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Abstract We study gravitational wave production in an
expanding Universe during the first stages following infla-
tion, and investigate the consequences of the Gauss–Bonnet
term on the inflationary parameters for a power-law inflation
model with a GB coupling term. Moreover, we perform the
analyses on the preheating parameters involving the number
of e-folds Npre, and the temperature of thermalization Tth,
and show that it’s sensitive to the parameters n, and γ , the
parameter γ is proposed to connect the density energy at
the end of inflation to the preheating energy density. We set
a correlation of gravitational wave energy density spectrum
with the spectral index ns detected by the cosmic microwave
background experiments. The density spectrum Ωgw shows
good consistency with observation for γ = 103 and 106. Our
findings suggest that the generation of gravitational waves
(GWs) during preheating can satisfy the constraints from
Planck’s data.

1 Introduction

In the very early stages of the Universe’s evolution, inflation
is the leading paradigm that was proposed to resolve issues
namely flatness and horizon problems that appear in the stan-
dard big bang cosmological model. During inflation, tensor
modes are produced from the amplification of initial quan-
tum fluctuations into classical perturbations outside the Hub-
ble radius, due to the accelerated expansion of the universe
[1]. They may cause a B-mode polarization of the cosmic
microwave background CMB photons. As a result, obser-
vations CMB can be used to constrain the amplitude of the
tensor perturbations and inflationary models can be strongly
constrained using the combination of ns and r . In the first
stage following inflation, preheating is characterized in most
models by an explosive and non-perturbative generation of
non-thermal fluctuations of the inflaton and other bosonic
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fields connected to it [3]. In chaotic models of inflation, the
inflaton decays via parametric resonant particle creation [4],
accompanied by violent dynamics of non-linear inhomoge-
neous structures of the scalar fields [5]. Preheating can accel-
erate the thermalization of our universe since the inflaton
energy can be transferred rapidly into radiation matter. Thus,
This period of a rapid particle production is highly inhomo-
geneous and generically generates gravitational waves with
large energy densities [6,7]. As a consequence, the detection
of GWs generated during preheating can help us to test infla-
tion and understand the process of reheating. According to
general relativity, the current universe should be penetrated
by a diffuse gravitational wave background (GWB) com-
ing from several sources like relic stochastic backgrounds
from the early universe, phase transitions, inflation, turbulent
plasmas, cosmic strings, etc. [8]. These backgrounds have
very different spectral shapes and amplitudes that may, in
the future, allow gravitational wave observatories like LIGO,
LISA, BBO, or DECIGO [8] to disentangle their origin. Cos-
mological gravitational wave background could potentially
carry original and pure information about the universe at early
times. For low energy scale inflationary models, the frequen-
cies of the gravity waves generated after inflation may occur
in the range that can be detected in theory by direct detection
tests, providing us with a channel for verifying inflation from
the CMB data.

Another extended theory of inflation that has been stud-
ied is a scalar field coupled to the Gauss–Bonnet combina-
tion of quadratic curvature scalars R2

GB [9,10]. In this paper,
we study whether a family of such theories, specifically
the Gauss–Bonnet theory coupled with functions of a scalar
field, may accurately predict inflationary dynamics compati-
ble with current observational constraints on the parameters
of these theories. It was also claimed that the temperature of
reheating and the equation-of-state (EoS) parameter during
reheating can be probed by looking at the spectrum of the
GW background [11,12]. Therefore, in this work, we con-
sider inflationary models with a Gauss–Bonnet (GB) term
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to estimate the energy spectrum of the PGW and to provide
constraints on the preheating parameters.

The paper is organized as follows. In Sect. 2, we develop
the basic equations that describe a GB inflation model. In
Sect. 3, we calculate the expression for the energy spectrum
of these GWs. We further perform constraints on the preheat-
ing parameters in Sect. 4. In Sect. 5, we converte the spectra
into physical variables and describe gravitational waves from
Planck’s measurements point of view. We conclude in Sect.
6.

2 The Gauss–Bonnet Model

We consider the following action that involves the Einstein–
Hilbert term and the GB term coupled to a canonical scalar
field φ through the coupling function ξ(φ) [9,13],

S =
∫

d4x
√−g

[
1

2κ2 R − 1

2
gμν∂μφ∂νφ

]

−
∫

d4x
√−g

[
V (φ) + 1

2
ξ(φ)R2

GB

]
(1)

where R2
GB = R2 − 4RμνRμν + Rμνρσ Rμνρσ is the GB

term and κ2 = 8πG = M−2
p . The model is hence specified

by two arbitrary functions, the potential V (φ) and the Gauss–
Bonnet coupling ξ(φ). The background dynamical equations
for inflation with the GB term which couples to a scalar field
φ in a spatially flat FRW Universe are

3H2

κ2 = 1

2
φ̇2 + V (φ) + 12ξ̇H3, (2)

−2Ḣ

κ2 = φ̇2 − 4ξ̈H2 − 4ξ̇H(2Ḣ − H2), (3)

φ̈ + 3H φ̇ + V,φ + 12ξ,φH
2(Ḣ + H2) = 0, (4)

the dot represents a derivative with respect to the cosmic
time t , H = ȧ/a denotes the Hubble parameter, and V,φ =
∂V/∂φ, ξ,φ = ∂ξ/∂φ, ξ is a function on φ, and ξ̇ = ξ,φφ̇.

The so-called slow-roll parameters are expressed in terms
of the potential and the coupling functions as

ε ≈ Q

2

V,φ

V
, (5)

η ≈ −Q

(
V,φφ

V,φ

− V,φ

V
+ Q,φ

Q

)
, (6)

δ1 ≈ −4

3
ξ,φQV, (7)

δ2 ≈ −Q

(
ξ,φφ

ξ,φ

+ V,φ

V
+ Q,φ

Q

)
, (8)

with Q ≡ V,φ/V + (4/3)ξ,φV . The potential and the cou-
pling function can also be used to define the e-folding number
N at the horizon exit before the completion of inflation,

Nk ≈
∫ φk

φend

3V

3V,φ + 4ξ,φV 2 κ2dφ =
∫ φk

φend

κ2

Q
dφ, (9)

where the subscripts “k” and “end” respectively indicate the
moment when a mode k crosses the horizon and the end of
inflation.

The spectral indices of scalar and tensor perturbations ns,
and tensor-to-scalar ratio r are calculated as [14]

ns − 1 � −2ε − 2ε(2ε + η) − δ1(δ2 − ε)

2ε − δ1
, (10)

r � 8(2ε − δ1). (11)

Choosing the form of the potential V (φ) and the coupling
function ξ(φ) and using Eqs. (5–8), (10–11), the theoretical
predictions of any particular inflation model can be verified
using observational data [2].

2.1 Power-law model with inverse monomial coupling

Let us consider a power-law model of GB inflation with
inverse monomial coupling. The inflaton potential and the
coupling function are given by

V (φ) = V0(κφ)n, ξ(φ) = ξ0(κφ)−n, (12)

here, n is assumed to be positive, and V0, ξ0 are a dimen-
sionless constants. This model has received a lot of attention
[9,14], were they establish an analytic relationship between
the spectral index of curvature perturbations and the tensor-
to-scalar ratio thanks to the specific choice of GB coupling.
From Eqs. (5)–(8) and (9), the observable quantities in Eqs.
(10–11) can be obtained in terms of Nk as

ns − 1 = −2(n + 2)

4Nk + n
, r = 16n(1 − α)

4Nk + n
, (13)

where α ≡ 4V0ξ0/3. For that case, we conclude that such a
specific choice of GB coupling allows us to find an analytic
relation between r , ns in terms of Nk .

In Fig. 1, we consider the usual power-law inflation, where
the inflaton field is coupled with the Gauss–Bonnet term
through the inverse monomial model. It is apparent from
these plots that increasing the value of α to 0.2 makes the
decreasing function obtain from our model in certain regions
consistent with the latest observations in certain regions for
n = 1, 2, and 3.

3 Primordial gravitational waves

The intense production of matter fields after inflation can
promote substantial metric changes. However, we are only
interested in the evolution of the transverse-traceless satisfied
be the metric perturbation hi j , and the generation of GWs
during preheating. Therefore, GWs can be represented by
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Fig. 1 r versus ns plot for monomial inflation with a Gauss–Bonnet coupling function. Inner and outer shaded regions are 1σ and 2σ constraints
from Planck respectively. We choose three different values of n, for the black line n = 1, the red line represents n = 2 and for the blue line, n = 3

the traceless part of the spatial metric perturbations in the
FRW background [15,16]:

ds2 = gi j dx
i dx j = −dt2 + a(t)2 (

δi j + hi j
)
dxidx j . (14)

The perturbation hi j satisfies the transverse-traceless (TT)
conditions: ∂i hi j = hii = 0, and has the equation of motion

ḧi j + 3Hḣi j − 1

a2 ∇2hi j = 2κ2ST Ti j , (15)

the source term ST Ti j is the transverse-traceless of the
anisotropic stress Si j .

3.1 Gravitational wave energy density

The energy density power spectrum of GWs sourced by the
inhomogeneous decay of the symmetry braking field, can be
defined as the energy density averaged over a volume V of
several wavelengths size [3], This energy density carried by
GWs can be calculated through the following Eq. [17]

ρgw = 1

4κ2

〈
ḣi j (t, x)ḣi j (t, x)

〉
. (16)

The strength of GW is characterized by their energy spec-
trum, which represents the abundance of gravity wave energy
density today, is given as

h2
(

ρgw,0

ρc,0

)
=

∫
d f

f
h2Ωgw,0( f ), (17)

which can be rewritten as

h2Ωgw,0( f ) = h2

ρc,0

dρgw,0

d ln f
, (18)

where f is the frequency and ρc,0 = 3H2
0 /(8πG) is the

critical energy density today.
Next, we need to consider the evolution of the scale factor

during preheating that is parameterized by an e-folds number
Npre and test its dependency on the evolution of the equation
of state. In general, when the inflaton field oscillates around
its minimum, the equation of state jumps from ω = 0 to
an intermediate value close to ω = 1/3 during preheating
[18,19].

4 Preheating constraints

The process of preheating happens in the early stages of the
Universe’s evolution. This is thought to be necessary because
the universe cools as it expands. As a result, there must be
a period immediately following inflation to allow it to ther-
mally prepare for the next step, which we call preheating.
Preheating occurs due to the interaction of massless scalar
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field χ with the oscillating inflaton field, which causes it to
grow exponentially fast, as a result of parametric resonance,
followed by a stage of thermal equilibrium (reheating) [20].
To extract information about preheating we need to consider
the phase between the time observable CMB scales crossed
the horizon and the present time. Deferents eras occurred
throughout this length of time which can be described by the
following equation :

k

a0H0
= ak

aend

aend
apre

apre
ath

ath
aeq

aeq
a0

Heq

H0

Hk

Heq
, (19)

here, a0, ak, aend , apre, ath end aeq respectively correspond
to the scale factor at present, time of horizon crossing, end of
inflation, end of preheating, and the time of thermal equilib-
rium, and finally, the end of the matter and radiation equality
era, whereas H0 and Heq are the Hubble constant at present
time and the time of matter and radiation equality. Taking the
number of e-folds N into consideration, we can rewrite Eq.
(19) as

ln

(
k

a0H0

)
= −Nk − Npre − Nth + ln

ath
a0

+ ln
Hk

H0
, (20)

the number of e-folds between the time when a mode exits
the horizon and the end of inflation is parametrized by Nk =
aend/ak, and Npre = apre/aend is the duration from the end
of inflation to the end of preheating, finally, Nth = ath/apre
is the number of e-folds between the end of preheating and
the thermal equilibrium (end of reheating). Our goal is to
calculate the preheating duration Npre in terms of inflationary
parameters. Considering that no entropy production occurred
after the thermal equilibrium was completed, one can write
[24]

ath
a0

= T0

Tth

(
43

11g∗

) 1
3

, (21)

where T0 is the current temperature of the Universe, and Tth is
the thermal equilibrium temperature of reheating, the energy
density ρth at the end of reheating is defined as:

ρth = π2

30
g∗T 4

th, (22)

where g∗ is the number of relativistic degrees of freedom at
the end of reheating. Using the expressions ρth ∝ a−3(1+ω)

th

and ρend ∝ a−3(1+ω)
end that respectively corresponds to the

reheating and inflation energy densities. We assume that the
energy density at the end of inflation and preheating energy
density are related by a parameter γ

ρend = γρpre = γ a−3(1+ω)
pre , (23)

then,

ρend

ρth
= γ

(
apre
ath

)−3(1+ω)

, (24)

writing this in terms of e-foldings, one can obtain

ρth = ρend

γ
e−3(1+ω) Nth , (25)

the energy density of inflation ρend is determined by the
potential at the end of inflation Vend and λend given as
follows :

ρend = λendVend , (26)

the effective ratio of kinetic energy to potential energy λend
is calculated from the GB field Eq. (4) [21]:

λend =
(

6

6 − 2ε − δ1 (5 − 2ε + δ2)

)
φ=φend

. (27)

We can derive a total duration using Eqs. (20–22), and
(25):

Npre + 1 − 3ω

4
Nth

= − ln

(
k

a0T0

)
− 1

3
ln

(
11ḡ∗
43

)

−1

4
ln

(
30λend

γπ2 ḡ∗

)
− 1

4
ln

(
Vend
H4
k

)
− Nk, (28)

this expression is not defined in the value of (EoS) ω = 1/3.
According to [2], a numerical values can be obtain : Mp =
κ−1 = 2.435 × 1018Gev, a0 = 1, T0 = 2.725K , ḡ∗ �
106.75, k = 0.05Mpc−1, which reduces Eq. (28) to

Npre

=
[

60.0085 − 1

4
ln

(
3λend

100γπ2

)
− 1

4
ln

(
Vend
H4
k

)
− Nk

]

−1 − 3ω

4
Nth, (29)

with Nth, the reheating duration can be obtained from Eqs.
(22) and (25)

Nth = 1

3(1 + ω)
ln

(
λendVend
γπ2

30 ḡ∗Tth

)
. (30)

The duration of preheating Npre is linked to the inflationary
quantities through λend , Vend , Nk , and Hk . These quantities
need to be calculated for the model we considered previously
in this work. In addition to that, the preheating duration is
also described by a parameter γ we defined previously, that
connects the energy density at the end of inflation ρend to
the preheating energy density ρpre. Nth can be calculated
considering the final reheating thermalization temperature
as [22] Tth > 1012 GeV. Inflation ended when the value of
ω became larger than −1/3, in order to satisfy the condition
of density energy dominance and preserve the causality ω

must be smaller than 1, when reheating is finished the (EoS)
reached 1/3, for this reason, we will test if the choice of
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specific values of (EoS) parameter has effects on preheating
duration.

Inflation ends when the slow-roll parameters ε, δ1 become
as ε(φend) = 1, δ1(φend) = 1. One can calculate Vend and
λend using Eqs. (5–8), and (27) which gives:

Vend = V0

κ4

[
n2

2
(1 − α)

] n
2

, (31)

λend = − 3n

4α(n + 1) − 2n
. (32)

The Hubble parameter at the time of horizon from the slow-
roll approximations 3H2

k ≈ κ2V (φk), is obtained by calcu-
lating φk(Nk) from Eq. (9) taking into account the large field
inflation case (φk 	 φend)

κφk =
√
n

2
(1 − α)(4Nk + n), (33)

as a result

H4
k =

(
V0

3κ2

)2 [n
2
(1 − α)(4Nk + n)

]n
. (34)

It can be seen from previous results that Nk , Vend , λend
and Hk are all expressed in terms of spectral index ns , α, and
n. Hence Npre can be obtained as a function of ns from Eq.
(29).

Figure 2 show the variation of the e-folds number during
preheating as a function of spectral index ns . We choose
the three values n = 1, 2 and 3. Each curve fall at a point
that corresponds to an instantaneous preheating (Npre →
0), we should mention here that the preheating duration is
independent of the choice of the (EoS) value ω . As depicted
in the Figure, for γ = 103, 106, the case n = 3 completely
lies outside the Planck bounds on ns = 0.9649±0.0042 [2],
in order to satisfy observations, n must be bounded as n < 3.

5 Gravitational waves from preheating

Since we are interested in the correlation of gravity-wave
energy density spectrum with current observations, We must
translate the previous GW spectrum into current physical
quantities. The present scale factor in comparison to the one
when GW production stops can be expressed as [3,15]

aend
a0

= aend
apre

(
apre
ath

)1− 3
4 (1+ω) (

ḡ∗
ḡ0

)−1/12 (
ρr,0

ρ∗

)1/4

.

(35)

Supposing that GW production stops at the end of pre-
heating, pre represents the time when GW production is
finished, “0” and “th” represent the present and the time
when thermal equilibrium is reached, respectively. While ρr,0
is the present radiation energy density and the total energy

density of the scalar field is represented by ρ∗. We define
ḡ∗/ḡ0 � 106.75/3.36 � 31. ω is the equation of state which
in the Ref. [23] it has been shown that ω reaches 1/3 just
after preheating, that means that

(
apre/ath

)1−3/4(1+ω) = 1
since ω = 1/3. From Eq. (35), the corresponding physical
frequency today is given by

f = k

2πa0
= k0

aendρ
1/4∗

×
(

4 × 1010Hz
)

, (36)

let us denote k0 = k/a0. Knowing that the abundance of
radiation today given as Ωr,0h2 = h2ρr,0/ρc,0, with h, is the
present dimensionless Hubble constant and Ωgw,0h2 ∝ 1/a4

0
[3]. Using Eq. (35) and Because GW decays like radiation
with cosmic expansion, one can calculate the present GW
spectra [15]

Ωgw,0h
2 = Ωgw( f )

aend
apre

(
ḡ∗
ḡ0

)−1/3

Ωr,0h
2. (37)

The number of e-folds between the end of inflation to the
time when preheating completed can be written as

aend
apre

= e−Npre, (38)

to obtain the final form of gravity-wave energy density spec-
trum, given as follows

Ωgw( f ) = Ωgw,0h2

Ωr,0h2

(
ḡ∗
ḡ0

)1/3

e4Npre. (39)

From Fig. 3 the variation of Ωgw as a function of Npre
for some fixed values of Ωgw,0h2 are presented, we plotted
the energy density spectrum Ωgw as a function of the pre-
heating duration Npre, taking the present GW spectra to be
3.36 × 10−7 ≤ Ωgw,0h2 ≤ 1.85 ×10−6, when Npre → 0
the GW energy density takes an initial value for all the cases
with different Ωgw,0h2. When we increase the present GW
spectra, the initial values that correspond to Ωgw(Npre = 0)

increases as well.
The variation of the GW density spectrum with respect

to the spectral index ns is shown in Fig. 4. Considering dif-
ferent values of the current GW spectra Ωgw,0h2, we plot
Ωgw considering the expansion of the universe from the end
of inflation up to later times of preheating, because of the
higher final temperature of reheating Tth > 1012GeV, the
duration Nth from Eq. (30) could be considered as instan-
taneous, which make preheating duration minimally depen-
dent on the (EoS) parameter ω as observed in Eq. (29). We
choose the most compatible case from the previous analysis
which favors the case n = 2 and consider the two values of
γ : 103, and 106. It’s easy to see that the density spectrum
curves with both values of γ are compatible with observa-
tions according to Planck’s results, the curves decrease away
from the observation bound when the GW energy density
became very negligible Ωgw → 0. For the case γ = 103,
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Fig. 2 The figure shows Npre the length of preheating, as a function of
ns choosing the values of γ to be γ = 103 and γ = 106 for power-law
potential with an inverse monomial coupling. Here, the vertical light

blue region represents Planck’s bounds on ns [2]. The black line corre-
sponds to n = 1, the red line corresponds to n = 2, and the blue line
corresponds to n = 3

Fig. 3 The variation of the
density spectra of GWs as a
function of Npre. For different
values of gravity wave energy
density Ωgw,0h2

with Ωgw ≥ 4 × 10−3 all the lines with different Ωgw,0h2

tends towards the value of spectral index ns = 0.966. How-
ever, the case where γ = 106 the curves converge to the
value ns = 0.968 when Ωgw ≥ 1.8 × 10−5.

6 Conclusion

After we review the basic equations that describe GB infla-
tion, we discuss the power-law model of inflation with inverse
monomial GB coupling. The expression of the observational
parameters ns, and r were calculated, we computed these
parameters as functions of inflation e-folds Nk for the power-
law potential with an inverse monomial model. We review the
basics of Primordial GWs, then the energy density carried by

these waves was calculated. We derived the preheating dura-
tion as functions of inflationary Gauss–Bonnet parameters
in Eq. (29), and consider the thermalization temperature as
Tth > 1012 GeV. We numerically estimated the preheating
parameters using our analytic results. Knowing that it’s inde-
pendent of the choice of the (EoS), the duration of preheating
is plotted as a function of the spectral index for the model
we considered previously, and showed that it’s sensitive to
the parameters γ and n. We finally calculated the gravity-
wave energy density spectrum as a function of the durations
Npre, which is a possible way to study GW density spectrum
according to recent Planck’s results. Assuming the density
parameter Ωgw,0h2 to be 3.36 × 10−7 ≤ Ωgw,0h2 ≤ 1.85
×10−6, we chose n = 2 and γ : 103, 106, and found
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Fig. 4 The variation of the density spectra of GWs as a function
of ns . For different values of gravity wave energy density Ωgw,0h2,
we choose 3.36 × 10−7 ≤ Ωgw,0h2 ≤ 1.85 ×10−6. The black
line corresponds to Ωgw,0h2 = 1.85 ×10−6, red line corresponds to

Ωgw,0h2 = 8.35 ×10−7, blue line corresponds to Ωgw,0h2 = 6.46
×10−7, green line corresponds to Ωgw,0h2 = 4.23 ×10−7, purple line
corresponds to Ωgw,0h2 = 3.36 ×10−7, and yellow line corresponds
to Ωgw,0h2 = 1.68 ×10−7

that both cases where γ = 103, 106 show good consistency
with observation. We conclude that the GB term appears to
be important not only during inflation but also during later
phases such as preheating, regardless of whether the process
is instant or takes a certain number of e-folds to complete,
once we determine the final temperature of thermalization
Tth , other preheating parameters are determined using a vari-
ety of inflation models. As a result, it would be interesting to
investigate the physics of preheating in the context of PGW.

Data Availability Statement This manuscript has no associated data
or the data will not be deposited. [Authors’ comment: Our results are
based on the observational parameters provided by the recent Planck’s
data which we choose to constrain our model of preheating in addition
to the GWs produced during this stage.]
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