to second order in deriva-
tives,2

L5 = −R5 + 1

2
Gμν

5 Lab(�)∂μ�a∂ν�
b + V (�). (3.2)

Next we consider the 5d action regularized for ρ → 0 by
ρ � ρ̄,

2κ2
5 S =

∫
d5x

√
G5L5 + SGH

=
∫

d4x
√
G4

∫
ρ̄

dρ
l

2ρ
L5 + SGH , (3.3)

where SGH denotes the Gibbons–Hawking action on the
boundary ∂M at ρ = ρ̄:

SGH = −2ρ̄

l

∫
d4x

√
ḡḡi j ˙̄gi j (3.4)

where ḡi j denotes G4i j (x, ρ = ρ̄). Here and below a dot
denotes a derivative ∂/∂ρ.

In the Hamilton–Jacobi formalism, the bulk fields G4i j

and �a are replaced by their solutions of the equations of
motion with ḡi j and φ̄a as boundary conditions on ∂M cor-
responding to ρ = ρ̄. This allows to express S as function of
ḡi j and φ̄a , denoted by S̄(ḡi j , φ̄a). For completeness, details
of this procedure are given in Appendix A. Hamiltonian con-
straints will relate S̄(ḡi j , φ̄a) to L̄5, the bulk Lagrangian at
ρ = ρ̄ as function of ḡi j and φ̄a .

For S̄ expanded to second order in derivatives we make
the ansatz (gi j and φa denote ḡi j and φ̄a to lowest order in
derivatives, respectively)

S̄ =
∫

d4x
√
g

×
(
W (φ) − L(φ)R4(g) + 1

2
Kab(φ)∇ iφa∇iφ

b
)

.

(3.5)

The flow equations for the leading terms of gi j and φa in an
expansion in derivatives become (see Appendix A and [24])

ġi j = l

6ρ̄
gi jW, (3.6)

φ̇a = − l

2ρ̄
Lab∂bW. (3.7)

The Hamiltonian constraint H5 = 0 imposes the follow-
ing relations between the coefficients in L̄5 and S̄ which are
derived in Appendix A:

2 A non-Einstein factor Z in front of R5 can be removed by a Weyl
rescaling of G5 and a subsequent diffeomorphism such that no addi-
tional degree of freedom in the final boundary action remains.

V = −1

3
W 2 + 1

2
∂aW Lab∂bW, (3.8)

0 = 1 + 1

3
WL − ∂aW Lab∂bL , (3.9)

0 = Lab + W

(
1

3
Kab + 2∂a∂bL

)

− ∂cW Lcd(∂d Kab − ∂aKbd − ∂bKad), (3.10)

0 = W∂a L + ∂bW LbcKca . (3.11)

These agree with [24,25].
We write gi j in the form

gi j = a(φ, ρ̄)γ̃i j (3.12)

with γ̃i j independent from ρ̄. From Eq. (3.6) the flow equation
for a(φ, ρ̄) reads

ȧ = a
l

6ρ̄
W. (3.13)

Next we consider local transformations by τ(x). To gi j
resp. a we attribute τ transformation laws

δτ gi j = 2τgi j , δτa = 2τa (3.14)

such that we can identify gi j with the QFT metric γ̂i j , and a to
the QFT cutoff �2 which varies under Weyl transformations
as in Eq. (2.1).

Let us recall the role of the parameter ρ̄ for the boundary
action S̄: ρ̄ does not appear explicitly in S̄, only implicitly
in φ(ρ̄) and a(φ, ρ̄). As argued in [24] one can perform a
change of variables and consider a instead of ρ̄ as indepen-
dent variable. The flow equation for φ(a) reads now

a
δφa

δa
= − 3

W
Lab∂bW. (3.15)

For τ transformations of φ we assume that these are
induced by the dependence of φ on a:

δφa = τβa
τ , βa

τ = 2a
δφa

δa
= − 6

W
Lab∂bW. (3.16)

For the local τ transformations of S̄(g, φ) one obtains

δτ S̄(g, φ) = (�g
τ + �β

τ )S̄(g, φ) (3.17)

with

�g
τ = 2τgi j

δ

δgi j
, �β

τ = τβa
τ

δ

δφa
. (3.18)

As in the case of ŜQFT (γ̂ , ĝ0), the local τ transformations of
S̄(g, φ) in (3.17) imply consistency conditions like in (2.29).
In terms of the coefficients of S̄ they read

6 ∂a L − βb
τ Kba

!= 0 (3.19)

With βa
τ from (3.16) Eq. (3.19) becomes

W∂a L + KabL
bc∂cW

!= 0. (3.20)

123
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Eq. (3.20) corresponds to the Hamiltonian constraint (3.11),
which will play an important role in the next Section.

4 Matching the bulk to the QFT

The starting point of most explicit applications of the holo-
graphic renormalization group is a 5d Lagrangian L5, and
resulting properties of the effective action and constraints
on β functions of a corresponding 4d QFT. Here we ask
the opposite question: given a set of β functions describing
the running of bare (marginal or relevant) couplings ga0 of a
4d QFT, can this RG flow always be related to the flow of
fields φa living on the boundary of a 5d manifold? Or, can
the vacuum partition function of a 4d QFT in a gravitational
background as function of local bare couplings ga0 (x) always
be related to an action for fields φa on the boundary of a 5d
manifold?

As a first step in this direction we consider both functionals
to first nontrivial order in an expansion in 4d derivatives. To
this order the vacuum partition function ŜQFT of a 4d QFT
as function of the rescaled metric γ̂ and rescaled local cou-
plings ĝ0 is specified by the three coefficients V̂ (ĝ0), L̂(ĝ0)

and K̂ab(ĝ0) in Eq. (2.24). In turn, the boundary action S̄ as
function boundary fields φ is specified by three coefficients
W (φ), L(φ) and Kab(φ) in Eq. (3.5).

We assume that the rescaled QFT metric γ̂i j can be iden-
tified with the boundary metric gi j , the bare rescaled QFT
couplings ĝa0 with the boundary fields φa , and the QFT cut-
off �2 with the coefficient a in Eq. (3.12) (and not with the
boundary coordinate ρ̄ unless lW = 6). Note that both γ̂i j
and gi j diverge identically for �2 = a → ∞.

Given the coefficients V̂ (ĝ0), L̂(ĝ0) and K̂ab(ĝ0) in ŜQFT ,
a correspondence

W (φ̄a) = V̂ (ĝa0 = φa) (4.1)

L(φ̄a) = L̂(ĝa0 = φa) (4.2)

Kab(φ̄
a) = K̂ab(ĝ

a
0 = φa) (4.3)

faces the following potential obstruction: If interpreted as
coefficients of a boundary action S̄ resulting from the classi-
cal equations of motion based on a 5d Lagrangian L5 includ-
ing gravity, W , L and Kab must satisfy the Hamiltonian con-
straints (3.8)–(3.11).

In the present approach these have to be interpreted
as equations which determine the coefficients V (�) and
Lab(�) in L5 in (3.2). Equation (3.8) determines V (�),
and the Hamiltonian constraint (3.10) allows, in principle,
to compute Lab(�) in terms of W , L and Kab. For ng
bare couplings, the Hamiltonian constraint (3.11) seems to
impose ng additional conditions. At this point the consis-
tency conditions originating from local τ transformations –

satisfied by both ŜQFT and S̄ – come into play: First, recall
that the β functions βa

τ describe the flow of both ga0 in the
QFT with the cutoff �, and of the boundary fields φa with
a = �2, respectively. Second, the consistency conditions
imply the same gradient flows Eqs. (2.29) and (3.19), hence
the β functions for the QFT and the boundary fields coincide.
Third, the consistency condition in the form (3.20) implies
the validity of the ng Hamiltonian constraints (3.11) without
further assumptions. Hence it remains only the Hamiltonian
constraint (3.9) which, with Lab(�) determined by (3.10),
imposes one extra condition on the coefficients of ŜQFT .

Finally a successful QFT/bulk correspondence implies
another relation: As shown in [44], the weaker energy con-
dition (or null energy condition) in the 5d bulk implies a
c-theorem, i.e. the existence of a c-function which decreases
towards the infrared. Following [25] adapted to our conven-
tions, this c-function is given by

c(φ) = − 1

W 3 (4.4)

and satisfies

2a
d

da
c(φ) ≡ βa

τ

d

dφa
c(φ) ≥ 0. (4.5)

With c(φ) as in Eq. (4.4) and βa
τ from Eq. (3.16), the c-

theorem is equivalent to

− βa
τ

1

W 3 Labβ
b
τ ≥ 0. (4.6)

Accordingly the metric in field space

− 1

W 3 Lab (4.7)

must be semi-positive. If this condition (and the Hamiltonian
constraint (3.9)) are satisfied, the c-theorem applies also to
the 4d QFT, but with respect to the Wilsonian UV cutoff �:
Using the relation (4.1), the expression

cQFT (ĝ0) = − 1

V̂ 3(ĝ0)
(4.8)

increases for increasing �, i.e. V̂ (ĝ0) increases for increasing
� due to the running of ĝa0 with �.

We recall that the origin of the Hamiltonian constraint in
general relativity can be traced back to the (explicit) inde-
pendence of the boundary action S̄ on the coordinate of the
boundary. The corresponding feature of the QFT action in
the form of ŜQFT is that ŜQFT satisfies Eq. (2.23) implying
its (explicit) independence on the cutoff �. These are the
central results of the present approach.

123
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5 Summary and outlook

The introduction of a local ultraviolet cutoff in the kinetic
terms of a generic (here: multi-flavour scalar) QFT together
with local couplings in a curved background allows to gain
new insight into properties of the bare vacuum partition func-
tion as function of bare couplings.

First, it allows to realize local Weyl transformations under
which the local cutoff transforms; here the local component
of the cutoff plays the role of a compensator allowing for a
local RGE satisfied by the bare vacuum partition function.
This local RGE can be solved in terms of a rescaled space-
time metric, and rescaled bare couplings such that they are
dimensionless. (For marginal bare couplings, this rescaling is
trivial.) Next one can study the variation of the bare vacuum
partition function as function of the rescaled space-time met-
ric and rescaled bare couplings under local variations of the
cutoff. Since these variations are Abelian they imply consis-
tency conditions similar to the Weyl consistency conditions
introduced by JO. In an expansion to first nontrivial order
in derivatives we studied the consequences of these consis-
tency conditions and found that they imply a gradient flow
for the beta functions describing the cutoff dependence of
the rescaled bare couplings.

Second, we reviewed the holographic description of the
renormalization group flow which implies Hamiltonian con-
straints on the action on the boundary of a 5d manifold, fol-
lowing to a large extend [24]. At first sight the number of these
constraints does not allow to identify an arbitrary 4d vacuum
partition function of local bare couplings with an action on
the boundary of a 5d manifold, identifying scalar fields on the
boundary with local rescaled bare couplings in the 4d QFT.
It turns out, however, that the consistency condition to be
satisfied by coefficients of the 4d vacuum partition function
correspond precisely to one of the Hamiltonian constraints
such that only one additional condition on the 4d vacuum
partition function remains. (An open question is whether a
particular choice of the cutoff function of the 4d QFT allows
to satisfy this remaining condition.)

We underline that this consistency condition coincides
with the one of the QFT only if the holographic beta functions
describe the flow of bulk fields with the field dependent scale
factor a(φ, ρ̄) multiplying the induced metric on the bound-
ary and not, as it is frequently assumed, with ρ̄ directly. This
is plausible, given that fields in the bulk modify the metric in
the bulk via the Einstein equations, and physical distances in
the bulk depend on the metric in the bulk.

Although this result was obtained only to first nontrivial
order in an expansion in derivatives it nourishes the hope that
generic non-conformal quantum field theories may allow for
a description in terms of fields on the boundary of a 5d bulk
subject to equations of motion including general relativity.

Of course, to establish such a correspondence beyond an
expansion in derivatives is a more ambitious task.

Independently thereof, the present approach may also be
helpful for the study of the ultraviolet behaviour of 4d QFTs
such as the search for UV fix points including relevant cou-
plings, related to extrema of the coefficient L̂0(ĝ0) in (2.24).
The generalisation to QFTs including Fermions and/or gauge
fields remains a task for the future.
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A Appendix

A.1 The Hamiltonian constraint

In this Appendix we sketch the Hamilton-Jacobi formal-
ism relating an action S̄, a functional of fields ḡ, φ̄ on the
boundary ∂M, to the bulk Lagrangian L5 evaluated on the
boundary. It leads to flow equations for the fields ḡ, φ̄ with
respect to the extra coordinate. The Hamiltonian constraint
implies relations between the parameters of S̄ and the bulk
Lagrangian L5. We assume L5 quadratic in derivatives.

For the bulk metric we take

ds2 = l2

4

dρ2

ρ2 + G4i j dx
i dx j ,

√
G5 = b

√
G4, b = l

2ρ
.

(A.1)

For L5 we take

L5 = −R5 + V (�) + 1

2
Gμν

5 Lab(�)∂μ�a∂ν�
b. (A.2)

The regularized bulk action is

2κ2
5 S =

∫
d5x

√
G5L5 + SGH

=
∫

d4x
∫ ∞

ρ̄

dρ
√
G4bL5 + SGH (A.3)
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where SGH denotes the Gibbons–Hawking action on the
boundary ρ̄:

SGH = −1

b̄

∫
d4x

√
ggi j ġi j (A.4)

where a dot denotes ∂/∂ρ̄ and b̄ = l
2ρ̄

.
Solving the equations of motion for G4i j and �, S

becomes a function of the corresponding values g, φ on the
boundary ρ̄ and will be denoted by S̄(g, φ). L5 evaluated on
the boundary will be denoted by L̄5. Separating 4d deriva-
tives from derivatives w.r.t. ρ and after a partial integration
w.r.t. ρ, L̄5 becomes

L̄5 = −R4(g) + 1

4b̄2
(ġi j g

ikg jl ġkl − (gi j ġi j )
2)

+1

2
Lab(φ)

(
1

b̄2
φ̇a φ̇b + gi j∂iφ

a∂ jφ
b
)

+ V (φ).

(A.5)

In L̄5, contributions from partial integration of second deriva-
tives w.r.t. ρ have been cancelled by the Gibbons-Hawking
action.

In order to relate S̄(g, φ) to L̄5(g, φ) via the solutions of
the equations of motion forG4i j and �a inserted into

√
G5L5

we combine the bulk fields G4i j and �a into fields qα were
α denote the corresponding indices:

qα = {
G4i j ,�

a} . (A.6)

It is convenient to introduce

L̃5 = √
G5L5 = b

√
G4L5. (A.7)

The equations of motion are

δL̃5

δqα

− ∂i
δL̃5

δ∂i qα

− ∂ρ

δL̃5

δq̇α

= 0. (A.8)

The variations of S with δqα and its derivatives are

2κ2
5√
g

δS =
∫

d4x
∫ ∞

ρ̄(x)
dρ

×
(

δL̃5

δqα

δqα + δL̃5

δ∂i qα

δ∂i qα + δL̃5

δq̇α

δq̇α

)
. (A.9)

Using the equations of motion and partial integration under
the dρ integral one obtains

2κ2
5√
g

δS =
[∫

d4x
δL̃5

δq̇α

δqα

]
∞

−
[∫

d4x
δL̃5

δq̇α

δqα

]
∂M

.

(A.10)

With q̄α = qα|∂M and S̄ = 2κ2
5 S(qα = q̄α) one obtains

1√
g

δ S̄(q̄)

δq̄α

= − 1√
g

δL̃5

δ ˙̄qα

= −b̄
δL̄5

δ ˙̄qα

(A.11)

or, returning from q̄α to gi j , φ̄a ,

δL̄5

δġi j
= − 1

b̄
√
g

δ S̄

δgi j
,

δL̄5

δφ̇a
= − 1

b̄
√
g

δ S̄

δφa
. (A.12)

(Conventionally b̄ δL̄5
δġi j

and b̄ δL̄5
δφ̇a are denoted by canonical

momentum variables πi j and πa , respectively [24,25].)
With L5 and hence L̄5 quadratic in dotted derivatives it is

straightforward to express δL̄5
δġi j

and δL̄5
δφ̇a in (A.12) in terms of

ġi j and φ̇a , and to obtain flow equations for ġi j and φ̇a :

ġi j = −2b̄

(
gikg jl − 1

3
gi j gkl

)
1√
g

δ S̄

δgkl
, (A.13)

φ̇a = −b̄Lab 1√
g

δ S̄

δφb
. (A.14)

The Hamilton density H5 is given by

H5 = −ġi j
δL5

δġi j
− �̇a δL5

δ�̇a
+ L5. (A.15)

Replacing the bulk fields by the solutions of the equations of
motion, H5 satisfies the Hamiltonian constraint3

H5 = 0 (A.16)

which (evaluated on the boundary ρ = ρ̄) is equivalent to
∂ S̄/∂ρ̄ = 0 corresponding to the only dependence of S̄ on
the coordinate ρ̄ via arguments of the metric g(ρ̄) and the
fields φ(ρ̄). In terms of S̄, the Hamiltonian constraintH5 = 0
evaluated on the boundary becomes

1√
g

δ S̄

δgi j

(
gikg jl − 1

3
gi j gkl

)
1√
g

δ S̄

δgkl

+1

2

1√
g

δ S̄

δφa
Lab 1√

g

δ S̄

δφb
= L4 (A.17)

where

L4 = −R4 + 1

2
Lab(φ)gi j ∂iφ

a∂ jφ
b + V (φ). (A.18)

Equation (A.17) coincides with the Hamilton–Jacobi con-
straint in [24,25].

Next we consider S̄ expanded to second order in deriva-
tives,

S̄ =
∫

d4x
√
g

×
(
W (φ) − L(φ)R4(g) + 1

2
Kab(φ)∇ iφa∇iφ

b
)

.

(A.19)

3 Without gauge fixing of the bulk metric, i.e. introducing lapse and
shift as in the ADM decomposition, the Hamiltonian constraint follows
from the variation w.r.t. the lapse.
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First, following [24], we expand the flow equations (A.13)
and (A.14) in derivatives. To lowest order one obtains

ġi j = 1

3
gi j b̄W = l

6ρ̄
Wgi j , (A.20)

φ̇a = −b̄Lab∂bW = − l

2ρ̄
Lab∂bW. (A.21)

(In a slight abuse of notation, the solutions ĝi j and φ̂a of
the flow equations (A.13) and (A.14) can be expanded as
ĝi j = gi j + derivatives, φ̂a = φa + derivatives. Inserted into
S̄(ĝi j , φ̂a) and expanding S̄ as in (A.19), the derivative terms
in ĝi j and φ̂a induce flows for the coefficients L and Kab

which have to be consistent with the Hamiltonian constraints
below.)

Using L4 from (A.18) the Hamiltonian constraint (A.17)
implies relations between the coefficients in S̄ and L4. From
the terms without derivatives ∂i on both sides of (A.17) one
obtains

V = −1

3
W 2 + 1

2
∂aW Lab∂bW. (A.22)

From terms ∼ R4 one obtains

1 + 1

3
WL − ∂aW Lab∂bL = 0. (A.23)

From terms ∼ ∇ iφa∇iφ
b one obtains

Lab + W

(
1

3
Kab + 2∂a∂bL

)

−∂cW Lcd(∂d Kab − ∂aKbd − ∂bKad) = 0. (A.24)

Finally terms ∼ ∇ i∇iφ
a require

W∂a L + ∂bW LbcKca = 0. (A.25)
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