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Abstract Models of physics beyond the Standard Model
often contain a large number of parameters. These form a
high-dimensional space that is computationally intractable
to fully explore. Experimental results project onto a sub-
space of parameters that are consistent with those obser-
vations, but mapping these constraints to the underlying
parameters is also typically intractable. Instead, physicists
often resort to scanning small subsets of the full parame-
ter space and testing for experimental consistency. We pro-
pose an alternative approach that uses generative models to
significantly improve the computational efficiency of sam-
pling high-dimensional parameter spaces. To demonstrate
this, we sample the constrained and phenomenological Mini-
mal Supersymmetric Standard Models subject to the require-
ment that the sampled points are consistent with the measured
Higgs boson mass. Our method achieves orders of magnitude
improvements in sampling efficiency compared to a brute
force search.

1 Introduction

Models of physics beyond the Standard Model often fea-
ture many new parameters that are unknown a priori and
may only be determined by experiment. However, experi-
mental constraints are not trivial to apply, as they often are
expressed in terms of weak scale observables rather than the
theory’s fundamental parameters. While it is often straight-
forward (if computationally expensive) to calculate the weak
scale observables from the parameters, the inverse problem
is typically intractable. That is, weak scale constraints do
not allow for a trivial reduction of the dimensionality of the
theory space.

The standard approach is to numerically scan over the
theoretical parameters and reject those that are not consis-
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tent with experimental data. However, the number of sam-
ples required for a brute-force search of the parameter space
increases exponentially with its dimension. Thus, particle
physicists studying models of new physics are often faced
with a computationally intractable task. One may pragmati-
cally restrict to a more tractable subset of parameters based
on theoretical prejudice. The danger of this approach is that
one may miss viable parameters that are both consistent with
experimental observations and generate novel phenomenol-
ogy.

The Minimal Supersymmetric Standard Model (MSSM)
is a well-known example of a new physics model with a
large number of free parameters. Most of these parameters
are the masses and couplings of the supersymmetric partners
of Standard Model particles [1]. This overwhelming dimen-
sionality prohibits a fully general survey of the parameter
space. Studies of the MSSM typically restrict to theoret-
ically motivated subspaces [2–13]. These include the 4+1
dimensional constrained MSSM (cMSSM) as well as the 19
dimensional phenomenological MSSM (pMSSM) [14,15].
However, even these reduced spaces are difficult to scan using
a brute-force search.

High dimensionality is not the only challenge when scan-
ning the parameters of the MSSM. The fundamental param-
eters of the theory are defined at some high energy scale
and must be evolved to the energy scale of the experiment.
This evolution requires one to solve the coupled (RGEs) for
the high-scale parameters over many orders of magnitude
to the weak scale. The computational cost of RGE running
and calculating experimental observables for a single set of
parameters is expensive.

Many recent scans have incorporated machine learning
in some capacity to decrease the computational burden of
brute-force searching these spaces [7,12,13]. These use var-
ious machine learning models to learn the forward prob-
lem of determining weak scale properties given high-scale
parameters. This bypasses the need to perform RGE run-
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ning and weak scale computations, however one is still faced
with the challenge of doing a brute-force search over a high-
dimensional parameter space. Machine learning models for
the forward problem are thus only a constant improvement in
computational time compared to the exponential dependence
on the dimension of the space.

In this work, we introduce two methods to efficiently sam-
ple high-dimensional parameter spaces subject to constraints
at the weak scale. We test these frameworks by sampling
regions of the cMSSM and pMSSM parameter spaces that
admit a Higgs mass consistent with its experimental value
[16,17]. The first uses a deep neural network to machine-
learn the likelihood of an event satisfying this constraint
and then samples this likelihood using Hamiltonian Monte
Carlo (HMC). The second trains a generative model known
as a normalizing flow. We analyze the performance of these
frameworks by determining the fraction of generated sam-
ples that survive the chosen constraint and compare to the
performance of random sampling.

These methods allow us to directly and quickly generate
points in the parameter space that admit a consistent Higgs
mass. By solving the inverse problem of sampling high-scale
parameters given weak scale properties, we aim to minimize
inefficiencies that arise in a brute-force search.

Our presentation is a proof of concept for these genera-
tive models and is encouraging for practical applications. For
example, the ability to efficiently scan the MSSM parame-
ter space makes it much easier to determine the high-scale
parameters that are consistent with a new particle’s mass and
width if a sparticle is discovered. Alternatively, a trained gen-
erative model may permit scans over parameters that are con-
sistent with experimental observations to search for specific
theoretical features that one may wish to study, for example:
gauge coupling unification, a particular type of dark matter
particle, or low fine-tuning measures.

As a demonstration of the efficiency of the generative
models, we scan the cMSSM and pMSSM parameter spaces
for points that produce the Higgs mass and that saturate the
observed dark matter relic density, requiring [18,19]

122 GeV < mh < 128 GeV,

0.08 < ΩDMh2 < 0.14.

In this study, the generative models have been trained for
consistency with the Higgs mass, not the relic density. We
compare a brute-force scan using random sampling to a gen-
erative model that has been trained to sample points that
admit a consistent Higgs mass. We show that the generative
models dramatically increase the sampling efficiency of this
scan.

Table 1 Parameter bounds in the cMSSM scan, following Ref. [2]. A
uniform prior is used for all parameters except A0, where we uniformly
sample A0/m0

Parameter Domain Description

m0 [0, 10] TeV Universal scalar mass

m1/2 [0, 10] TeV Universal gaugino mass

A0 [−6m0, 6m0] TeV Universal trilinear coupling

tan β [1.5, 50] Ratio of Higgs VEVs

2 Methods

2.1 Data generation

The cMSSM contains 4 continuous parameters defined at
the Grand Unified Theory (GUT) scale and 1 discrete sign
parameter. These are the universal scalar mass m0, the uni-
versal gaugino mass M1/2, universal trilinear coupling A0,
the ratio of Higgs vacuum expectation values tan β, and the
sign of μ. The pMSSM is the most general subspace of the
MSSM that admits first and second generation universality,
no new sources of CP violation, and no flavor changing neu-
tral currents [15]. Parameters of the pMSSM are defined at
the electroweak (EW) scale. The full list parameters of the
pMSSM are listed as part of Table 2.

Our datasets are formed by uniform random sampling
within bounded regions of the parameter space: cMSSM
parameters are sampled at the GUT scale and pMSSM param-
eters are sampled at the EW scale. Bounds are listed for the
cMSSM and the pMSSM in Tables 1 and 2, respectively
[2,9], and are chosen to cover large volumes of the param-
eter space that are sensitive to modern collider experiments.
For the cMSSM, we fix sign(μ) = 1. We sample approx-
imately 1.5 × 106 datapoints in the cMSSM and approxi-
mately 1.95 × 107 datapoints in the pMSSM. Once sam-
pled, we calculate Higgs masses and relic densities with
micrOMEGAs, which internally uses the spectrum generator
SoftSUSYv4.1.0 [20,21].

We apply two theoretical constraints: (i) consistent elec-
troweak symmetry breaking and (ii) the positivity of all
squared masses. In addition to these, we also require that
SoftSUSY converges. We do not require that the lightest
supersymmetric particle is neutral.

The theoretical uncertainty in the Higgs mass is signif-
icantly larger than its experimental uncertainty [22]. We
take the uncertainty in the Higgs mass calculations to be
σmh = 3 GeV for all points in the data set [2,9].
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Table 2 Parameter bounds in the pMSSM scan, following Ref. [9].
A uniform prior is used for all parameters. “Left-handed” and “right-
handed” are abbreviated by l.h. and r.h., respectively

Parameter Domain Description

|M1| [.05, 4] TeV Bino mass

|M2| [.1, 4] TeV Wino mass

M3 [.4, 4] TeV Gluino mass

|μ| [.1, 4] TeV Bilinear Higgs mass

|At | [0, 4] TeV Trilinear top coupling

|Ab| [0, 4] TeV Trilinear bottom coupling

|Aτ | [0, 4] TeV Trilinear τ coupling

MA [.1, 4] TeV Pseudo-scalar Higgs mass

mL̃1
[.1, 4] TeV 1st gen. l.h. slepton mass

mẽ1 [.1, 4] TeV 1st gen. r.h. slepton mass

mL̃3
[.1, 4] TeV 3rd gen. l.h. slepton mass

mẽ3 [.1, 4] TeV 3rd gen. r.h. slepton mass

mQ̃1
[.4, 4] TeV 1st gen. l.h. squark mass

mũ1 [.4, 4] TeV 1st gen. r.h. u-type squark mass

md̃1
[.4, 4] TeV 1st gen. r.h. d-type squark mass

mQ̃3
[.2, 4] TeV 3rd gen. l.h. squark mass

mũ3 [.2, 4] TeV 3rd gen. r.h. u-type squark mass

md̃3
[.2, 4] TeV 3rd gen. r.h. d-type squark mass

tan β [1, 60] Ratio of Higgs VEVs

2.2 Neural network

We train the neural network by assigning all points in the
dataset a likelihood

L(θ) =
{

1 |mh(θ) − mh,exp| < σmh ,

0 otherwise,
(1)

where we ignore a normalization constant. All data points
that fail the theoretical constraints are assigned a likelihood
of zero.

We use a deep neural network to learn the function L(θ)

[23]. This has two benefits. First, it greatly reduces the time
required to evaluate the likelihood of a point. Second, it pro-
vides a differentiable interpolation of L(θ). In the next sec-
tion we show that HMC requires many evaluations of the
likelihood and its gradients. It thus utilizes the full potential
of these benefits.

We train a deep neural network L̂(θ) to minimize the usual
L2 loss function

L = |L̂(θ) − L(θ)|2. (2)

We use a training, validation, and testing split of 0.7,
0.15, and 0.15 respectively for both datasets. Batch norm
and dropout layers are used in between each hidden layer of

the neural network. Backpropogation is performed using the
ADAM optimizer [24].

Some of the pMSSM parameters in Table 2 span a discon-
nected range of positive and negative values, for example M1,
M2 and μ. We preprocess these parameters by shifting nega-
tive values to create a single continuous domain; for example,
for μ we shift the negative values by 200 GeV. This has no
physical significance and simply prepares the data for input
into the neural network. We then standardize each feature.
For the cMSSM dataset, we use the feature A0/m0 in place
of A0, as this feature is uniformly distributed.

2.3 Hamiltonian Monte Carlo

The Hamiltonian Monte Carlo method is a Markov chain
Monte Carlo technique that uses an analog of energy conser-
vation to effectively sample the target distribution [25,26].
To use the method, we first define an auxiliary momentum
variable p, where each component is initially drawn from a
normal distribution. Next, we define a potential energy func-
tion given by

V (θ) = − log(L̂(θ)). (3)

The kinetic energy function takes the familiar form T =
p2/2 where we set the mass to unity, m = 1. We then evolve
the system from time t = 0 to t = τ according to the Hamil-
tonian equations of motion

dθi

dt
= pi ,

dpi
dt

= ∇ L̂(θ)

L̂(θ)
. (4)

We solve these equations using the leap-frog algorithm so
that energy is approximately conserved. We take θ(τ ) as a
proposal to add to the Markov chain. The proposal is accepted
with probability

P = min

(
1,

e−H(θ(τ ),p(τ ))

e−H(θ(0),p(0))

)
. (5)

Energy conservation implies that a solution to the the equa-
tions of motion should always yield probability 1. However,
a rejection step is necessary because we solve these equa-
tions numerically. If θ(τ ) is rejected, then θ(0) is added to
the Markov chain instead. In the limit of an infinite num-
ber of samples, the Markov chain converges to a sample of
the distribution L̂(θ). We seed the Markov chain with a ran-
dom positive sample from the dataset used to train the neural
network. We bound the parameter space with hard walls of
infinite potential energy.
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2.4 Normalizing flows

It is difficult to draw samples from a complicated distribution
in a high-dimensional parameter space. On the other hand,
it is easy to draw samples from an equally high-dimensional
Gaussian distribution. Normalizing flows is a technique that
learns an invertible map f from a simple distribution pZ
to a challenging distribution pY . One then creates a set of
samples from the challenging distribution by mapping easy-
to-generate samples:

pY (y) = pZ ( f −1(y))

∣∣∣∣det

(
∂ f

∂y

)∣∣∣∣
−1

. (6)

The function f depends on a set of parameters Θ which are
learned by maximizing the log likelihood of a training set,
X . The loss function for this training is thus

L(X ) = −
∑
y∈X

(
log

(
pZ ( f −1(y))

)
− log

∣∣∣∣det

(
∂ f

∂y

)∣∣∣∣
)

.

It is helpful to construct f to be the composition of n suc-
cessive maps, f = fn ◦ · · · ◦ f1 [23]. Defining zi+1 = fi (zi )
and identifying y = zn+1 yields the loss function

L(X ) = −
∑
y∈X

(
log (pZ (z1)) −

n∑
i=1

log

∣∣∣∣det

(
∂zi+1

∂zi

)∣∣∣∣
)

.

We choose the fi to be autoregressive transformations. This
means that the parameters Θk

i that define the function fi
acting on the kth feature zki depends only on the first (k − 1)

features z1
i , . . . , z

k−1
i :

zki+1 = fi
(
zki ; Θk

i (z1:k−1
i )

)
.

This structure ensures that the Jacobian matrix ∂zi+1/∂zi
is lower triangular so that the determinant is simply the prod-
uct of diagonal elements and may be computed in linear time.

The function Θk
i

(
z1:k−1
i

)
can be represented efficiently

with a Masked Autoencoder for Distribution Estimation
(MADE) [27]. MADE networks turn off specific internal
weights of the neural network so that the autoregressive prop-
erty is enforced, allowing one neural network to output all
model parameters rather than performing a sequential loop
over features.

For our application, we choose fi to be rational-quadratic
neural spline flows with autoregressive layers [28]. These are
piece-wise monotonic functions defined as the ratio of two
quadratic functions on the interval [−B, B], with K+1 knots
determining the boundaries between bins. Outside of this
interval, the transformation is defined to be the identity. These
transformations are parameterized by 3K −1 parameters for

each feature, which are K bin heights, K bin widths, and
K−1 positive derivative values at the knots, as the derivatives
are set to 1 at −B and B to ensure a continuous derivative
over the domain. Permutation layers are included between
rational-quadratic transformation layers. We implement the
normalizing flow using the Python package nflows [28].

3 Results

We analyze the performance of these generative frameworks
on the cMSSM and pMSSM datasets described above. The
cMSSM is low dimensional and can be scanned relatively
well with brute-force search. Thus, we view the cMSSM as
a test for the generation methods and the pMSSM as a more
practical application. We present the results for the neural
network with HMC as well as the normalizing flow side by
side. For each method, we generate a dataset of 4 × 105

datapoints.
We present histograms of generated variables to confirm

that the distribution of theory parameters is not biased by our
generative framework. We also present histograms of mh to
ensure that our generative models sample within the band
of permitted Higgs masses and ΩDMh2 to provide evidence
that the distribution of weak scale quantities match, as these
are sensitive to higher order correlations in high energy scale
parameters. Finally, we report sampling efficiencies, which
are defined as the fraction of the dataset that satisfy a con-
straint. The hyperparameters used for the supervised neural
network, Hamiltonian Monte Carlo, and normalizing flow
are given in the Appendix for both datasets.

3.1 cMSSM

In Fig. 1, we compare histograms of the cMSSM parameters
at the GUT scale. For both generative models, we see very
good agreement between the distribution of generated sam-
ples and the distribution of randomly sampled points after the
Higgs mass constraint is applied. Next, we run the parameters
to the weak scale in order to perform the combined search
for ΩDMh2 and mh . In Fig. 2, we show the distribution of
Higgs masses for generated points and randomly sampled
points with a rejection step applied. We see that the gener-
ative models typically sample within the band of permitted
Higgs masses.

As an example application, we show histograms of the
dark matter relic density for these datasets in Fig. 3. We
see that the distribution over dark matter relic densities from
the generative models appear to accurately reflect the same
distribution in the dataset after the Higgs mass constraint is
applied. We emphasize that because the RGEs are coupled,
weak-scale quantities are generally sensitive to higher-order
correlations of the GUT scale parameters, and so matching
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Fig. 1 Histograms of cMSSM
parameters that yield the
experimental Higgs mass. We
observe good agreement
between the random sampling,
HMC, and the flow model.
Black: Data obtained through
random sampling with a uniform
prior and rejecting points that do
not have a consistent Higgs
mass. Magenta: data sampled
with HMC. Blue: data sampled
from the flow model. No
rejection step is applied to
generated samples

Fig. 2 Histogram of Higgs masses in the cMSSM for different sam-
pling methods. The generative models are seen to mostly sample points
consistent with the Higgs mass constraint. Gray: data obtained through
random sampling with a uniform prior. Black: the same randomly sam-
pled data, but points that do not have a consistent Higgs mass are
rejected. Magenta: data sampled with HMC. Blue: data sampled with
the normalizing flow

Fig. 3 Histogram of dark matter thermal relic densities in the cMSSM
for different sampling methods. We observe that the distributions of the
generative models match the distribution of random sampling, provid-
ing evidence that the generative models are able to match higher order
correlations in GUT scale parameters. Gray: data obtained through ran-
dom sampling with a uniform prior. Black: the same randomly sampled
data, but points that do not have a consistent Higgs mass are rejected.
Magenta: data sampled with HMC. Blue: data sampled with the nor-
malizing flow. Generative models have been trained to satisfy the Higgs
mass constraint

Table 3 Comparison of sampling efficiency in the cMSSM for several
methods and several levels of constraints. We compare a brute force
random scan (random), Hamiltonian MC of a neural network trained to
learn the mh constraint (HMCmh ), and normalizing flows that incorpo-
rate the mh constraint (NFmh ). The constraints applied are theoretical
consistency checks (see text), consistency with the experimental Higgs
mass and consistency with the Higgs mass and the dark matter relic
density (ΩDMh2)

Sampling method

Constraint Random HMCmh NFmh

Theory 0.595 0.859 0.879

Theory ∩ mh 0.0389 0.723 0.796

Theory ∩ mh ∩ ΩDMh2 0.000222 0.00271 0.00456

weak-scale distributions is evidence of matching higher order
correlations in the GUT scale parameters. This indicates that
the mh-constrained subspace has been accurately sampled,
allowing for an exploration of additional constraints, such as
relic density.

In Table 3, we compare various statistical properties of
random sampling to those of our generative frameworks
trained to satisfy the Higgs mass constraint. The first row
shows the sampling efficiency with respect to the theoreti-
cal constraints mentioned in Sect. 2.1. We see that samples
from the generative models are more likely to pass these
constraints, as points with a consistent Higgs mass necessar-
ily satisfy the theoretical constraints. The second row shows
the sampling efficiency with respect to the Higgs mass con-
straint. Predictably, the generative models have significantly
higher sampling efficiencies than random sampling. We also
see that the flow model slightly outperforms the HMC sam-
pling method.

The third row shows the sampling efficiencies with respect
to the combined Higgs mass and relic density constraint,
where the generative models are still trained to only sat-
isfy the Higgs mass constraint. This simulates a scenario
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Fig. 4 Histograms of pMSSM parameters that yield the experimental
Higgs mass. We observe good agreement between random sampling,
HMC, and the flow model. Black: Data obtained through random sam-

pling with a uniform prior and rejecting points that do not have a consis-
tent Higgs mass. Magenta: data sampled with HMC. Blue: data sampled
from the flow model. No rejection step is applied to generated samples

where one would like to study the effect of imposing a new
constraint in addition to the constraints that are explicitly
trained on. Once again, we see that the generative models
have much higher sampling efficiencies, resulting from the
high probability that the samples pass the Higgs mass con-
straint. We see an increase in sampling efficiency of approx-
imately an order of magnitude for both generative frame-
works.

3.2 pMSSM

Differences between the generative models appear in the
higher-dimensional pMSSM. In Fig. 4, we compare his-
tograms of parameters sampled using brute-force search,
HMC and the normalizing flow model. Despite the increased
dimensionality, we find very good agreement in the distribu-
tions of all parameters.

Figures 5 and 6 present histograms of mh and ΩDMh2 for
the pMSSM. The generative models tend to sample in the
band of allowed Higgs masses, with the normalizing flow
model matching the brute-force scan well. We see general
agreement with the true distribution of dark matter abun-
dances for both generative frameworks, though the HMC
samples do not match the brute-force distributions as well as
those from the flow model.

Fig. 5 Histogram of Higgs masses in the pMSSM. The generative
models are seen to mostly sample points consistent with the Higgs mass
constraint. Gray: data obtained through random sampling with a uni-
form prior. Black: the same randomly sampled data, but points that do
not have a consistent Higgs mass are rejected. Magenta: data sampled
with HMC. Blue: data sampled with the normalizing flow

Table 4 summarizes the performance of our sampling
methods in the pMSSM. See Sect. 3.1 for a detailed descrip-
tion of the quantities presented in the table. We find that
generative models greatly increase the sampling efficiency
relative to a brute-force search. In fact, the improvement in
sampling efficiency is much greater than that seen in the
cMSSM. This is largely due to the poorer performance of a
brute-force search in the higher-dimensional pMSSM.
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Fig. 6 Histogram of dark matter thermal relic densities in the pMSSM.
We observe that the distributions of the generative models match the
distribution of random sampling, providing evidence that the genera-
tive models are able to match higher order correlations in EW scale
parameters. Gray: data obtained through random sampling with a uni-
form prior. Black: the same randomly sampled data, but points that do
not have a consistent Higgs mass are rejected. Magenta: data sampled
with HMC. Blue: data sampled with the normalizing flow. Generative
models have been trained to satisfy the Higgs mass constraint

Table 4 Comparison of sampling efficiency in the pMSSM for sev-
eral methods and several levels of constraints. Methods compared are
brute force random scan, Hamiltonian MC of a neural network trained
to learn the mh constraint (HMCmh ), and normalizing flows that incor-
porate the mh constraint (NFmh ). Constraints applied are theoretical
consistency checks (see text), consistency with the experimental Higgs
mass and consistency with the Higgs mass and the dark matter relic
density (ΩDMh2)

Sampling method

Constraint Random HMCmh NFmh

Theory 0.479 0.810 0.866

Theory ∩ mh 0.0189 0.709 0.776

Theory ∩ mh ∩ ΩDMh2 0.00165 0.0591 0.0685

4 Conclusion

We implement two generative frameworks that utilize
machine learning in order to increase the sampling efficiency
of searches in supersymmetric parameter spaces. These sam-
pling methods offer a more efficient way to search the high-
dimensional parameter spaces in models of new particle
physics. We compare these generative frameworks to the cur-
rently used method of a brute-force search, and have seen
orders of magnitude of improvement in the sampling effi-
ciency for both parameter spaces considered here. We show
that our generative frameworks are able to sample the under-
lying data distribution without any evidence of bias or mode
collapse.

In the cMSSM, both methods significantly outperformed
random sampling, with the flow model slightly outperform-
ing HMC. In the pMSSM the flow model significantly outper-
forms HMC. This is likely due to the larger dimensionality
of the pMSSM. In addition to performance benefits, the flow

model is also quicker to train and sample, making it clearly
favorable to HMC. However, the HMC framework is more
complementary to previous works, as it learns the forward
problem of determining likelihoods and uses tested Monte
Carlo algorithms to sample this likelihood.

Possibilities for future work include incorporating addi-
tional constraints into the generative model. In theory, there is
no limit to the number of constraints that can be included into
either generative model. However, forming an initial dataset
for learning may be difficult when the constraints are very
strict. A possible remedy is to train generative models with
less restrictive constraints which are then used to produce siz-
able datasets of points that already satisfy many constraints.
This new dataset could then be searched to form a training
set for a generative model with increasingly restrictive con-
straints.

Given the ability of the generative machine learning mod-
els to efficiently explore high-dimensional parameter spaces,
it will be interesting to apply the techniques described here
to other problems. For instance, one may identify relations
that explain why there is a ‘little hierarchy’ between the
electroweak scale and the scale of soft parameters, which
go beyond the focus point scenario [29]. In general, one
may be able to identify manifolds of viable points in high-
dimensional parameter sets, and explore their geometry.

We have shown promising results in subspaces of the
MSSM parameter space. These results apply generally to
any high-dimensional parameter space with constraints that
are computationally expensive to verify. Another direc-
tion for future study may be applications to the parameter
spaces of even higher-dimensional models of new physics.
This includes potentially relaxing constraints built into the
pMSSM parameter space, but could also include applica-
tions to non-supersymmetry (SUSY) theories. Finally, one
could attempt to further tune the neural network structure
and hyperparameters in order to achieve higher sample effi-
ciency than was achieved in this work.
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Appendix A

We present the hyperparameters for our machine learning
models in Table 5.

Table 5 Hyperparameters used for the machine learning models for to
the cMSSM and pMSSM datasets

Parameter cMSSM pMSSM

Supervised NN Learning rate 0.001 0.0001245

Hidden layers 5 10

Nodes per layer 49 154

Dropout 0.5 0.0

Activation function Sigmoid Sigmoid

Optimizer ADAM ADAM

Batch size 128 128

Epochs 50 50

HMC Step size 0.025 0.008

Number of steps 12 12

Mass 1.0 1.0

Chain length 5000 5000

Burn-in steps 1000 1000

Number of chains 100 100

NF Num transforms 3 3

Batch size 1024 1024

Epochs 300 300

B 2.0 2.0

NN hidden features 64 64
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