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Abstract We study final states in the scattering of kinks and
antikinks of the ϕ8 field-theoretic model. We use the initial
conditions in the form of two, three or four static or moving
kinks. In the numerical experiments we observe a number of
different processes such as emergence of static and moving
oscillons, change of the kink’s topological sector, scattering
of an oscillon by a kink, production of kink–antikink pairs in
oscillon–oscillon collisions. In antikink–kink collisions for
asymmetric kinks, we found resonance phenomena – escape
windows.

1 Introduction

Many physical systems are described in terms of field-
theoretic models with a real scalar field, the dynamics of
which is determined by nonlinear partial differential equa-
tions [1–3]. Among the field configurations that satisfy the
equations of motion, topologically nontrivial objects, includ-
ing the so-called kinks (see, e.g., [2, Ch. 5] and [3]), are of
particular importance. The study of the properties of kink
solutions is of great interest for various physical applications.

This paper is devoted to the study of new phenomena in
the scattering of kinks of the ϕ8 model. The history of the
numerical study of interactions of kink solutions of nonlinear
partial differential equations goes back more than half a cen-
tury. Nevertheless, in recent years, the number of new results
in this area has not decreased; see, e.g., [4–6] for review.

The ϕ8 model is one of the widely used models with poly-
nomial self-interaction (potential) of a scalar field. In con-
nection with applications, several different modifications of
this model are considered [7–11]. Depending on a specific
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form of the potential, the model exhibits different properties.
In particular, the model can have different sets of topologi-
cal sectors, different asymptotic behavior of kink solutions
(exponential or power-law), as well as vibrational mode(s)
can be present or absent in the kink’s excitation spectrum.
Thus, the ϕ8 model, on the one hand, is not too complicated,
and on the other hand, the variety of topological solitons
generated by it is pretty significant.

As already mentioned, the ϕ8 model can have kink solu-
tions with one or both power-law tails; for more details, see,
e.g., [10, Sec. II.A]. Such kinks have interesting features in
comparison with their long-studied counterparts, which have
exponential asymptotics. In particular, the forces of kink-
kink and kink–antikink interactions decrease with distance
much more slowly [12–17]. Note that the numerical treat-
ment of kinks with power-law asymptotics is much more
complicated and requires the use of various methods to sup-
press unwanted effects from overlapping power-law tails [10,
Sec. III], [18, Sec. 2 and 3].

Interestingly, the variety of asymptotic behaviors of kinks
is not limited to exponential and power-law ones. In some
models, kink solutions have super-exponential [19,20] and
power-tower [21] asymptotics. In addition, it is possible to
construct so-called compact kinks that have no tails at all,
i.e., have a compact support, see, e.g., [22,23] and references
therein.

Returning to the scattering of kinks in (1 + 1)-dimensional
field-theoretic models, we mention the formation of oscillons
– moving or static oscillating structures localized in space,
which also can form bound states. Escaping oscillons, as well
as bound states of oscillons, have been observed, e.g., in the
sinh-deformed ϕ4 and the double sine-Gordon models [24–
27]. Formation of oscillons in kink–antikink collisions was
also found in hyperbolic models [28] and in a parametrized
ϕ4 model [29]. In [30] a relation between the oscillational
normal modes and the oscillon configurations was demon-
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strated. Production of a kink–antikink pair in the collision of
wave trains was observed in [31]. Interestingly, the oscillon
played the role of an intermediate state in this process. Kink-
antikink pair creation, as a result of the excitation of the vibra-
tional mode of the ϕ4 kink, was observed in [32]. Production
of antikink–kink pairs and solitary oscillating structures was
also found in the double sine-Gordon model [27].

This paper focuses on studying various processes in colli-
sions of two or more kinks of the ϕ8 model. First, the transi-
tion of a kink from one topological sector to another, i.e., the
annihilation of a kink belonging to one topological sector and
creation of a new kink in another topological sector. Second,
the formation of static or moving oscillons. Third, the pro-
duction of kink–antikink pairs resulting from the collision of
oscillons, which, in turn, are the product of the annihilation
of the first generation of kinks and antikinks.

The paper is organized as follows. In Sect. 2, we intro-
duce the model, describe notations, and give some necessary
comments on the numerical methods and initial conditions.
Sections 3 and 4 present our main results. Most of the results
are visualized in figures and summarized in three tables for
the reader’s convenience. Finally, we conclude in Sect. 5.

2 Model and method

In its most general form, the potential of the ϕ8 model is an
eighth-degree polynomial with several degenerate minima
(for convenience, we assume that the value of the potential at
the minimum points is zero). As mentioned in the Introduc-
tion, some kinds of the ϕ8 model have already been studied
in the literature. In this paper, we consider a particular case
described by the Lagrangian

L = 1

2
ϕ2
t − 1

2
ϕ2
x − V (ϕ) (1)

with the potential term

V (ϕ) = 8

9

(
ϕ2 − 1

)2
(

ϕ2 − 1

4

)2

, (2)

see Fig. 1a. Such a choice of potential means that there are
four vacua, ϕ = ±1 and ϕ = ± 1

2 , at which the potential van-
ishes. Thus, the model allows the existence of kink solutions
in three topological sectors: (−1,− 1

2 ), (− 1
2 , 1

2 ), and ( 1
2 , 1).

The Lagrangian (1) yields the equation of motion – partial
differential equation

ϕt t − ϕxx + V ′(ϕ) = 0. (3)

The energy functional for the Lagrangian (1) is

E[ϕ] =
+∞∫

−∞

[
1

2
ϕ2
t + 1

2
ϕ2
x + V (ϕ)

]
dx . (4)

In the static case, the equation of motion (3) can be reduced
to the first-order ordinary differential equation

ϕx = ±√
2V (ϕ). (5)

There are two kink solutions of Eq. (5) in each topological
sector: one is the strictly monotonic increasing function of x ,
called kink, and the other is the strictly monotonic decreas-
ing function of x , called antikink. All three kinks and three
antikinks of the model can be described by a single formula:

ϕ(x) = cos

(
1

3
arccos(tanh x) + π

3
l

)
, (6)

where the parameter l takes any six consecutive integer val-
ues, at which all six topological solitons of the model are
obtained. For example, at l = 0, 1, and 2, Eq. (6) gives kinks
in the sectors ( 1

2 , 1), (− 1
2 , 1

2 ), and (−1,− 1
2 ), respectively;

while at l = 3, 4, and 5, Eq. (6) gives antikinks in the sectors
(− 1

2 ,−1), ( 1
2 ,− 1

2 ), and (1, 1
2 ), respectively; see Fig. 1b.

The energy of the static kink can be found by substituting
Eq. (6) into Eq. (4), which is called kink’smass. Masses of the
kink and antikink in a given topological sector are obviously
the same. (Note that it is easy to show that the kink masses
in all topological sectors can also be found without finding
the kinks themselves, see, e.g., [11, Sec. II].)

In the case of the potential (2), there are two different types
of kink solutions: symmetric kinks in the sector (− 1

2 , 1
2 ) and

asymmetric kinks in the sectors (−1,− 1
2 ) and ( 1

2 , 1). Their
masses are the following:

MK = 19

90
and Mk = 11

180
, (7)

for symmetric and asymmetric kinks, respectively. Note that
the symmetric kink is about 3.5 times heavier than the asym-
metric one. At the same time, we found that in the excitation
spectra of both kinks, there is only the zero (translational)
mode and no vibrational modes. (For details of the kink’s
excitation spectrum search, see, e.g., [11, Sec. IV].)

Let us also agree on the notation used further in the text.
We will symbolically denote the symmetric kinks by a cap-
ital “K” and the asymmetric ones by a lowercase “k” (this
notation was already used in Eq. (7)). In addition, in the final
states of kink collisions, we will encounter objects that can
be classified as bion (will be denoted by “b”) – a bound state
of a kink and an antikink, and oscillon (will be denoted by
“o”) – a localized formation oscillating about the vacuum
with a small amplitude. The smallness of the amplitude of
field oscillations near the vacuum value means that the ampli-
tude is significantly less than the distance to the neighboring
vacuum. In this sense, oscillon differs from a bion, in which
the field oscillates with an amplitude close to the distance
to the neighboring vacuum of the model. Besides that, in
most cases in the final state, there is radiation in the form
of small-amplitude waves, which carries away energy from
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Fig. 1 a The potential (2) of
the ϕ8 model. b Kinks (6) of the
ϕ8 model

(a) (b)

the collision region. We will also use the term type of con-
figuration in the following sense. For example, in the case of
collision of the kink and antikink belonging to the topological
sector (− 1

2 , 1
2 ), in the initial state, we have a configuration,

which we will call a configuration of the type (− 1
2 , 1

2 ,− 1
2 ),

and so on in the same spirit.
We performed the numerical simulation of scattering of

two, three, and four solitary waves (kinks and antikinks) in
different topological sectors. The equation of motion (3) was
solved numerically using discretization of the fourth order
in space and the Störmer method of integration with respect
to time, with the spatial and temporal steps being equal to
0.025 and 0.005, respectively.

The initial conditions in all cases were constructed in the
form of two, three, or four kinks (antikinks) ϕsi

located at the
points Xi and moving with the velocities vi :

ϕ(x, t) =
n∑

i=1

ϕsi

⎛
⎝ x − Xi − vi t√

1 − v2
i

⎞
⎠ + Cn, (8)

with n = 2, 3, and 4 in collisions of two, three, and four
solitons, respectively. The subscript si stands for the topo-
logical sector of the i-th kink/antikink, and can take “values”
(−1,− 1

2 ), (− 1
2 ,−1), (− 1

2 , 1
2 ), ( 1

2 ,− 1
2 ), ( 1

2 , 1), or (1, 1
2 ).

The constants Cn in Eq. (8) are chosen so that at x → ±∞
and in between the kinks the field tends to the vacuum values.

3 Results: zoo of the final states in the collisions of kinks

3.1 Two kinks

We have performed numerical simulations of the following
two-kink processes.

1. Collision of symmetric kink and antikink belonging to
the topological sector (− 1

2 , 1
2 ). We used the initial con-

figuration of the type (− 1
2 , 1

2 ,− 1
2 ), given by Eq. (8)

with n = 2, s1 = (− 1
2 , 1

2 ), s2 = ( 1
2 ,− 1

2 ), C2 = − 1
2 ,

−X1 = X2 = 10, v1 = −v2 = 0.1. The picture of the

collision is shown in Fig. 2a. The kink and the antikink
collide at the origin, annihilate each other and, forming
two oscillons escaping from the collision point at high
velocities vo1,2

= ±0.67. Hence, the observed reaction

could be symbolically written as K + K̄ → o + o. The
masses of the produced oscillons are found to be about
mo = 0.193. In addition, part of the energy is emitted in
the form of small-amplitude waves.

2. Collision of asymmetric kink and antikink belonging to
the topological sector ( 1

2 , 1). We used the initial configu-
ration of the type ( 1

2 , 1, 1
2 ), given by Eq. (8) with n = 2,

s1 = ( 1
2 , 1), s2 = (1, 1

2 ), C2 = −1, −X1 = X2 = 10,
v1 = −v2 = 0.1. In this case, the initial velocities of
the kinks are less than the critical value vcr ≈ 0.88,
therefore, the kink and antikink become trapped and their
bound state (bion) is formed; see Fig. 2b. In this case, the
observed reaction is k + k̄ → b.

3. Collision of asymmetric antikink and kink belonging to
the topological sector ( 1

2 , 1). We used the initial configu-
ration of the type (1, 1

2 , 1), given by Eq. (8) with n = 2,
s1 = (1, 1

2 ), s2 = ( 1
2 , 1), C2 = − 1

2 , −X1 = X2 = 10,
v1 = −v2 = 0.1. The initial velocities are now higher
than vcr ≈ 0.07777, therefore, the antikink and kink col-
lide once and escape to spatial infinities; see Fig. 2c.
The final velocities of the kinks are −v1f = v2f =
0.064. Hence, in this case we observe inelastic scattering
k̄ + k → k̄ + k.

4. Collision of asymmetric kink (−1,− 1
2 ) and symmetric

kink (− 1
2 , 1

2 ).
First, we used the initial configuration of the type
(−1,− 1

2 , 1
2 ), given by Eq. (8) with n = 2, s1 =

(−1,− 1
2 ), s2 = (− 1

2 , 1
2 ), C2 = 1

2 , X1 = −20, X2 = 0,
v1 = 0.1, v2 = 0. This means that the light asymmetric
kink approaches the heavy symmetric kink, which is ini-
tially at rest at the origin, see Fig. 2d. The final velocity of
the light kink after the collision is v1f = −0.055, while
the heavy kink has been scattered with the final velocity
v2f = 0.045.
Second, we modified the initial conditions such that the
heavy symmetric kink had the initial velocity v2 = −0.1
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Fig. 2 Space-time plots of two-kink collisions

and position X2 = 20, while the light asymmetric kink
was initially at rest at the origin.
The final velocities of the light and heavy kinks are v1f =
−0.154 and v2f = −0.055, respectively.
It seems that no radiation of energy in the form of small-
amplitude waves is observed for the two above scenarios.
Therefore, we can say that we observe elastic scattering
k + K → k + K in this case.

For the convenience of the reader, we summarize the above
information in Table 1.

Here we have shown only examples of typical two-kink
processes. A more detailed analysis of kink–antikink and
antikink–kink collisions in all topological sectors will be car-
ried out below in Sect. 4.

3.2 Three kinks

We have performed numerical simulations of the following
three-kink processes.

1. First of all, we studied the collision of two kinks and one
antikink belonging to the topological sector (− 1

2 , 1
2 ), i.e.

the kink–antikink–kink collision. For this purpose, we
used the initial configuration of the type (− 1

2 , 1
2 ,− 1

2 , 1
2 ).

At t = 0, the antikink was at rest at the origin, and two
kinks were moving towards it with initial velocities 0.1
from the points x = ±20, see Fig. 3a. This corresponds
to the initial configuration (8) with n = 3, s1 = s3 =
(− 1

2 , 1
2 ), s2 = ( 1

2 ,− 1
2 ), C3 = 0, −X1 = X3 = 20,

X2 = 0, v1 = −v3 = 0.1, v2 = 0. All three solitary
waves collide at the origin, forming an oscillating bound
state for some time. This bound state looks like a bion
formed by a kink and an antikink. At the same time, the
kink, which started from the point X3 = 20, keeps its
identity. The situation looks as if this kink was attracted to
the bion, collided with it, bounced, then attracted again,
and so on. Such oscillations occur several times. After
that, the kink (− 1

2 , 1
2 ) escapes back in the direction of

increasing x . Simultaneously, an exciting transformation
occurs with the bion: a pair of a kink and an antikink,
belonging to the topological sector (−1,− 1

2 ) is formed
in its place. These kinks, in turn, escape from each other
at low relative velocity. Moreover, their center of mass
moves with high speed in the direction of decreasing x .
The above evolution can be clearly observed in Fig. 3a.
It is noteworthy that the initial configuration in Fig. 3a
has odd symmetry (is antisymmetric), while further evo-
lution does not respect this symmetry. At the same time,
the antisymmetry should be preserved by the evolution.
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Table 1 Summary of processes observed in the collisions of two kinks/antikinks

Type “Reaction” Initial velocities Final velocities Figure

(− 1
2 , 1

2 ,− 1
2 ) K K̄ → oo v1 = −v2 = 0.1 vo1,2

= ±0.67 2a

( 1
2 , 1, 1

2 ) kk̄ → b v1 = −v2 = 0.1 vb = 0 2b

(1, 1
2 , 1) k̄k → k̄k v1 = −v2 = 0.1 −v1f = v2f = 0.064 2c

(−1,− 1
2 , 1

2 ) kK → kK v1 = 0.1, v2 = 0 v1f = −0.055, v2f = 0.045 2d

(−1,− 1
2 , 1

2 ) kK → kK v1 = 0, v2 = −0.1 v1f = −0.154, v2f = −0.055 –

Fig. 3 Space-time plots of three-kink collisions

Detailed analysis shows that the final state can change sig-
nificantly depending on the parameters of the numerical
scheme. (For other processes studied in this work, such
changes are not observed.) Apparently, Fig. 3a presents
a process that is largely a consequence of an instabil-
ity due to slight symmetry breaking in the initial data
or in the numerical calculations. Thus, we can say that
such a process is impossible in an exact field-theoretic
model, nevertheless, something like this can happen in a
real physical system which is subject to various imper-
fections and fluctuations. On the other hand, it is possible

to break the antisymmetry of the initial configuration by
hand, e.g., by slightly changing the initial position of the
left kink. Such a change should also lead to a significant
change in the final state. This looks quite natural, since
the processes under consideration are resonant and their
details are highly dependent on fine tuning.
We also performed numerical simulation of collisions
in the case of initial conditions with slightly broken anti-
symmetry. In this case, as expected, the dependence of the
final state on the parameters of the numerical scheme dis-
appears (since the changing parameter of the initial con-
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figuration takes over the role of the symmetry breaker).
Figures 3b, c show collisions with initial conditions that
differ very little from the case of Fig. 3a. Figure 3b shows
the collision for X1 = −19.99, and Fig. 3c shows the col-
lision for X1 = −20.01. It is interesting that, by varying
the position of the left kink, we can get formation of a
kink–antikink pair in the sector ( 1

2 , 1) in the final state,
see Fig. 3c.

2. Another interesting process in the case of the initial con-
figuration of the type (− 1

2 , 1
2 ,− 1

2 , 1
2 ) is shown in Fig. 3d.

This corresponds to the initial configuration (8) with
n = 3, s1 = s3 = (− 1

2 , 1
2 ), s2 = ( 1

2 ,− 1
2 ), C3 = 0,

X1 = −40, X2 = −20, X3 = 0, v1 = −v2 = 0.1,
v3 = 0. First, kink and antikink initially moving towards
each other, collide, thus forming a pair of escaping oscil-
lons. After that, one of the oscillons collides at the origin
with the static kink (− 1

2 , 1
2 ). As a result, the oscillon

passes through the kink and keeps moving in the same
direction. In this case, the vacuum, around which the field
oscillates in the oscillon, changes. Because of the colli-
sion with the oscillon, the kink acquires low speed in the
direction of increasing x , v2f ≈ 0.031.

3. Next, we considered a kink–antikink–kink collision in the
case of the initial configuration of the type ( 1

2 , 1, 1
2 , 1).

We used the initial configuration (8) with n = 3, s1 =
s3 = ( 1

2 , 1), s2 = (1, 1
2 ), C3 = − 3

2 , −X1 = X3 = 20,
X2 = −2.2926, v1 = −v3 = 0.1, v2 = 0. Initial posi-
tions of the kinks are fine-tuned in order to provide their
collision in one point; hence the energy density in the col-
lision point is maximized. The space-time picture of the
collision is shown in Fig. 3e. In the final state, we observe
radiation produced in the kink–antikink annihilation and
a fast moving kink in the direction of the x-axis. Interest-
ingly, part of the energy of the annihilated kink–antikink
pair is converted into the kinetic energy of the escaping
kink, and its final velocity v3f ≈ 0.712 is approximately
seven times higher than the initial one.

4. To simulate antikink–kink-kink collisions for the initial
configuration of the type ( 1

2 ,− 1
2 , 1

2 , 1) we used the initial
condition (8) with n = 3, s1 = ( 1

2 ,− 1
2 ), s2 = (− 1

2 , 1
2 ),

s3 = ( 1
2 , 1), C3 = 0, X1 = −40, X2 = −20, X3 = 0,

v1 = −v2 = 0.1, v3 = 0. First, the antikink ( 1
2 ,− 1

2 ) and
the kink (− 1

2 , 1
2 ) collide with each other, producing a

pair of fast escaping oscillons. Then, one of the oscillons
collides with the static kink ( 1

2 , 1), and as a result, the kink
gets a high velocity v3f ≈ 0.927. After the collision with
the kink, the oscillon significantly reduces the amplitude
of field oscillations, changes direction of its motion, and
escapes with a high velocity in the direction of decreasing
x ; see Fig. 3f.

5. We observed another new phenomenon in antikink–kink-
kink collisions for the initial configuration of the type

(− 1
2 ,−1,− 1

2 , 1
2 ). In this case we used the initial condi-

tion (8) with n = 3, s1 = (− 1
2 ,−1), s2 = (−1,− 1

2 ),
s3 = (− 1

2 , 1
2 ), C3 = 3

2 , X1 = −40, X2 = −28,
X3 = 40, v1 = 0.84, v2 = 0.65, v3 = −0.7. With such
initial data, all three solitary waves collide at the origin.
As a result of the collision, the kink (− 1

2 , 1
2 ) slightly

changes its speed, from v3 = −0.7 to v1f ≈ −0.619. In
this case, the antikink–kink pair in the sector (−1,− 1

2 )

annihilates, and in the final state a kink–antikink pair in
the sector ( 1

2 , 1) is observed instead, see Fig. 3g.
6. Finally, in the case of kink-kink-kink collision for the ini-

tial configuration of the type (−1,− 1
2 , 1

2 , 1) we observed
elastic reflection of light kinks (−1,− 1

2 ) and ( 1
2 , 1) from

the heavy kink (− 1
2 , 1

2 ). In this case, we used the initial
condition (8) with n = 3, s1 = (−1,− 1

2 ), s2 = (− 1
2 , 1

2 ),
s3 = ( 1

2 , 1), C3 = 0, −X1 = X3 = 20, X2 = 0,
v1 = −v3 = 0.1, v2 = 0. The initial conditions are
constructed so that the center of mass of the entire sys-
tem is at rest at the origin, i.e., at the center of the heavy
static kink (− 1

2 , 1
2 ). As a result of repulsion between the

kinks, an elastic reflection of the incident kinks occurs,
see Fig. 3h. In this case, no radiation of energy in the
form of small-amplitude waves is observed.

The above information on collisions of three kinks/antikinks
(except the auxiliary cases shown in Fig. 3b, c) is summarised
in Table 2.

3.3 Four kinks

We have performed numerical simulations of the following
four-kink processes.

1. Collision of two kinks and two antikinks belonging to
the topological sector (− 1

2 , 1
2 ). In this case, we used the

initial condition (8) with n = 4, s1 = s3 = (− 1
2 , 1

2 ),
s2 = s4 = ( 1

2 ,− 1
2 ), C4 = − 1

2 , −X1 = X4 = 24.60619,
−X2 = X3 = 10, v1 = −v4 = 0.1, v2 = −v3 = 0.05.
As in previous simulations, initial positions and initial
velocities of kinks are chosen so that all solitons arrive at
the collision point simultaneously. As one can see from
Fig. 4a, the result of the collision is two kink–antikink
pairs belonging to the topological sector (−1,− 1

2 ) that
are moving away from each other. It is interesting that the
relative velocities of the kink and antikink in each pair are
very small, they are equal to about 0.007. With a slight
change in the initial conditions, the relative velocities of
the kink and antikink in each pair increase. For example,
for −X1 = X4 = 24.606215 (and all other parameters
are unchanged), the relative velocities of the kink and
antikink are approximately 0.07.
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Table 2 Brief summary of processes observed in the collisions of three kinks/antikinks

Type “Reaction” Initial velocities Final velocities Figure

(− 1
2 , 1

2 ,− 1
2 , 1

2 ) K K̄ K → k̄kK v1 = −v3 = 0.1, v1f = −0.834, v2f = −0.653, 3a

v2 = 0 v3f = 0.698

(− 1
2 , 1

2 ,− 1
2 , 1

2 ) K K̄ K → oKo v1 = −v2 = 0.1 v2f = 0.031 3d

v3 = 0

( 1
2 , 1, 1

2 , 1) kk̄k → k v1 = −v3 = 0.1 vf = 0.712 3e

v2 = 0

( 1
2 ,− 1

2 , 1
2 , 1) K̄ Kk → ook v1 = −v2 = 0.1 v3f = 0.927 3f

v3 = 0

(− 1
2 ,−1,− 1

2 , 1
2 ) k̄kK → Kkk̄ v1 = 0.84, v2 = 0.65 v1f = −0.619, v2f = 0.288 3g

v3 = −0.7 v3f = 0.844

(−1,− 1
2 , 1

2 , 1) kKk → kKk v1 = −v3 = 0.1 v1f = −v3f = −0.1 3h

v2 = 0 v2f = 0

Fig. 4 Space-time plots of four-kink collisions

2. Collision of two kinks and two antikinks belonging to
the topological sector ( 1

2 , 1). In this case, we used the
initial condition (8) with n = 4, s1 = s3 = ( 1

2 , 1), s2 =
s4 = (1, 1

2 ), C4 = − 5
2 , −X1 = X4 = 19.91705, −X2 =

X3 = 10, v1 = −v4 = 0.1, v2 = −v3 = 0.05. As usual,
the initial data is selected in such a way that the collision
of all four waves occurs at the same point. The space-time
picture of the collision is shown in Fig. 4b. It is seen that
as a result of the collision, energy is generated, which is
emitted in the form of small-amplitude waves.

3. Finally, we performed a numerical simulation of the col-
lision of the same two kinks and two antikinks belonging
to the topological sector ( 1

2 , 1), but arranged on the axis
in a different order. In this case, we used the initial condi-
tion (8) with n = 4, s1 = s3 = (1, 1

2 ), s2 = s4 = ( 1
2 , 1),

C4 = −2, −X1 = X4 = 27.654600009, −X2 = X3 =
10, v1 = −v4 = 0.1, v2 = −v3 = 0.05. All four waves
collided at one point. The space-time picture of the col-
lision is shown in Fig. 4c. It can be seen that as a result
of the collision, two escaping oscillons are formed.

A brief summary of the above four-kink collisions is pre-
sented in Table 3.

3.4 Collisions of oscillons

The scattering of oscillons is of particular interest. In such
events, we observed nontrivial phenomena – the production
of one or two kink–antikink pairs.

At the first (preparatory) stage, we used the initial condi-
tion (8) with n = 4, s1 = s3 = (− 1

2 , 1
2 ), s2 = s4 = ( 1

2 ,− 1
2 ),

C4 = − 1
2 . The initial positions and initial velocities of the

colliding kinks were fine-tuned in such a way as to ensure
pairwise collisions of the kink and antikink. As a result of
each such collision, two escaping oscillons were produced,
one of which later collided with an oscillon produced from
the other kink–antikink pair, see Fig. 5.

In all cases, we used the same set of initial kink velocities:
v1 = −v2 = v3 = −v4 = 0.1. By changing the initial posi-
tions of the colliding kinks, one can achieve different relative
phases of the internal field oscillations in the colliding oscil-
lons. This, in turn, leads to different final states in collisions
of the oscillons.

First of all, at −X1 = X4 = 39.20, −X2 = X3 = 19.20,
as a result of the collision of oscillons, we observed radiation
propagating in the form of small-amplitude waves, as well
as moving oscillating lumps of energy, similar to the original
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Table 3 Brief summary of processes observed in the collisions of four kinks/antikinks

Type “Reaction” Initial velocities Final velocities Figure

(− 1
2 , 1

2 ,− 1
2 , 1

2 ,− 1
2 ) K K̄ K K̄ → k̄kk̄k v1 = −v4 = 0.1, −v1f = v4f = 0.876, 4a

v2 = −v3 = 0.05 −v2f = v3f = 0.869

( 1
2 , 1, 1

2 , 1, 1
2 ) kk̄kk̄ → radiation v1 = −v4 = 0.1, – 4b

v2 = −v3 = 0.05

(1, 1
2 , 1, 1

2 , 1) k̄kk̄k → oo v1 = −v4 = 0.1, – 4c

v2 = −v3 = 0.05

Fig. 5 Space-time plots of oscillon–oscillon collisions

oscillons, but with a smaller amplitude of oscillations, see
Fig. 5a.

Next, at −X1 = X4 = 39.24, −X2 = X3 = 19.24, as a
result of the collision of oscillons, two antikink–kink pairs
are formed in the topological sector (−1,− 1

2 ), see Fig. 5b.
The relative velocities of the antikink and kink in each pair
are small. The centers of mass of the pairs move away from
the collision point of oscillons (i.e., from the origin).

Further, in Fig. 5c, d the scenarios for the initial positions
−X1 = X4 = 39.28,−X2 = X3 = 19.28 and−X1 = X4 =
40.00, −X2 = X3 = 20.00, respectively, are shown. In both
cases, as a result of the collision of oscillons, one antikink–
kink pair is produced in the sector (−1,− 1

2 ), and also a static

oscillating structure is formed at the origin, which can be
classified as some kind of oscillon. Comparing scenarios of
Fig. 5c, d, we conclude that the oscillon takes more energy in
the first case than in the second. As the natural consequence,
in the first case, the velocities of the escaping antikink and
kink turn out to be somewhat lower than in the second case.

Additional numerical calculations show that the described
processes depend rather strongly on the initial conditions:
even with a very small change in the initial data, the final
state can change quite significantly. This is a completely nat-
ural situation, taking into account the resonant nature of the
processes.
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4 Deeper study of two-kink collisions

First, we have performed a detailed numerical analysis of the
kink–antikink collisions in the topological sector (− 1

2 , 1
2 ).

The critical velocity is apparently very high, i.e., is close to
one. We performed numerical simulation of kink–antikink
collisions up to the initial velocity 0.94 and observed only
kink annihilation with the formation of oscillons. We did not
find any escape windows (an escape window is the range
of initial velocities, within which the kinks escape to spatial
infinities after two or more collisions). This is consistent with
the fact that there are no vibrational modes in the excitation
spectrum of the kink and, in addition, the kink’s stability
potential is symmetric (for more details of the kink’s stability
analysis see, e.g., [9]).

Second, we have studied the kink–antikink collisions in
the topological sector ( 1

2 , 1). We have found the critical
velocity vcr ≈ 0.88: at initial velocities vin > vcr kink
and antikink escape to spatial infinities after one collision;
at vin < vcr they capture each other and form a long-
lived bound state, which then decays slowly radiating small-
amplitude waves. As in the kink–antikink collisions in the
sector (− 1

2 , 1
2 ), we did not observe any escape windows.

This is consistent with the fact that the discrete spectrum of
the kink stability potential contains only zero mode. More-
over, although in this case the stability potential of the kink
is asymmetric, the stability potential of the kink–antikink
system as a whole does not form a potential well.

Third, we have performed numerical simulation of the
antikink–kink collisions in the same sector ( 1

2 , 1). This case
is the most interesting of all discussed in this section. Despite
the absence of a vibrational mode in the kink excitation spec-
trum, in antikink–kink scattering we found a rich structure
of escape windows. Of course, all the escape windows are
located below the critical velocity, which in this case we
found to be vcr ≈ 0.07777. The structure of the two-bounce
windows is shown in Fig. 6. It is seen that when approaching
the critical velocity, the two-bounce windows become nar-
rower. We also found many three-bounce, four-bounce and
so on escape windows (some selected examples of the field
dynamics within escape windows are presented in Fig. 7).
However, their detailed study is a grueling procedure and is
beyond the scope of our work.

5 Discussion and conclusion

We have carried out a numerical study of exotic processes
in collisions of several kinks of the ϕ8 model. Let us briefly
summarise our main findings.

Change of the topological sector. This phenomenon looks
rather trivial in a model with a periodic potential, such as,

0.072 0.074 0.076 0.078 0.080

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Vout

Vin

Fig. 6 Plot of the escape velocity vout as a function of the initial veloc-
ity vin. The two-bounce escape windows (blue solid curves) and one-
bounce window (black dashed curve) are shown. The antikink and kink
initial positions are X1 = −X2 = −10; the initial velocity step is
δvin = 0.000001

e.g., the double sine-Gordon [25,26]. In the case of the peri-
odic potential, the model has an infinite number of topo-
logical sectors. The kinks in these sectors do not differ in
anything, except for the addition of a constant that is a mul-
tiple of the potential’s period. In this case, the transition of
a kink from one topological sector to another can occur due
to kinks passage through each other. In the model we have
considered, the situation is fundamentally different – there
are three neighboring topological sectors in which the kink
solutions differ. As a result, the transition of a kink or a
kink–antikink pair from one sector to another is a nontriv-
ial process. We observed the transition of a kink–antikink
pair from one topological sector to another in the collision
of three kinks in cases of initial configurations of the types
(− 1

2 , 1
2 ,− 1

2 , 1
2 ) and (− 1

2 ,−1,− 1
2 , 1

2 ), Fig. 3a, g, and also in
the collision of four kinks forming an initial configuration of
the type (− 1

2 , 1
2 ,− 1

2 , 1
2 ,− 1

2 ), Fig. 4a. As mentioned above,
the process shown in Fig. 3a should be interpreted with great
care, since it does not respect the antisymmetry of the initial
configuration, see Sect. 3.2.

Scattering of an oscillon by a kink.The process was observed
in cases of initial configurations of the types (− 1

2 , 1
2 ,− 1

2 , 1
2 )

and ( 1
2 ,− 1

2 , 1
2 , 1), Fig. 3d, f. In the first case, the oscillon

about the vacuum− 1
2 passes through the kink (− 1

2 , 1
2 ) almost

unhindered and falls into the vacuum + 1
2 . In this case, the

kink almost does not change its state. In the second case, the
collision of the oscillon about the vacuum 1

2 and the kink
( 1

2 , 1) results in a bounce of the oscillon and a significant
momentum transfer to the kink.

Production of kink–antikink pairs.Oscillons can carry energy
sufficient to produce one or even two kink–antikink pairs.
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Fig. 7 Space-time plots of the antikink–kink collisions in the sector ( 1
2 , 1) for different initial velocities vin belonging to the escape windows. The

initial positions of the kinks in all cases are X1 = −X2 = 10

We have observed the production of kink–antikink pairs in
collisions of two oscillons about the vacuum − 1

2 . In this case,
depending on the relative phase of the field oscillations in the
oscillons, we observed the passage of oscillons through each
other, Fig. 5a, the production of two kink–antikink pairs,
Fig. 5b, or the production of a kink–antikink pair and an
oscillon, Fig. 5c, d.

We have also performed a detailed numerical analysis
of the kink–antikink and antikink–kink collisions. In the
antikink–kink collisions in the sector ( 1

2 , 1) we have found a
rich structure of escape windows.

The construction of theoretical models could become the
next step in studying the phenomena that we observed exper-
imentally. In particular, the formation of kink–antikink pairs
in collisions of oscillons, apparently, strongly depends on the
phases of the field oscillations in the colliding oscillons. A
more detailed study on the scattering of oscillons and the
construction of a theoretical model could become the subject
of a separate study. In addition, the scattering of an oscillon
by a kink, apparently, also strongly depends on which vacua
the kink connects and on the properties of oscillons about
these vacua.
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