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Abstract The Kerr–Schild–Kundt (KSK) metrics are
known to be one of the universal metrics in general relativity,
which means that they solve the vacuum field equations of
any gravity theory constructed from the curvature tensor and
its higher-order covariant derivatives. There is yet no com-
plete proof that these metrics are universal in the presence of
matter fields such as electromagnetic and/or scalar fields. In
order to get some insight into what happens when we extend
the “universality theorem” to the case in which the electro-
magnetic field is present, as a first step, we study the KSK
class of metrics in the context of modified Horndeski theo-
ries with Maxwell’s field. We obtain exact solutions of these
theories representing the pp-waves and AdS-plane waves in
arbitrary D dimensions.

1 Introduction

The Kerr–Schild–Kundt (KSK) metrics belong to a very spe-
cial type-N metrics in general relativity. Recently, it was
shown that they are one of the universal metrics in general
relativity solving the vacuum field equations of generic the-
ories of gravitation [1–6]. As examples the solutions of the
field equations of quadratic, cubic, Born–Infeld, topologi-
cally massive gravity, and f (Riemann) theories of gravita-
tion are given explicitly. In the general case the field equations
reduce to N -number of Klein–Gordon equations, where N
is related to the degree of nonlinearity in the theory.

A generalization of the “universality theorem” given in [6]
to nonvacuum case has not been given yet. However, there
are some partial efforts for the case of generalization of the
Einstein–Maxwell field equations [7–12]. Our main goal in
the present work is to extend these works to the KSK metrics.
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In this direction, as a first step, we shall consider a generic
theory of gravity coupled with Horndeski-type [13] interac-
tion and a modification of it. We generalize the theorem on
the universality of the KSK metrics in generic gravity theo-
ries [3,4,6] to a gravity theory whose action is given as the
union of the generic gravity action and modified Horndeski
action; i.e., in D dimensions,

I =
∫

dDx
√−g

[
f (g, R,∇R, . . . ,∇∇ . . . ∇R, . . .)

−1

4
FμνF

μν + σ1 Rμν
αβFμνF

αβ + σ2 Rμν
αβFμνF

αβ

]
,

(1)

where f is an arbitrary function of the metric tensor (gμν),
the Riemann tensor (Rμναβ ), and the covariant derivatives
of the Riemann tensor of any order. The term parametrized
by σ1 in (1) represents the Horndeski-type interaction and
the term parametrized by σ2 represents the modification of
it. The explicit definitions of the tensors Fμν and Rμναβ are
given in Sect. 2, see Eqs. (18) and (19). We show that, in the
case of the KSK metrics, the field equations of the generic
theory defined by the action (1) reduce to a system of coupled
linear partial differential equations.

The field equations derived from the action (1) are as fol-
lows

Eμν = 1

2
(Tμν + σ1τμν + σ2τ̃μν), (2)

∇νFμν = 0, (3)

where Eμν is the tensor obtained when f in (1) is varied with
respect to gμν , and Fμν is the tensor when the total Lagrange
function is varied with respect to Fμν . The explicit form of
the tensors Tμν , τμν , τ̃μν , and Fμν in (2) and (3) are given
in the next section, see Eqs. (24)–(27). In the generic case
(with no electromagnetic fields), when the metric is the KSK
metric, i.e., of the form gμν = ḡμν + 2Vlμlν , where ḡμν
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represents the maximally symmetric background spacetime,
V is a scalar function, and lμ is a null vector field (see Sect.
3), the tensor Eμν on the LHS of (2) takes the form (see, e.g.,
[3,4,6])

Eμν = egμν + Blμlν, (4)

where e is a constant depending on the coupling parameters
of the f function of an explicit gravity theory and B is a
scalar function given by

B ≡
N∑

n=0

an(−1)n (O − 2K )n OV, (5)

where K is a constant related to the curvature scalar of the
background metric ḡμν . Here, N is related to the number of
covariant derivatives of the Riemann tensor that may appear
in the f function of a generic gravity theory. In other words,
2N + 2 is the derivative order of the pure gravity theory
defined by the f function in (1); for example, N = 0 corre-
sponds to Einstein’s gravity (or the Einstein–Gauss–Bonnet
theory), N = 1 to the quadratic gravity (or more generally
f (Riemann) theory), and N = 2 to the sixth-order grav-
ity theory [5]. The constants an’s in (5) are functions of the
parameters of the explicit gravity theory at hand, and the lin-
ear operator O appearing in (5) is defined in (42) in Sect. 3.

In Sect. 4, we will show that, when the vector potential is
Aμ = φ(x)lμ, where φ is a scalar function [see Eq. (43)],
the RHS of the Eq. (2) takes the form

RHS ≡ B1lμlν, (6)

where B1 is a scalar function given explicitly in Sect. 4, see
Eqs. (47), (52), and (53). Then the field equations (2) of the
full theory (1) reduce to, from (4) and (6),

e = 0, (7)

which determines the effective cosmological constant in
terms of the parameters of the theory, and

B = B1, (8)

which gives higher order linear coupled partial differential
equations for V and φ.

To see the simplification introduced by the KSK metrics,
let us give the following two specific examples.

A. Einstein gravity with modified-Horndeski couplings

In this case, the function f appearing in the action (1) is

f (g, R) = 1

2κ2 (R − 2	), (9)

which is the Einstein–Hilbert Lagrange function with a cos-
mological constant. Therefore, from (4)–(8), we have

e ≡ 1

2κ2

[
	 − (D − 1)(D − 2)

2
K

]
= 0, (10)

1

2κ2 OV = 1

2

{
ψ − 4σ1

[
1

2
�̄ψ + ξα∂αψ − (ξα p

α)2

+pα pβ∇̄αξβ + 1

2

[
ξ2 + (D2 − 7D + 8)K

]
ψ

]

+σ2

[
�̄ψ + 2ξα∂αψ + 1

2
(ξα p

α)2

+pα pβ∇̄αξβ − 6Kψ

]}
, (11)

where pα ≡ ∂αφ, ψ = pα pα , ξμ is a vector field defined in
the covariant derivative of the vector lμ [see Eq. (32)], and
we have taken a0 ≡ 1

2κ2 and N = 0 in (5). In this work, we
shall consider this theory and present the specific solutions
to (11), together with (3).

B. Quadratic gravity with modified-Horndeski couplings

This time the function f in (1) is

f (g, R) = 1

2κ2 (R − 2	0) + αR2 + βR2
μν

+γ
(
R2

αβμν − 4R2
μν + R2

)
, (12)

which is the combination of the Einstein–Hilbert Lagrangian
(with the bare cosmological constant 	0) and the squared
terms parameterized by (α, β, γ ). The highest derivative
order of this theory is N = 1 [2]. Then, (7) determines the
cosmological constant in the theory as

e ≡ 	0 − 	

2κ2 − h	2 = 0, (13)

where we made the definitions

	 ≡ (D − 1)(D − 2)

2
K ,

h ≡ (Dα + β)
(D − 4)

(D − 2)2 + γ
(D − 3)(D − 4)

(D − 1)(D − 2)
, (14)

and (8) becomes

−β

[
O −

(
2K + c

β

)]
OV

= 1

2

{
ψ − 4σ1

[
1

2
�̄ψ + ξα∂αψ − (ξα p

α)2 + pα pβ ∇̄αξβ

+1

2

[
ξ2 + (D2 − 7D + 8)K

]
ψ

]

+σ2

[
�̄ψ + 2ξα∂αψ + 1

2
(ξα p

α)2 + pα pβ ∇̄αξβ − 6Kψ

]}
,

(15)
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where

c ≡ 1

2κ2 + 4	D

D − 2
α + 4	

D − 1
β + 4	(D − 3)(D − 4)

(D − 1)(D − 2)
γ.

(16)

Note that, in order to obtain the LHS of (15), one should write
(5) for both the Einstein–Hilbert part (for which N = 0)
and the squared terms part (for which N = 1) of (12), with
the redefined an’s for each. Also observe that, if we set the
couplings α, β, and γ to zero, we recover the case A discussed
above.

In this work, we will solve the field equations of the gravity
theory defined in the case A above for which f is the Hilbert
Lagrange function with a cosmological constant given by
(9), and the matter energy–momentum tensor comes from
the modified Horndeski couplings appearing in (1). For this
purpose we structure the paper as follows. In Sect. 2, we
define the modified Horndeski theory and give its field equa-
tions. In Sect. 3, we review the properties of the KSK met-
rics. In Sect. 4, we study the KSK metrics in the context of
the modified Horndeski theory. In Sects. 5 and 6, pp-waves
and AdS-plane waves in modified Horndeski theory are dis-
cussed, respectively. In Sect. 7, the solutions of some special
cases are given. Finally, in Sect. 8, we give our concluding
remarks. Throughout the paper, we shall use the metric sig-
nature (−,+,+,+, . . .) .

2 Modified Horndeski theory

The action that generalizes the Einstein–Maxwell theory by
including the Horndeski’s modification in D dimensions is
given by

I =
∫

dDx
√−g

[
R − 2	

2κ2 − 1

4
FμνF

μν + σ1 Rμν
αβ FμνF

αβ

+σ2 Rμν
αβ FμνF

αβ

]
, (17)

where κ2 is the gravitational constant, 	 is the cosmological
constant, σ1 and σ2 are coupling constants, R is the Ricci
scalar, and

Fμν ≡ ∇μAν − ∇ν Aμ, (18)

Rμν
αβ ≡ −1

4
δ
μνλσ
αβρτ Rρτ

λσ , (19)

with Aμ and Rρτ
λσ being the electromagnetic vector poten-

tial and the Riemann tensor, respectively. The generalized
Kronecker delta used here is defined as

δ
α1...αk
β1...βk

= k!δ[α1
β1

. . . δ
αk ]
βk

= k!δα1[β1
. . . δ

αk
βk ]. (20)

With the definition (19), one can also write the interaction
term in (17) as

Rμν
αβ FμνF

αβ = −RF2 + 4R ν
μ FναF

μα − Rμν
αβ FμνF

αβ, (21)

where F2 ≡ FμνFμν and R ν
μ is the Ricci tensor.

The field equations of the theory by varying the action
(17) with respect to the independent variables gμν and Aμ

can be obtained as

G ν
μ + 	δν

μ = κ2(T ν
μ + σ1 τ ν

μ + σ2 τ̃ ν
μ ), (22)

∇νFμν = 0, (23)

where

T ν
μ ≡ FμαF

να − 1

4
δν
μF

2, (24)

τ ν
μ ≡ δναβγ

μρστ∇αF
στ∇ρFβγ − 4Rνρ

μαFρκF
ακ , (25)

τ̃ ν
μ ≡ ∇α ∇β

(
Fα

μ Fβν + Fαν Fβ
μ

)
,

+1

2
δν
μRαβλγ Fαβ Fλγ

+3

2
Fαβ

(
Rν

λαβ Fλ
μ + Rμλαβ Fλν

)
, (26)

Fμν ≡ Fμν − 4σ1Rμν
αβF

αβ + 4σ2R
μν
αβF

αβ. (27)

Using the Bianchi identity Rμν[αβ;γ ] = 0 and the fact that

∇γ δ
μνλσ
αβρτ = 0, one can rewrite (23) as

∇νF
μν − 4σ1Rμν

αβ∇νF
αβ + 4σ2∇ν

(
Rμν

αβF
αβ

)
= 0. (28)

3 KSK class of metrics

Suppose that the spacetime is endowed with a metric of the
“generalized” Kerr–Schild form [14–16]

gμν = ḡμν + 2Vlμlν. (29)

Here, by the word “generalized,” we mean that the back-
ground metric ḡμν is a maximally symmetric spacetime; i.e.,
its curvature tensor has the specific form

R̄μν
αβ = K δ

μν
αβ , (30)

with

K = R̄

D(D − 1)
= const. (31)

It is therefore either Minkowski, de Sitter (dS), or anti-de
Sitter (AdS) spacetime, depending on whether K = 0, K >

0, or K < 0. The scalar field (called profile function) V (x)
and the vector field lμ in (29) satisfy the following conditions

lμl
μ = 0, ∇μlν = 1

2
(lμξν + lνξμ), (32)

lμξμ = 0, lμ∂μV = 0, (33)
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where ξμ is an arbitrary vector field for the time being. From
these relations it follows that

lμ∇μlν = 0, lμ∇νlμ = 0, ∇μl
μ = 0. (34)

Kerr–Schild metrics of the form (29) with the properties (32)
and (33) are called the Kerr–Schild–Kundt (KSK) metrics [1–
6]. All the properties (32) and (33), together with the inverse
metric

gμν = ḡμν − 2Vlμlν, (35)

imply that (see, e.g., [2])

�μ
μν = �̄μ

μν, lμ�
μ
αβ = lμ�̄

μ
αβ, lα�

μ
αβ = lα�̄

μ
αβ, (36)

ḡαβ�
μ
αβ = ḡαβ�̄

μ
αβ, (37)

Rμανβl
αlβ = R̄μανβl

αlβ = −Klμlν, (38)

Rμνl
ν = R̄μνl

ν = (D − 1)Klμ, (39)

R = R̄ = D(D − 1)K , (40)

and the Einstein tensor is calculated as

G ν
μ = − (D − 1)(D − 2)

2
K δν

μ − ρ lμl
ν, (41)

with

ρ =
[
�̄ + 2ξα∂α + 1

2
ξαξα + 2(D − 2)K

]
V ≡ −OV,

(42)

where �̄ ≡ ∇̄μ∇̄μ and ∇̄μ is the covariant derivative with
respect to the background metric ḡμν .

4 KSK metrics in modified Horndeski theory

Let us now assume that the spacetime is endowed with a met-
ric of the form (29) and the electromagnetic vector potential
is given by

Aμ = φ(x)lμ, (43)

where φ(x) is a scalar function and lμ is the null vector field
satisfying (32) and (33). This immediately yields

Fμν = 2p[μlν], (44)

where pμ ≡ ∂μφ. Now if we further assume that lμ pμ = 0,
then Fμν becomes null, i.e.,

F2 ≡ FμνF
μν = 0, (45)

and the null vector field lμ defines a principal null direction
of the electromagnetic field, i.e.,

Fμνl
ν = 0. (46)

All these mean that the energy–momentum tensor (24) of the
electromagnetic field is of the form

T ν
μ = ψlμl

ν, (47)

where ψ ≡ pμ pμ, and we have a pure radiation field (null
dust).

It is now a matter of computation to show that (27) boils
down to

Fμν ≡ [1 + 4σ1(D − 2)(D − 3)K + 8σ2K ]Fμν, (48)

and (23) becomes

− [1 + 4σ1(D − 2)(D − 3)K + 8σ2K ][�̄φ + ξν pν ]lμ = 0,

(49)

which, assuming that the coefficient is not zero, yields

�̄φ + ξν pν = 0. (50)

On the other hand, when the coefficient is zero, the coupling
constants are related to each other in the following way

1 + 4σ1(D − 2)(D − 3)K + 8σ2K = 0. (51)

In this case, the dynamics of the scalar field is completely
free, and so, any field φ(x) constitutes a source for the Ein-
stein equations (22). From now on, we shall assume that the
coefficient is nonzero and φ(x) should satisfy (50).

After a long calculation, one can also calculate (25) and
(26) as

τ ν
μ = −4

{
∇̄α pβ ∇̄α pβ + 1

2
ξα∂αψ − (ξα p

α)2

+1

2

[
ξ2 + (D − 2)(D − 3)K

]
ψ

}
lμl

ν, (52)

τ̃ ν
μ =

{
�̄ψ + 2ξα∂αψ + 1

2
(ξα p

α)2

+pα pβ ∇̄αξβ − 6Kψ

}
lμl

ν, (53)

where (50) has been used. Now using (41), (47), (52), and
(53), we can write the Einstein equations (22) as
[
	 − (D − 1)(D − 2)

2
K

]
δν
μ − ρ lμl

ν

= κ2
{
ψ − 4σ1

[
∇̄α pβ∇̄α pβ + 1

2
ξα∂αψ − (ξα p

α)2

+1

2

[
ξ2 + (D − 2)(D − 3)K

]
ψ

]

+σ2

[
�̄ψ + 2ξα∂αψ + 1

2
(ξα p

α)2

+pα pβ∇̄αξβ − 6Kψ

]}
lμl

ν, (54)
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from which we find that

	 = (D − 1)(D − 2)

2
K , (55)

�̄V + 2ξα∂αV +
[

1

2
ξαξα + 2(D − 2)K

]
V

= −κ2
{
ψ − 4σ1

[
∇̄α pβ∇̄α pβ + 1

2
ξα∂αψ − (ξα p

α)2

+1

2

[
ξ2 + (D − 2)(D − 3)K

]
ψ

]

+σ2

[
�̄ψ + 2ξα∂αψ + 1

2
(ξα p

α)2

+pα pβ∇̄αξβ − 6Kψ

]}
. (56)

Using the relation

∇̄a pβ∇̄α pβ = 1

2
�̄ψ + 1

2
ξα∂αψ − (D − 1)Kψ

+pα pβ∇̄αξβ − pβ∇̄β(�̄φ + ξν∂νφ), (57)

together with (50), we can equivalently write (56) as

�̄V + 2ξα∂αV +
[

1

2
ξαξα + 2(D − 2)K

]
V

= −κ2
{
ψ − 4σ1

[
1

2
�̄ψ + ξα∂αψ − (ξα p

α)2

+pα pβ∇̄αξβ + 1

2

[
ξ2 + (D2 − 7D + 8)K

]
ψ

]

+σ2

[
�̄ψ + 2ξα∂αψ + 1

2
(ξα p

α)2

+pα pβ∇̄αξβ − 6Kψ

]}
. (58)

Note that when ξμ = 0, K = 0, and σ2 = 0, all these
expressions recover the flat background (pp-wave) case in
Horndeski theory [17].

5 pp-waves in modified Horndeski theory

After having the field equations, let us first study pp-waves
in the modified Horndeski theory. For this purpose we only
need to set ξμ = 0 and K = 0 in the formulation above.
Doing this in (29), (35) and (55) immediately leads to [14–
16]

gμν = ημν + 2Vlμlν, (59)

for the spacetime metric with the flat background metric ημν

(since 	 = 0) and the inverse metric

gμν = ημν − 2Vlμlν . (60)

And doing the same in (50) and (58) produces

�̄φ = 0, (61)

�̄V = −κ2[ψ − (2σ1 − σ2)�̄ψ]. (62)

Now the vector field lμ and the scalar fields φ(x) and V (x)
satisfy the conditions

lμl
μ = 0, ∇μlν = 0, (63)

lμ∂μφ = 0, lμ∂μV = 0. (64)

If we specifically study in the coordinate system xμ =
(u, v, xi ) with u and v being the double null coordinates
and i = 1, . . . , D − 2 in which the null vector lμ is taken to
be lμ = δuμ, we can easily show that the two conditions in
(64) give

V = V (u, xi ), φ = φ(u, xi ), (65)

the pp-wave metric (59) takes the form

ds2 = 2dudv + 2V (u, xi )du2 + dxidx
i , (66)

and the field equations (61) and (62) become

∇2⊥φ = 0, (67)

∇2⊥V = −κ2[ψ − (2σ1 − σ2)∇2⊥ψ], (68)

where ∇2⊥ ≡ ∂i∂
i and ψ = ∂iφ∂ iφ. At this point, we can

make a further ansatz

V (u, xi ) = V0(u, xi ) − κ2

2
φ(u, xi )2 + κ2(2σ1 − σ2)ψ(u, xi ),

(69)

with which Eq. (68) becomes

∇2⊥V0 = 0, (70)

upon using (67). Thus any simultaneous solution of (67) and
(70) describes a pp-wave metric (66) with the profile function
(69) in the modified Horndeski theory.

6 AdS-plane waves in modified Horndeski theory

In this section, we shall consider AdS-plane waves for which
the background metric ḡμν is the usual D-dimensional AdS
spacetime with the curvature constant

K ≡ − 1

�2 = − 2|	|
(D − 1)(D − 2)

, (71)

where � is the radius of curvature of the spacetime. We shall
represent the spacetime by the conformally flat coordinates
xμ = (u, v, xi , z) with i = 1, . . . , D−3 and the background
metric

ds̄2 = ḡμνdx
μdxν = �2

z2 (2dudv + dxidx
i + dz2), (72)

where u and v are the double null coordinates. In these coor-
dinates, the boundary of the AdS spacetime lies at z = 0.
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Now if we take the null vector in the full spacetime of the
Kerr–Schild form (29) as lμ = δuμ, then using (35) along with
lμlμ = 0 we have

lμ = gμνlν = ḡμνlν = z2

�2 δμ
v

⇒ lα∂αV = z2

�2

∂V

∂v
= 0 & lα∂αφ = z2

�2

∂φ

∂v
= 0, (73)

which represents that functions V and φ are independent
of the coordinate v; that is, V = V (u, xi , z) and φ =
φ(u, xi , z). Therefore, the full spacetime metric defined by
(29) will be

ds2 =
[
ḡμν + 2V (u, xi , z)lμlν

]
dxμdxν

= ds̄2 + 2V (u, xi , z)du2, (74)

with the background metric (72). It is now straightforward to
show that (see also [2])

∇μlν = ∇̄μlν = 1

z
(lμδzν + lνδ

z
μ), (75)

where we used the second property in (36) to convert the
full covariant derivative ∇μ to the background one ∇̄μ, and
lμ = δuμ with ∂μlν = 0. Comparing (75) with the defining
relation in (32), we see that

ξμ = 2

z
δzμ,

ξμ = gμνξν = ḡμνξν = 2z

�2 δμ
z ,

⎫⎪⎬
⎪⎭ ⇒ ξμξμ = 4

�2 , (76)

where we again used (35) together with lμξμ = 0. One can
also show that

∇̄μξν = 2

z2 (δzμδzν − ημν). (77)

Thus, for the AdS-plane wave ansatz (74), the equations that
must be solved are the Eq. (50), which takes the form

z2∂̂2φ + (4 − D)z ∂zφ = 0, (78)

where ∂̂2 ≡ ∂i∂
i +∂2

z , and the equation (58), which becomes

z2∂̂2V + (6 − D)z ∂zV + 2(3 − D)V

= −κ2
{[

1 + 2σ1

�2 (D2 − 7D + 8) + 4σ2

�2

]
(z∂̂φ)2

−2σ1 − σ2

�2

[
z2∂̂2 + (6 − D)z∂z

]
(z∂̂φ)2

+4(2σ1 + σ2)

�2 (z∂zφ)2
}
, (79)

where (∂̂φ)2 ≡ ∂iφ∂ iφ + (∂zφ)2.

7 Solutions in special cases

7.1 Einstein–Maxwell theory

As is obvious from the action (17), when the non-minimal
couplings σ1 and σ2 become zero, we recover the usual
Einstein–Maxwell theory. In this case, the field equations
(78) and (79) become

z2∂̂2φ + (4 − D)z ∂zφ = 0, (80)

z2∂̂2V + (6 − D)z ∂zV + 2(3 − D)V = −κ2(z∂̂φ)2. (81)

Let us consider some solutions to these equations.

7.1.1 Generic solution in D = 3

In D = 3, the Eqs. (80) and (81) can be solved exactly
because xμ = (u, v, z) and soV = V (u, z) and φ = φ(u, z).
Indeed, the equation (80) takes the form

z2∂2
z φ + z∂zφ = 0, (82)

and has the general solution

φ(u, z) = a1(u) + a2(u) ln z, (83)

where a1(u) and a2(u) are arbitrary functions. Plugging this
into (81), one has

z2∂2
z V + 3z∂zV = −κ2a2(u)2, (84)

which can easily be integrated to give

V (u, z) = b1(u) + b2(u)z−2 − 1

2
κ2a2(u)2 ln z, (85)

where b1(u) and b2(u) are arbitrary functions. Note that the
second term b2(u)z−2 can always be absorbed into the AdS
part of the metric (74) by a redefinition of the null coordinate
v, which means that one can always set b2(u) = 0 without
loosing any generality. Thus the metric

ds2 = gμνdx
μdxν = �2

z2 (2dudv + dz2) + 2V (u, z)du2,

(86)

with the profile function given by (85), describes an exact
plane wave solution propagating in the AdS background
spacetime in three-dimensional Einstein–Maxwell theory.

7.1.2 Homogeneous AdS-plane waves in D > 3

In higher dimensions than three, it is not possible to give
general solutions to the Eqs. (80) and (81) because now xμ =
(u, v, xi , z) with i = 1, . . . , D−3 and in general V and φ are
functions of xi also. But we can obtain a special solution if
we assume the functions V and φ are homogeneous along the
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transverse coordinates, i.e., V = V (u, z) and φ = φ(u, z).
If this is the case, the equation (80) becomes

z2∂2
z φ + (4 − D)z∂zφ = 0, (87)

which has the general solution

φ(u, z) = a1(u) + a2(u)zD−3, (88)

with the arbitrary functions a1(u) and a2(u). With this solu-
tion, the Eq. (81) then becomes

z2∂2
z V + (6 − D)z∂zV + 2(3 − D)V

= −κ2(D − 3)2a2(u)2z2(D−3), (89)

which can also be solved exactly and the solution is

V (u, z) = b1(u)zD−3 + b2(u)z−2

−κ2(D − 3)a2(u)2

2(D − 2)
z2(D−3), (90)

whereb1(u) andb2(u) are arbitrary functions. Notice that this
solution is asymptotically well-behaved as z → 0. Therefore,
the metric

ds2 = gμνdx
μdxν

= �2

z2 (2dudv + dxidx
i + dz2) + 2V (u, z)du2, (91)

with the profile function (90) describes an exact plane
wave, propagating in the D-dimensional AdS background,
in Einstein–Maxwell theory.

7.2 Modified Horndeski theory

When the Modified Horndeski interactions are present, i.e.
σ1 �= 0 and σ2 �= 0, which is the case in D > 3, we have to
solve the Eqs. (78) and (79). But as we stated before, it is not
possible to obtain the general solutions of these equations,
so we shall specialize to the homogeneous case in which the
functions V and φ do not depend on the transverse coor-
dinates xi of the spacetime coordinates xμ = (u, v, xi , z),
where i = 1, . . . , D − 3.

7.2.1 Homogeneous AdS-plane waves in D > 3

With the assumption that V = V (u, z) and φ = φ(u, z), the
field Eqs. (78) and (79) become

z2∂zφ + (4 − D)z ∂zφ = 0, (92)

z2∂2
z V + (6 − D)z∂zV + 2(3 − D)V

= −κ2
{[

1 + 2σ1

�2 (D2 − 7D + 12) + 8σ2

�2

]
(z∂zφ)2

−2σ1 − σ2

�2

[
z2∂2

z + (6 − D)z∂z
]
(z∂zφ)2

}
. (93)

The first equation has the solution

φ(u, z) = a1(u) + a2(u)zD−3, (94)

as in the Einstein–Maxwell case, where a1(u) and a2(u) are
two arbitrary functions. Inserting this solution into the second
equation produces

z2∂2
z V + (6 − D)z∂zV + 2(3 − D)V =−κ2(D − 3)2a2(u)2

×
[

1 − 2σ1

�2 (D + 2)(D − 3)

+2σ2

�2 (D2 − 4D + 7)

]
z2(D−3), (95)

which can easily be solved to give

V (u, z) = b1(u)zD−3 + b2(u)z−2 − κ2(D − 3)a2(u)2

2(D − 2)

×
[

1 − 2σ1

�2 (D + 2)(D − 3)

+2σ2

�2 (D2 − 4D + 7)

]
z2(D−3), (96)

where b1(u) and b2(u) are arbitrary functions. This solution
is asymptotically well-behaved as z → 0, and we can see
that it reduces to the solution (90) in Einstein–Maxwell case
when σ1 = σ2 = 0. Thus we obtained that the metric

ds2 = gμνdx
μdxν = �2

z2 (2dudv + dxidx
i + dz2)

+2V (u, z)du2, (97)

with the profile function (96) describes an exact AdS-plane
wave solution in the modified Horndeski theory. The AdS-
plane wave solution of Horndeski theory can be obtained by
easily setting σ2 = 0 in (96).

8 Conclusion

In this work, we studied the field equations of the generic
gravity with the electromagnetic field. The theories we con-
sidered are the several versions of the generic gravity with
Horndeski type of couplings. We have reduced the field equa-
tions for the case of the Kerr–Schild–Kund (KSK) class of
metrics and, giving these field equations explicitly for some
special cases, we presented exact solutions representing the
pp-waves and AdS-plane waves in such theories.
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