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Abstract We study a bottom-up holographic description
of the QCD colour superconducting phase in the presence
of higher derivative corrections. We expand this holographic
model in the context of Gauss–Bonnet (GB) gravity. The
Cooper pair condensate has been investigated in the decon-
finement phase for different values of the GB coupling
parameter λGB , we observe a change in the value of the crit-
ical chemical potential μc in comparison to Einstein grav-
ity. We find that μc grows as λGB increases. We add four
fermion interactions and show that in the presence of these
corrections the main interesting features of the model are still
present and that the intrinsic attractive interaction can not be
switched off. This study suggests to find GB corrections to
equation of state of holographic QCD matter.

1 Introduction

It is widely known that in a fermionic system at finite chem-
ical potential, where a Fermi surface is expected to develop,
if there is any attractive interaction between the fermions,
Cooper pair condensation will occur causing superconductiv-
ity or superfluidity. This fact leads to the natural expectation
that quarks will condense at high density in quantum chro-
modynamics (QCD), and there has been considerable work
on understanding the phase structure over the years (see the
review [1]).

Typically the preferred condensation pattern is expected
to break the colour gauge group so the phenomena has been
named colour superconductivity (CSC). An exact computa-
tion of the condensation can be done at very large chem-
ical potential where QCD, because of asymptotic freedom,
becomes weakly coupled [2]. However, the more experimen-
tally interesting case is when the density and temperature of
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the quark-gluon plasma (QGP) are of order the strong cou-
pling scale �c where the strongly coupled nature of the prob-
lem prevents a precise computation. Here, gap equation and
renormalization group study have been done and the possi-
ble phase structure of the system as a function of number of
flavours, N f and the quark mass has been found [1]. First
principle computations in QCD are currently inaccessible at
this regime where temperature is low and chemical potential
is high. The reason comes from strongly coupled nature of
the system and the sign problem of lattice gauge theory [3].

Holography is a new tool to study strongly coupled gauge
theories [4–6]. It is using inN = 4 super Yang-Mills theories
at large number of colours, Nc and maps the computations to
the weakly coupled gravitational theories. The quark degrees
of freedom has been added in the gauge theories in [7–11]
so that one can study wider space of such theories using
AdS/QCD [12,13]. Holographic study of cool baryon den-
sity and quark matter [14], possible hadron-quark continuity
[15] and quarkyonic matter [16] are such examples of applied
holography in dense QCD. Although there is no large Nc limit
and CSC is sub-leading in this limit [17,18], one expects an
instability to pair condensation in the presence of chemical
potential. Then a colour singlet pair can be formed [19] and
used to the study of AdS superconductor phenomena in con-
densed matter, leading to the so-called AdS/CMT [20].

Study of the CSC phase of QCD using this new tool has
been done in [21], recently. Also, first principle holographic
colour superconductivity with its spectrum have been studied
in [22–26]. Furthermore, CSC considering backreaction has
been done in [27]. Another study has found a novel CSC
phase in super Yang–Mills theory [28]. Recently CSC in
Einstein–Gauss–Bonnet gravity has been investigated in the
confined and the deconfined phases [29].

In this paper, we study the deconfined phase where the
QGP, at intermediate density, is strongly coupled and below
of the chiral phase transition. Here one expects that at
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the confiment-deconfiment transition magnetically charged
scalars condense to cause confinement [30]. However above
of the transition such states generate a Debye mass for electric
and magnetic gluons. Thus there would be a gap between the
gluon mass and the chemical potential. Therefore this would
allow us to apply holography in such system by a bottom up
set up [21]. As an important application of this study, see
[31] where equation of state of colour superconductivity has
been found and as a result it was deduced that quark matter
could be present at the core of compact stars.

Here we want to expand the model proposed in [21] by
considering an Einstein–Gauss–Bonnet space-time. The goal
is to study the role of higher curvature corrections written
as the Gauss–Bonnet (GB) term and study how the critical
chemical potential at which the Cooper condensate is formed
could be depended on this term. Holographic condensed mat-
ter superconductors in the presence of higher derivative cor-
rections have been studied in [32]. Following [27], the upper
bound on Nc has been recently computed in the presence
of GB corrections in [29] by considering backreaction on
the background. However, as in [21], we work in the probe
limit and neglect the back reaction of the matter part to the
geometry.

We will also add four fermion interaction to study con-
densation in the presence of this new parameter. We know
that the precise boundary dual theory to GB background is
unknown but using the duality one can study the expectation
value of operators in the dual theory [33]. Then from the
boundary field theory point of view, we are going to study
the effect of finite coupling corrections on the holographic
CSC phase of QCD which helps to construct the holographic
model more accurately.

This paper is organized in the following way: in Sect. 2 we
review the gravitational model dual to the CSC phase using
the action of Einstein–Gauss–Bonnet gravity in five space-
time. In Sect. 3 we introduce NJL operators in the model.
In Sect. 4 we study how the phase diagram changes with
Gauss–Bonnet corrections. We discuss the effect of higher
derivative corrections in the last section.

2 CSC in Gauss Bonnet background

We consider the action of Einstein–Gauss–Bonnet gravity in
five space-time dimensions given by

SGB = 1

2κ2
5

∫
d5x

√−g

[
R + 12

L2 + l2GB

2
(R2+

−4RμνR
μν + Rμνρσ R

μνρσ )
]
, (1)

where the scale l2GB of the higher derivative term can be cho-
sen to be set by a cosmological constant, l2GB = λGBL2,

where λGB is the dimensionless parameter. The coefficients

of the curvature-squared terms ensure that the equations
of motion following from the action (1) are second order
in derivatives. In the absence of Ostrogradsky instability
and other difficulties induced by higher derivatives, Gauss-
Bonnet gravity can be a very useful theoretical tool for study-
ing non-perturbative effects of higher-derivative couplings.
However, as pointed out in [34–37] for λGB outside of a cer-
tain interval, the dual theory suffers from pathologies asso-
ciated with superluminal propagation of high momentum
modes. This would imply that Gauss-Bonnet gravity should
loose their privileged non-perturbative status and be treated
as any other theory with higher derivative terms, i.e. the cou-
pling λGB should be seen as an infinitesimally small param-
eter. Here in principle we will not constrain λGB beyond its
natural domain λGB ∈ (−∞, 1/4], limited by the existence
of the black brane solution [38].

Varying the action (1) the Einstein field equations can be
derived, this has a pure AdS solution in the absence of any
matter sources. We note here that we did not include in the
bulk action a contribution from the gauge field, which means
that we are not taking backreaction from the flavour branes.
To examine holographic superconductivity, we allow for a
bulk black-brane metric in order to have a system at finite
temperature:

ds2 = −a f (r)dt2 + 1

f (r)
dr2 + r2

L2

(
dx2 + dy2 + dz2

)

(2)

dual to a thermal state of a boundary CFT. Here the radial
coordinate is r where the boundary theory is located at infin-
ity. The blackening function is given by

f (r) = r2

L2

1

2λGB

⎡
⎣1 −

√√√√1 − 4λGB

(
1 − r4

H

r4

)⎤
⎦ , (3)

and the constant a can be chosen to normalize the speed of
light at the boundary to be one as

a = 1

2

(
1 + √

1 − 4λGB

)
. (4)

The Hawking temperature is given by

T =
√
arH

πL2 . (5)

From now on we set the AdS radius L to 1. Note that the
model does not work at zero temperature.

As in [21], we describe the dimension 3 quark bilinear by a
scalar fieldψi where i is one the lines of colour flavour matrix,
and baryon number B = 2

3 . One also needs the gauge field
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associated withU (1)B where its At component describes the
chemical potential. We use a Lagrangian given by

LCSC = −1

4
FμνFμν − |∂ψi − i BGAψi |2 + 3ψ2

i . (6)

We will define G in detail in Sect. 4, until then we will take
it as a constant number. This Lagrangian yields equations of
motion

ψ ′′
i +

(
f ′

f
+ 5

r

)
ψ ′
i + B2G2

ar4 f 2 A
2
t ψi + 3

r2 f
ψi = 0, (7)

and

A′′
t + 3

r
A′
t −

∑
i

2B2G2

r2 f
ψ2
i At = 0. (8)

For regularity, one requires that at the horizon At = 0
then from the first equation of motion one finds that ψ ′

i =
− 3

4rH
ψi . We can always find solution to Eqs. (7) and (8) as

ψi = 0, At = μ − μr2
H

r2 . (9)

But more complex solutions can be found numerically by
shooting out from the horizon. They take the following form
in the UV:

ψi = Jc
r

+ c

r3 + · · · , At = μ + d

r2 + · · · (10)

where from the AdS/CFT correspondence c is interpreted as
the Cooper pair condensate ψψ , which carries both flavour
and colour indices. Also Jc is the source for ψψ , and μ and d
are the chemical potential and the density, respectively. There
are two constraints and four initial conditionsψ,ψ ′, At , A′

t at
the horizon, then one gets a two parameter family of solutions
in the IR by fixing ψ (rH ) and A′

t (rH ). We label the solutions
by values of μ and Jc predicting d and c.

In Fig. 1, we show solutions for the scalar field ψ(r) at
fixed temperature, T = 0.1 and G = 1. We plot rψ(r)
which asymptotes to Jc in the UV. We fixe the initial condi-
tion ψ(rH ) = 2 for all curves in in Fig. 1a, and ψ(rH ) = 6
for all curves in in Fig. 1b. We have also adjusted the ini-
tial condition for the gauge field A′

t (rH ) in each case to set
μ = 1.0 in Fig. 1a, and μ = 5.0, in Fig. 1b. Each curve rep-
resents a different value of λGB so that from top to bottom
λGB = 0.1, 0.025, 0,−0.1. We observe that by changing
λGB the qualitative behaviour is the same as in [21]. The only
exception is the case λGB = 0.1 (blue curve). One possible
reason is because in this case we are above the upper bound
λGB ≤ 9/100 mentioned in [39,40], which means that in the
boundary theory there is the possibility of superluminal prop-
agation of disturbances of the stress tensor. In [40] the authors

(a)

(b)

Fig. 1 a The ψ functions in the unbroken phase at T = 0.1, μ = 1.0
and initial condition ψ(rH ) = 2. b The ψ functions in the broken phase
at T = 0.1, μ = 5.0 and initial condition ψ(rH ) = 6. We varied the
values of λGB in both images as λGB = 0.1 (blue), λGB = 0.025
(gray), λGB = 0 (dark red) and λGB = −0.1 (green)

explore whether a bulk graviton cone behaviour can lead to
boundary causality violation by studying the behaviour of
graviton null geodesics in the effective geometry. There, they
see causality violation for λGB larger than 9/100.

As one expects, at low μ there is no symmetry breaking,
for the different values of λGB the only possible solution
with Jc = 0 is the trivial one ψ = 0, therefore c = 0
(see Fig. 1a). On the other hand, for a higher value of μ,

there is a non trivial solution that asymptotes to Jc = 0 and
shows symmetry breaking, since this solution has a non-zero
condensate c. In Fig. 1b we only show the λGB = 0 solution
showing this but for the other values of λGB similar solutions
exist for a different value of the initial condition ψ(rH ). The
physical interpretation in AdS is that the chemical potential
generates an effective negative mass squared for the scalar ψ

and when it violates the Brietenlohner-Freedman (BF) bound
of m2 = −4 [41] an instability to ψ condensation results.

We noted that as we increase λGB above zero one needs to
increase the value of ψ at the horizon to obtain a solution that
asymptotes to Jc = 0 compared with the case with λGB = 0;
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(a)

(b)

Fig. 2 a The condensation vs μ in the broken phase at T = 0.1 for
different values of λGB ; λGB = 0.1 (blue), λGB = 0.025 (gray), λGB =
0 (dark red) and λGB = −0.1 (green). b The critical chemical potential
μc which is the vaue of μ at which condensation triggers vs λGB

conversely as we decrease λGB below zero a smaller value of
the initial condition for ψ at the horizon is needed to obtain
a solution that asymptotes to Jc = 0 again compared with
the λGB = 0 case.

From the equation of motion (7) for ψ we can see that
the coupling to the gauge potential suppress the mass. Thus
we can obtain the effective mass meff and see how it changes
with respect to λGB as

m2
eff = m2 − �m2, �m2 ≡ B2G2A2

t (r)

ar2 f (r)
, (11)

where its relation to the BF bound has been recently studied
in [29].

In Fig. 2, we plot the condensate as a function of the
chemical potential to see at which value of μ the conden-
sation is triggered. We do this for different values of λGB ,
which allows us to observe the behaviour of the critical chem-
ical potential μc as a function of λGB for the scalar mass
m2 = −3 (see Fig. 2b). We see that as λGB decreases, the
value of μc also diminishes, until the value λGB = −0.78

where the critical chemical potential approaches zero. Thus,
for a sufficiently negative value of λGB the model shows
very small condensation close to zero at all positive values
of chemical potential. As a result, beyond this value of λGB

it doesn’t look there is a second order transition. The relation
between strength of the condensation and values of the λGB

has been discussed in [29] in the presence of the backreaction.
Studying the solutions more in detail we see that when

λGB < −0.78 there still are ψ solutions that break symme-
try since they have a positive condensate but the correspon-
dent source Jc is zero, however we can not interpret this in
the sense of a second order transition since the value of the
condensate and the value of the chemical potential are not
correlated as in the cases showed in Fig. 2a. As [29], we find
that large magnitude of λGB makes the condensation easier.

3 Adding NJL interactions

In this section we attempt to introduce the QCD interac-
tions into the CSC model. In this way, we could think in
four fermion operators, the relativistic Nambu–Jona–Lasinio
(NJL), as a possible option to model the QCD attraction
between quarks, because we assumed that the gluons have
acquired a large mass. These operators are an example of a
double trace operator and they can be incorporated by using
Witten’s prescription in [42]. NJL operators have been stud-
ied in holographic superconductors in [43] and in QCD as
[44].

One finds more in detail how to introduce the four fermion
operator into the model in [21]. In short, we consider an
operator/source pair such as O, J which is described holo-
graphically by a field ψ(r) in the AdS background with the
following action

S = −
∫

dr
1

2

(
r5 (∂rψ)2 − 3r2ψ2

)
. (12)

The solutions of the equations of motion in the UV take the
form

ψ = J/r + O/r3. (13)

Based on Witten’s prescription, one should add a UV surface
term into the action at the cut off �. We want to include in
the boundary field theory a term of the form

�L = − g2

�2 OO, (14)

where O �= 0, then this term generates a source

J 	 g2

�2 O. (15)

123



Eur. Phys. J. C (2021) 81 :1139 Page 5 of 8 1139

Fig. 3 a Plot of c against Jc with μ < μc for embeddings in Fig. 1a.
b Plot of c against g2 with μ < μc for solutions in Fig. 1a. In both
images T = 0.1, μ = 0.1 and we obtained curves for different values
of λGB ; λGB = 0.1 (blue), λGB = 0.025 (gray), λGB = 0 (dark red)
and λGB = −0.1 (green)

This is the main condition that we apply to the solutions of
the equation of motion we already have. This has been done
in Fig. 3 for the holographic color superconductor model in
the unbroken phase (μ < μc). Here solutions with Jc �= 0
are interpreted as having zero intrinsic Jc, but, in the presence
of NJL interactions. Then the four fermion interaction would
generate the source Jc in the UV.

To explain this in detail, consider for example the holo-
graphic field solutions ψ(r) in Fig. 1a, as we discussed in the
previous section, there are two sets of solutions depending on
the critical value of the chemical potential μc. For solutions
below μc, we plot the condensate c against the NJL coupling
g2 in Fig. 3b using Eq. (15). Here we have taken the UV cut
off � = 10 numerically. One finds that a critical value of
the NJL coupling g2, that triggers symmetry breaking at a
second order phase transition. For the cases of λGB = 0 and
λGB = 0.1 we see that the value of g2 at which condensa-
tion turns on is positive, whereas for positive values of λGB

the critical value of g2 is negative. For the solutions with
λGB > 0, in the UV, Jc and c have opposite signs, with the
condensate being always negative as we can see in Fig. 3a.

On the other hand for λGB ≤ 0 the condensate is positive
and we recover the same behaviour as in reference [21].

Similarly we could translate the functions of Fig. 1b to
show c vs g2 but as in the previously reported case with
λGB = 0, even at g2 = 0 there is already symmetry break-
ing. At a value of chemical potential μ > μc the two inter-
esting additional features showed for the λGB = 0 case are
still present. Firstly there are solutions at negative and repul-
sive, g2. Which is reasonable because there is a symmetry
breaking at zero NJL coupling and switching on a repulsive
NJL coupling reduces the condensation. The second inter-
esting feature is that the condensation can only switch off
at infinite repulsive four fermion interaction. The remaining
structure in the c − g2 plane is the translation of the spiral
in the c − Jc plane seen previously in [21]. Thus one may
conclude that in the presence of higher derivative corrections
the above two interesting features still present and the intrin-
sic attractive interaction is more complex in this holographic
model. Then it would be worth to explore other possibilities
such as different gravity backgrounds to study these features
in the model.

4 The phase diagram at finite coupling

Now we can describe the effect of the Gauss–Bonnet correc-
tion in the bulk to the colour superconducting phase of QCD.
The phase diagram is described in T − μ plane, chiral sym-
metry breaking and confinement scales have been recently
studied in [45]. Here we assume that the chiral phase transi-
tion occurs at T 2+μ2 = �2

c . We numerically set�c = 1 then
the UV cut off of the holographic model is � = 10�c where
we read off condensation c and source Jc. We also assume a
phase with a qq̄ condensate below �c. As it was mentioned
even in the presence of the Gauss-Bonnet coupling correc-
tions, NJL interactions can not switch off the condensation at
each T and μ. This confirms that intrinsic QCD interactions
are more subtle than the four fermion interaction.

As it was proposed in [21], there is a way to affect the
condensation by modifying the strength of the interaction
between At and colour pairing ψ . Using the main assumption
for the global symmetry of the colour of quarks, one reads the
action (6) where the interaction term of Aψ gives information
about the broken phase. Here G is a new coupling which is
related to the one loop running coupling as

G2 = κ

b ln(T 2 + μ2)/�2
c
, b = 11Nc/3 − 2N f /3.

(16)

The parameter κ is a free parameter and it reflects the
strength of the attraction that generates the 3̄ of the colour
condensate, see [21]. To study the effect of λGB �= 0 in the
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Fig. 4 Plot of the superconducting phase boundary at G = 1 and
different λGB in the T - μ plane; λGB = 0.1 (blue), λGB = 0.025
(gray), λGB = 0 (dark red) and λGB = −0.1 (green). The black region
is expected to be the chirally broken phase below a scale of μ2 +T 2 = 1

phase boundary for the superconducting phase, first for each
value of T and G we obtain the critical chemical potential
and then plot μc(T ). This is shown in Fig. 4. In this figure,
the black region corresponds to chirally broken phase and we
have fixed �c = 1. One can summarize the main results as
follows:

• As λGB grows the temperature at which the boundary
phase is present decreases significantly.

• For λGB < 0 the temperature at which the boundary
phase is present is larger than in the λGB = 0 case.

Then we can control the boundary phase by tuning λGB

which is very useful because one can study smaller temper-
atures. However, there is a bound on the maximum positive
value of the coupling which is λGB = 0.24.

The other free parameter of the model κ comes from con-
straints by studying one gluon exchange interactions of qq
and qq̄ . It was argued in [21] that a sensible range of it is
between 1 and 20 where the color superconductivity occurs.
As (16), it expresses the the intrinsic interaction between the
fields At and ψ .

Now using these tools one can construct the phase dia-
gram from the analysis of Fig. 4. We fix N f = 3 and for
each value of G from (16), plot the circles in the T − μ

plane. There are crossing points with corresponding curves
with the sames G value where we identified them in Fig. 5.
This figure shows the phase diagram in the presence of finite
coupling corrections. Here κ = 10 and from to to bottom
λGB = −0.1, 0, 0.025, 0.1. As it is clearly seen, the colour
superconductor phase depends on λGB , however the shape
of the phase curves do not change. For example, very close
to �c = 1 the QCD coupling gets very strong and the colour

Fig. 5 QCD phase diagram for different values of λGB ; in the blacked
out area chiral symmetry breaking is expected. The remaining phase
edges shows where the CFL phase is present for the choices of κ = 10
and λGB = 0.1 (blue), λGB = 0.025 (gray), λGB = 0 (dark red) and
λGB = −0.1 (green)

superconducting phase hugs the phase boundary up to higher
values of the temperature. One finds that

• For positive values of λGB , we observe that the phase
boundary moves to lower values of T at a given μ.

• For negative values of λGB a higher temperature needs
to be reached in order to get condensation (green curve
in Fig. 5).

By considering Gauss–Bonnet corrections, still we are in
the sensible regime of the colour superconducting phase.
Because, this phase is predicted to exist when temperature
is bellow of 0.15 �c [1]. For fixed κ 	 10 and the expected
chiral transition temperature �c 	 175 MeV, the estimate
might be 20 MeV where can be changed a few percent by
adding Gauss–Bonnet correction as we see in Fig. 5.

5 Discussion

In this paper we followed the holographic bottom up model
of colour superconductivity proposed in [21] by considering
higher derivative corrections in the bulk. We have studied
Gauss–Bonnet gravity which, from the AdS/CFT correspon-
dence, is related to finite coupling corrections in the boundary
theory. The charged scalar field ψ in the bulk is describ-
ing diquark condensation, while the U(1) gauge coupling
should be interpreted as baryon number. First we studied
unbroken and broken phases and how the critical chemical
potential, which separates both phases, changes with higher
derivative corrections. This is shown in Figs. 1 and 2. It
was shown that a negative value of λGB can significantly
reduces the critical value of the chemical potential where
Cooper condensation starts to form. Next, we introduced NJL
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operators as the responsible operators for the four fermion
interaction between quarks and studied the changes that the
Gauss–Bonnet corrections induce in the quark condensate in
Fig. 3. We found that finite coupling corrections do not
change the main features of the model and concluded that
intrinsic attractive interaction can not be switched off by such
corrections. We then dropped NJL operators and just tuned
the coupling between the scalar and gauge fields in the grav-
itational theory to relate it with the QCD running coupling.
We found the phase edge for the colour superconductivity
phase as a function of temperature and chemical potential.
We also studied how the phase diagram changes with Gauss–
Bonnet corrections. It was shown that by tuning the λGB one
can study smaller temperatures in the T − μ phase diagram.
This is the interesting regime for studying physics of com-
pact stars, then it would be desirable to find finite coupling
corrections for the holographic description of neutron stars.
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