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Abstract We construct nonassociative quasi-stationary solu-
tions describing deformations of Schwarzschild black holes,
BHs, to ellipsoid configurations, which can be black ellip-
soids, BEs, and/or BHs with ellipsoidal accretion disks. Such
solutions are defined by generic off-diagonal symmetric met-
rics and nonsymmetric components of metrics (which are
zero on base four dimensional, 4-d, Lorentz manifold space-
times but nontrivial in respective 8-d total (co) tangent bun-
dles). Distorted nonassociative BH and BE solutions are
found for effective real sources with terms proportional to h̄κ
(for respective Planck and string constants). These sources
and related effective nontrivial cosmological constants are
determined by nonlinear symmetries and deformations of
the Ricci tensor by nonholonomic star products encoding
R-flux contributions from string theory. To generate various
classes of (non) associative /commutative distorted solutions
we generalize and apply the anholonomic frame and connec-
tion deformation method for constructing exact and paramet-
ric solutions in modified gravity and/or general relativity the-
ories. We study properties of locally anisotropic relativistic,
optically thick, could and thin accretion disks around nonas-
sociative distorted BHs, or BEs, when the effects due to the
rotation are negligible. Such configurations describe angular
anisotropic deformations of axially symmetric astrophysical
models when the nonassociative distortions are related to the
outer parts of the accretion disks.
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1 Introduction

1.1 Motivations for nonassociative geometry, physics and
gravity

Nonassociative algebras and nonassociative and noncommu-
tative theories have a long and diverse history in mathematics

and physics. We cite [1–5] for introductions and reviews of
results beginning with the middle of the nineteenth century
up to last few years containing various developments and
applications in quantum field/gravity and string theories. For
instance, the algebra octonions is an example of noncommu-
tative Jordan algebras which provided the first example of
appearance of nonassociativity in physics. Papers [6,7] are
for early approaches to nonassociative quantum mechanics,
and [8–16] are for further developments and references on
noassociative algebras and mathematical particle physics.

In open string theories, nonassociative structures are
present due to a non-vanishing background 2-form in the
world volume of a D-brane. Such structures exist also for
closed strings, for instance, as consequences of flux com-
pactification with non-trivial three-form and related non-
geometric backgrounds. Various related and/or alternative
approaches to noncommutative geometric flows, noncommu-
tative and nonassociative gravity and gauge theories, mem-
branes and double field theory, etc. were studied in [12,17–
24] and references therein. In this work, we do not attempt
to review all subjects on nonassociative physics and gravity
and do not provide a comprehensive list of references, which
can be found in [3–5,25,26].

A few years ago a geometric approach leading to nonas-
sociative gravity, with star product (in brief, �) deforma-
tions determined by R-flux backgrounds of string theory
and modelled on a phase space M enabled with nonassocia-
tive geometric objects, has been provided and elaborated in
[3,4]. A unique nonassociative Levi-Civita connection (LC-
connection ∇�), which is torsionless and compatible with
respective �-deformed symmetric and nonsymmetric met-
ric structures, was derived in [4]. In that work the nonas-
sociative geometric constructions were performed in a form
which is covariant under the quasi-Hopf algebra [27] gener-
ated by infinitesimal diffeomorphisms on twisted nonasso-
ciative phase space. The nonassociative vacuum gravitational
equations,

Ric�[∇�] = 0, (1)

were introduced for star deformations of the standard Ricci
tensor in general relativity, GR, to a nonassociative Ric�[∇�],
where ∇� is defined and computed on M. The coefficient
formulas were derived for Moyal–Weyl products formulated
with respect to tensor products involving coordinate bases
extended on phase space. Abstract definitions of fundamental
geometric objects were provided in [3,4] but without details
on arbitrary frame and coframe (dual frame) decompositions.
Here we note that in the mentioned approach the coefficient
formulas for nonassociative geometric and physical objects
on phase spaces depend both on spacetime and momentum
like coordinates (the last ones are with respective multipli-
cations on complex unity i2 = −1).
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One of the original motivations for developing nonasso-
ciative geometric models was to construct a nonassociative
theory of gravity on a spacetime V encoding �–deformations
via certain type R-flux contributions from string/brane the-
ory, or other type theories. For physical applications, we can
consider V as a four dimensional, 4-d, spacetime Lorentz
manifold using fundamental geometric objects defined as in
GR. We can elaborate also on various models of modified
commutative and noncommutative gravity theories, MGTs,
which can be for 5-d, or 6-d, base spacetimes. The geome-
try of a (total) nonassociative phase space M can be mod-
elled on a cotangent bundle T ∗V enabled with star product
and R-flux deformations. In [4], it was obtained also a very
important result for computing the Ricci tensor of nonasso-
ciative gravity in a form with parametric decomposition on
h̄, the Planck constant, and κ := �3

s/6h̄. In theories mod-
elled on effective phase spaces, κ can be considered as a
string constant to be determined by experimental data or from
some theoretic assumptions. Projecting nonassociative geo-
metric models from phase space to spacetime,M → V , with
∇� → V∇, we can compute star parametric deformations
of the nonassociative Ricci tensor, Ric�[∇�] → Ric◦[ V∇],
when

Ric◦[ V∇] = Ric[ V∇] + κ

2
R jkm B jkm[∂n, gno, V∇] (2)

describes real star R-flux deformations induced on base
spacetime V . In these formulas, Ric[ V∇] is the usual Ricci
tensor of a LC-connection V∇ for a pseudo-Riemannian
metric g = {gno(xk)} of signature (+ + +−) on a space-
time V ; coordinate spacetime indices run values i, j, k, ... =
1, 2, 3, 4; partial derivatives ∂ j = ∂/∂x j define a local coor-
dinate base/frame. In our notations, the anti-symmetric ten-
sor R jkm defines R-flux contributions via some nontrivial
constant values with respect to a chosen coordinate basis ∂n
(such a tensor may depend on space and cofiber coordinates
for frame transforms on M ); and the anti-symmetric ten-
sor Bjkm is a functional of respective operators and geomet-
ric objects.1 The Eqs. (1) and (2) present starting points for
constructing models of nonassociative gravity theory which
encode the low-energy effective dynamics of closed strings
in so-called non-geometric backgrounds.

1 We follow the Einstein convention rule with summation on up-low
repeating indices, when left up, or low labels will be used for stating
that certain geometric objects are defined on a some spaces, regions,
for certain conditions etc. Here we note that we elaborate a different
system of notation for coordinates, abstract and coordinate indices, and
geometric objects for nonassociative gravity. In coordinate form, the R-
flux deformation of the Ricci tensor (2) is given by formulas (5.90) and
(1.3) in [4]. We shall provide in next section some generalized formu-
las for nonholonomic frames and a canonical distinguished connection
distorting the LC-connection to certain configurations which allow to
construct exact and parametric solutions.

1.2 Geometric methods for constructing exact and
parametric solutions in nonassociative gravity

Geometric and physical models on (non) associative phase
spaces are formulated for geometric objects depending both
on spacetime and phase coordinates, for instance, with met-
rics gαβ(xi , pa), where indices α, β, ... = 1, 2, ...8, are
used as total phase space ones; i, j, k, .. = 1, 2, 3, 4 are
used for spacetime indices and a, b, c, ... = 5, 6, 7, 8 are
cofiber ones. The nonassociative gravity models elaborated
in [3,4] may be considered as certain nonassociative gener-
alizations and modifications (in some special cases with LC-
connections and coordinate frames) of (non) commutative
Finsler–Lagrange–Hamilton and higher dimension (super)
string gravity theories, various MGTs, studied in a series of
our works [28–30], see recent reviews and methods of con-
structing exact solutions in phase spaces in [31,32].

In Refs. [3,4], there were emphasized three tasks for
further developments of nonassociative gravity which we
approach in our research program (in this and partner works
[25,26], and future ones):

1. construct exact/parametric solutions of nonassociative
vacuum gravitational equations (1);

2. study further generalizations for nontrivial matter sources;
and

3. elaborate on possible applications of such theories in
modern particle physics, cosmology and astrophysics.

The main technical difficulty in elaborating on above direc-
tions of research is that all types of modified (non) associa-
tive/commutative gravitational and geometric flow theories
are described by sophisticated nonlinear systems of partial
differential equations, PDEs, with coupling and mixing of
indices of geometric objects. To find exact and parametric
solutions we have to use certain coordinate and frame decom-
positions. Such (non) associative/ commutative tensor and
product coupling and/or mixing are consequences of vari-
ous conditions and constraints imposed on coefficients. For
example, the star products are defined via contractions with
R-flux coefficients R jkm and the metric compatibility and
zero torsion conditions are introduced for the LC-connection.
In GR, a decoupling of Einstein equations is possible, for
instance, for diagonal metric ansatz depending on one space
variable (radial type). As a result, the vacuum and nonvac-
uum gravitational equations stated as systems of nonlinear
PDEs transform into respective systems of decoupled ordi-
nary differential equations, ODEs. For such assumptions, it
is possible to construct black hole, BH, solutions; when there
are considered additional spherical symmetry and asymptotic
conditions resulting in the Newton gravitational potential of
a point mass particle. This method can be generalized in cer-
tain forms for generating, for instance, BHs with rotation and

123



1145 Page 4 of 27 Eur. Phys. J. C (2021) 81 :1145

nontrivial sources (we can consider a nontrivial cosmologi-
cal constant); for wormholes; with nontrivial algebraic struc-
tures, in cosmological models, when metrics depend on a
time like variable etc. The bulk of physically important exact
and parametric solutions described, for instance, in standard
monographs [33–36], are constructed for certain very spe-
cial type ansatz (usually diagonalizable via coordinate trans-
forms) transforming PDEs into ODEs with decoupling of ten-
sor coefficients. There were studied also certain cases with
solitonic gravitational metrics for various classes of nonlin-
ear waves when PDEs are solved using other geometric and
analytic techniques. Such methods can not be applied if our
aim is to find exact solutions with generic off-diagonal met-
rics2 of type gkj (xi ) and/or gαβ(xi , pa) depending on some
spacetime/phase space coordinates, generalized connections
and/or LC-connections, even we project all geometric objects
and equations on a GR background.

In a series of works [31,32,37,38], see also references
therein, we developed the so-called anholonomic frame
and connection deformation method, AFCDM (in previous
works, we wrote AFDM) to a level which allows us to
prove some general decoupling and integrability properties
of modified gravitational field and geometric flow equations
on phase spaces. For nonassociative vacuum gravity mod-
els on star deformed V → M, and with effective sources
determined by R-fluxes of type (2), we elaborated nonholo-
nomic versions of nonassociative geometry and gravity in
two partner works [25,26]. The main idea of the AFCDM
is to redefine the geometric constructions on M and V in
certain nonholonomic bases,3 when using an auxiliary lin-
ear connection ̂D� = ∇� + ̂Z� we can prove certain gen-
eral decoupling properties of physically important systems
of PDEs. This way, we can generate certain very general
classes of exact/parametric solutions determined by generic
off-diagonal symmetric and nonsymmetric metrics, respec-
tively, �

�ǧ and �

�a. Such metrics depend, in principle, on
all phase space coordinates, with coefficients parameterized
by off-diagonal matrices gαβ(xi , pa). In explicit form, the
coordinate and parametric dependencies are determined by
respective classes of generating functions and generating
(effective) sources. For vacuum nonassociative gravitational
equations, a general decoupling property was proven in [26]
for a large class of quasi-stationary solutions with Killing
symmetry on ∂4 = ∂t on the first two shells for nonholonomic
dyadic decompositions of M. The results of that paper will
be used for further developments and applications of nonas-
sociative geometric methods in modern gravity, cosmology
and astrophysics, non-standard particle theories, etc., by con-

2 Which can not be diagonalized by coordinate transforms in a finite
spacetime/ phase space region.
3 i.e. non-integrable, equivalently anholonomic/nonholonomic; for
details and definitions see above cited works and next section.

structing nonassociative locally anisotropic BH and cosmo-
logical solutions generalizing the constructions reviewed in
[32].

The nonassociative vacuum phase equations (1) and
related spacetime equations (2) can be considered as some
4-d curved spacetime Einstein equations with an effective
real source proportional to h̄κ encoding star deformations
and R-fluxes from a generalized co-fiber dynamics projected
on V . Re-defining such systems of nonlinear PDEs in non-
holonomic variables, we can construct generic off-diagonal
quasi-stationary solutions (when the coefficients of metrics
and connections depend only on space coordinates in certain
adapted systems of reference). There is a rigorous proof in
[26] that nonassociative vacuum Einstein equations (1) can be
decoupled in general form for quasi-stationary phase spaces
and a nontrivial cosmological constant. Using such a decou-
pling property and respective classes of nonlinear symme-
tries, we can encode the cofiber dynamics into real effective
R-flux sources as in (2) and/or cosmological constants. As
a result, we work self-consistently with 4-d Einstein equa-
tions for nonassociative distortions of off-diagonal compo-
nents of metrics. Exact and parametric solutions (locally
anisotropic quasi-stationary and/or cosmological ones) can
be constructed applying the AFCDM method and results of
[32] redefined in this work for real sources with R-fluxes.
Using off-diagonal real nonholonomic vacuum configura-
tions, we can compute also as parametric induced values
respective nonsymmetric components of star-deformed met-
rics and complex parametric sources. This formalism can
be elaborated independently for the first two nonholonomic
dyadic shells on a 4-d spacetime. In general, there are 4
dyadic oriented shells on a 8-d phase space and such methods
are elaborated in [26]. Those formulas will be used in our fur-
ther partner works in order to construct, for instance, nonas-
sociative BH and solitonic solutions on 8-d phase spaces gen-
eralizing some respective classes of solutions from [37,38].

1.3 Main purposes of the paper

In this work, we concentrate on a particular class of black
hole, BH, and black ellipsoid, BE, configurations with thin
accretion disks determined by nonassociative distorted solu-
tions in 4-d modified gravity encoding effective R-flux
sources as in (2). The first goal is to construct such generic off-
diagonal parametric solutions in explicit form and consider
the conditions when quasi-stationary metrics describe BEs
(which are different from the Kerr metrics) and may trans-
form into Schwarzschild like BH configurations. It should be
noted that the spacetime in the vicinity of respective horizons
with zero effective cosmological constants may remain vac-
uum if we relax the condition of asymptotically flatness for
quasi-stationary R-flux distorted metrics. We proved that BEs
can be stable in various variants of modified (non) commuta-
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tive gravity and geometric flow theories (including associa-
tive gravity models with nonsymmetric metrics, string grav-
ity etc.) and in GR with spacetime and/or matter distortions
[29,39,40]. Those constructions were for nonholonomic gen-
eralizations of Chandrasekhar’s equilibrium conditions and
formulas on stability of BH solutions [41]. We can extend
the geometric constructions and methods for solutions con-
structed in this paper because we use the same AFCDM but
for different types of effective sources which can be stabilized
by corresponding classes of nonholonomic constraints.

The second goal of this paper is to study in brief the prop-
erties of relativistic thin disks around nonassociative dis-
torted Schwarzschild BHe and BEs up to the quadrupole
approximations. For associative and commutative models,
such constructions are reviewed in [42,43]. The effective R-
flux source can be treated similarly to an external mass type
distribution resulting in distortions with contributions of the
outer parts of the disk. Self-gravity and star product defor-
mation effects play also important roles. Using the nonasso-
ciative distorted geometry, we can also study the inner part
of locally anisotropic thin accretion disks. In this paper, the
anisotropy will be stated by dependencies on an angular type
space coordinate x3 = φ.For respective classes of generating
functions, we can describe stable ellipsoidal orbits encoding
contributions from effective R-flux sources.

The plan of the article work is as follows: in Sect. 2, we out-
line necessary results on nonassociative geometry and effec-
tive R-sources for vacuum gravitational equations with non-
holonomic 2 + 2 decoupling. Section 3 is devoted to explicit
constructions of quasi-stationary 4-d generic off-diagonal
and BH and BE solutions encoding nonassociative star defor-
mation and R-flux real effective sources. We study possible
physical effects of locally anisotropic thin accretion discs
around nonassociative BEs and BHs determined by nonas-
sociative distortions in Sect. 4. Conclusions are provided in
Sect. 5.

2 Nonholonomic 2 + 2 spacetime splitting and
nonassociative vacuum Einstein equations

The geometric preliminaries on nonassociative star R-flux
deformations presented in this section refer to a four dimen-
sional, 4-d, nonholonomic spacetime projection of the non-
holonomyc dyadic phase space geometry and vacuum grav-
ity formulated for 8-d (co) tangent Lorentz bundles in [26].
Such associative and commutative geometric methods for
6–10 dimensions are elaborated in details and reviewed in
[31,32,40]. For a phase spaceM enabled with nonholonomic
dyadic shell s = 1, 2, 3, 4 structure corresponding to a con-
ventional nonholonomic (2 + 2)+ (2 + 2) splitting (in brief,
called a s-decomposition), it is possible to prove a general
decoupling property of nonassociative vacuum gravitational

equations formulated for a canonical distinguished connec-
tion ̂D� = ∇� + ̂Z�. Such a nonassociative linear distin-
guished connection, d–connection, can be nonholonomically
constrained for zero distortions, ̂Z� = 0, to ∇�. This can be
used for generating solutions of the nonassociative Einstein
equations for a Levi Civita, LC, connection with nontrivial
cosmological constants and effective R-flux sources gener-
alizing the methods and solutions presented in [32]. On 4-d
nonholonomic spacetimes V with a corresponding nonholo-
nomic (2 + 2)-splitting, the nonassociative vacuum equations
(1) with real R-flux induced sources (2) can be solved using
star deformations of constructions from [37,38], considered
for shells s = 1, 2.

2.1 Nonassociative nonholonomic star products from real
R-flux sources, metrics and connections

In the partner works [25,26], the nonassociative vacuum Ein-
stein equations from [3,4] were re-defined and generalized in
canonical nonholonomic variables on a phase space modeled
as a cotangent Lorentz bundleM = T ∗

�
V. Such variables are

enabled with nonlinear connection, N-connection structure
�N and a N-adapted star product defined with respect to gen-
eral frame structures. That allowed to develop the AFCDM
and prove a general decoupling property and construct exact
and parametric solutions in nonassociative gravity when the
geometric constructions are adapted to a s-connection struc-
ture �

sN and a nonholonomic s-decomposed nonassociative
phase space M = T ∗

s�V.
4

2.1.1 Nonlinear connections with dyadic splitting and
nonassociative star product

We outline for nonholonomic spacetime shells s = 1 and 2
the definitions and necessary formulas from Sect. 2.1 of [26].

Nonholonomic dyadic decomposition (s-decomposition):
We can define in global form (2 + 2) + (2 + 2) non-

holonomic splitting of phase spaces considering respec-
tive classes of N–connection structures (s-connections, with
s = 1, 2 when s = 3, 4 contribute indirectly via certain
effective sources):

�

sN : sTT∗V = 1hT ∗V ⊕ 2vT ∗V ⊕ 3cT ∗V ⊕ 4cT ∗V,
when �

2N : 2TT
∗V= 1hT ∗V ⊕ 2vT ∗V, and

�

sN : sTT∗
�
V = 1hT ∗

�
V ⊕ 2vT ∗

�
V ⊕ 3cT ∗

�
V ⊕ 4cT ∗

�
V, when

when �

2N : 2TT
∗
�
V= 1hT ∗

�
V ⊕ 2vT ∗

�
V . (3)

4 In this series of works on nonassociative nonholonomic geometry
and gravity, we follow such conventions and notations for local real
(spacetime and total phase space) and complex (co) fiber coordinates:
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Such dyadic decompositions into conventional 2-dim non-
holonomic distributions of T T V, T T ∗V and T T ∗

�
V involve

dimensions dim( 1hT ∗V ) = dim( 2vT ∗V ) = dim( 3cT ∗V )
= ( 4cT ∗V ) = 2 and dim( 1hT ∗

�
V ) = dim( 2vT ∗

�
V ) =

dim( 3cT ∗
�
V ) = ( 4cT ∗

�
V ) = 2, where, for instance, left up

labels like 1h, 3c etc. state that using nonholonomic (equiv-
alently, anholonomic and/or non-integrable) distributions we
split respective 8-d total spaces into oriented 2-d shells with
numbers 1, 2, 3 and 4.

On a Lorentz spacetime manifold V, nonholonomic
dyadic splitting with N-connections (3) are defined locally
by coefficients �

2N = {Ni2
i1
(xi1 , xa2)} used for constructing

N-elongated bases (N-/s-adapted bases),

Footnote 4 Continued

on V and sV : x = {xi } = s x = {xis }
= (xi1 , xa2 → ya2 ) = (xi2 ), with x4 = t,

where i, j, ... = 1, 2, 3, 4; shells :
s = 1 : when i1, j1, ... = 1, 2; s = 2, a2, b2, ... = 3, 4;
on TV and TsV : u = (x, y) = {uα = (uk = xk , ua = ya)}
= su = ( s x, s y) = {uαs = (uks = xks , uas = yas )}

= (xi1 , xi2 , xa3 → ya3 , xa4 → ya4 ), shells

s = 1, 2, 3, 4, where α, β, ... = 1, 2, ...8; a, b, ... = 5, 6, 7, 8; a3, b3, ...

= (5, 6); a4, b4, .. = (7, 8);
on T ∗V and T ∗

s V : �u=(x, � p)={ uα=(uk=xk , � pa = pa)}
= (

�

3x,
�

4 p) = { �uα = ( �uk3 = �xk3 , � pa4 = pa4 )}
= �

su = (s x,
�

s p) = { �uαs = (xks , � pas = pas )}
= (xi1 , xi2 , � pa3 = pa3 ,

� pa4 = pa4 ),

= (
�

3u = �

3x,
�

4 p) = { �uα3 = (xi1 , xi2 , �xi3 → � pa3 ),
� pa4 },

where �xα3 = (xi1 , xa2 , � pa3 = pa3 ).

onT ∗
�
V and T ∗

�sV : �u=(x, � p)={ �uα=(uk=xk , � pa = (i h̄)−1 pa)}
= (

�

3x,
�

4 p) = { �uα = (�uk3 = �xk3 , � pa4 = (i h̄)−1 pa4 )}
= �

su = ( s x,
�

s p) = { �uαs = (xks , � pas = (i h̄)−1 pas )}
= (xi1 , xi2 , � pa3 = (i h̄)−1 pa3 ,

� pa4 = (i h̄)−1 pa4 ),

= (
�

3u =�

3x,
�

4 p)={ �uα3=(xi1 , xi2 , �xi3 → � pa3 ),
� pa4 }, where

�xα3 = (xi1 , xi2 , � pa3 = (i h̄)−1 pa3 ).

Boldface indices are used for spaces and geometric objects enabled with
(adapted to) N-connection structure. Our notations are different from
the spacetime coordinates with momentum like variables considered in
[3,4] and we consider a N- and/or s-adapting of formulas for considering
quasi-Hopf structures. An up (or low, on convenience), label “ �” is
used in our papers for distinguishing coordinates with “complexified
momenta” from real phase coordinates �uα = (xk , pa) on T ∗V, see
similar conventions in Finsler–Lagrange–Hamilton geometry [31]. The
formalism of N- and s-adapted labels and respective abstract or frame
coefficient notations is elaborated in such a way that allows to use
unified “symbolic” nonholonomic geometric calculus and many proofs
by analogy.

�eαs =
(

�eis = ∂

∂xis
− �N isas

∂

∂ � pas
,

�ebs = ∂

∂ � pbs

)

on sTT∗
�
V, for s = 1, 2, 3, 4;

when for shells s = 1, 2 : �eα1

=
(

�ei1 = ∂

∂xi1
= ∂i1

)

, for i1 = 1, 2;

�eα2 =
(

�ei1 = ∂

∂xi1
− Na2

i1

∂

∂xa2
, �eb2 = ∂

∂xb2

)

=
(

�ei1=∂i1 − Na2
i1
∂a2 ,

�eb2 = ∂b2

)

, for b2 = 3, 4,

(4)

where we follow the conventions for dyadic indices and coor-
dinates stated in footnote 4.

For dual shell s-adapted bases to (4), s-cobases, we have

�eαs = ( �eis = dxis , �eas = d � pas
+ �N isas dx

is ) on sT
∗T∗

�
V,

when on shells s = 1, 2 : �eα1 = (ei1 = dxi1);
�eα2 = ( ei1 = dxi1 , �ea2 = d xa2+ �Na2

i2
dxi2),

(5)

defined by the same N-connection coefficients and respective
s-decomposition which can be considered on spacetime and
extended on phase spaces.

2.1.2 Nonassociative star product and dyadic s-structures

In our partner works [25,26], we generalized for nonholo-
nomic phase spaces endowed with N- /s–connection structure
the definition of nonassociative star product. For coordinate
bases, such formulas transform respectively into those pre-
sented is section 2 of [3] and section 2 of [4]. Here we provide
necessary definitions for shells s = 1, 2.

Considering a full phase space M containing a spacetime
direction �eis and a momentum like cofiber direction �ebs ,
see formulas (4), for any two functions z(x, p) and q(x, p),
we define a nonholonomic s-adapted star product �s :

z �s q := ·[F−1
s (z, q)]

= ·[exp(−1

2
i h̄( �eis ⊗ �eis − �eis ⊗ �eis )

+ i�4
s

12h̄
Ris jsas (pas

�eis ⊗ �e ja− �e js ⊗ pas
�eis ))]z ⊗ q

= z · q − i

2
h̄[( �eis z)(

�eis q) − ( �eis z)( �eis q)]

+ i�4
s

6h̄
Ris jsas pas (

�eis z)(
�e js q) + . . . . (6)

In these formulas, the constant � defines the R-flux contribu-
tions for a antisymmetric Ris jsas background in string theory,
with s-indices. We can restrict the definitions for any s = 1
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and s = 2, when the R-flux contracts with momentum like
coordinates in an un-stated explicit form if you consider only
the base spacetime V . In these formulas, the tensor product
⊗ is used in a s-adapted form indicating on which factor of
z ⊗ q the s-adapted derivatives act with the dot form (for
many computations with small parametric decompositions
on h̄ and κ = �3

s/6h̄, the tensor products turn into usual
multiplications).

2.1.3 Symmetric and nonsymmetric spacetime s-metric
structures and star deformations

For total phase space models, a (pseudo) Riemannian sym-
metric metric on cotangent Lorentz bundle T ∗V is defined
by a tensor �g = { �gαβ} ∈ T T ∗V ⊗ T T ∗V of local sig-
nature (+,+,+,−;+,+,+,−). Such a metric structure
can be expressed in a nonholonomic dyadic form for shells
s = 1, 2, 3, 4 as a s-metric on phase space M = T∗

�
V.

We state nonholonomic 2 + 2 decompositions of geometric
objects on the first two shells s = 1, 2 if we consider sym-
metric tensor products of s-bases � eα2 ∈ T ∗

2 T
∗
�
V (4),

g = �

sg = (h1
�g, v�

2g, c3
�g,c4

�g)

∈ TT∗
�
V ⊗�N TT∗

�
V

= �gαsβs (
�

su)
�eαs ⊗�s

�eβs

= {�gαsβs = ( �gi1 j1 ,
�ga2b2 ,

�ga3b3, �ga4b4)}
→ �

2g = (h1
�g, v2

�g) ∈ hT∗
�
V ⊗�N vT∗

�
V

= �gα2β2(
�

2u)
�eα2 ⊗�2

�eβ2

= {�gα2β2 = ( �gi1 j1 ,
�ga2b2}. (7)

For star products and R-flux deformations to nonassociative
geometry, symmetric metrics transform, in general, into sym-
metric and nonsymmetric ones [3,4] (for nonholonomic N-
/s-adapted constructions, see respectively [25,26]). We use
such s-adapted parameterizations (s-metrics)

symmetric: �

�sg = (h1
�

�sg, v2
�

�sg,c3
�

�sg,c4
�

�sg)

= {�

�gαsβs = �

�gβsαs
= (��gi1 j1 = �

�g j1i1 ,
�

�ga2b2 = �

�gb2a2 ,
�

�g
a3b3

= �

�g
b3a3, �

�g
a4b4 = �

�g
b4a4)}

→ �

�2g = (h1
�

�sg, v2
�

�sg) = {�

�gα2β2 = �

�gβ2α2

= (��gi1 j1 = �

�g j1i1 ,
�

�ga2b2 = �

�gb2a2)}, (8)

and nonsymmetric: �

�sg = (h1
�

�sg, v2
�

�sg, c3
�

�sg,c4
�

�sg)

= {�

�gαsβs = (��gi1 j1 	= �

�g j1i1 ,
�

�ga2b2 	= �

�gb2a2
�

�g
a3b3

	= �

�g
b3a3, �

�g
a4b4 	= �

�g
b4a4) 	= �

�gβsαs }
→ �

�2g = (h1
�

�sg, v2
�

�sg)

= {�

�gα2β2 = (��gi1 j1 	= �

�g j1i1 ,
�

�ga2b2 	= �

�gb2a2}. (9)

On spacetime V and considering coordinate bases, when
�eα2 → �eα2 = d �uα2 ∈ hT ∗

�
V , we can omit the

shell/dyadic label s. Respective star deformed metric struc-
tures can be written in generic off-diagonal forms,

symmetric , �

�2g={�

�gα2β2 	= �

�gβ2α2}, and nonsymmetric ,
�

�2G={�

�Gα2β2 	= �

�Gβ2α2}. (10)

The coefficients in above formulas are related via frame
transforms,

�gαsβs = �e
αs
αs

�e
β
s
βs

�gαsβs
= �e

α
αs

�e
β

βs
�gαβ

→ �gα2β2 = �e
αs
α2

�e
β
s
β2

�gαsβs

= �e
α2
α2

�e
β

2
β2

�gα2β2
,

relating respective dyadic decompositions with off-diagonal
matrices.

2.1.4 Canonical s-connections, (2 + 2)-splitting, and
distortions of LC-connections

Choosing a s-metric �

sg → 2g (7), we can define two impor-
tant linear connections and respective phase space and space-
time projections:

(�sg,
�

sN) →

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

�∇ :
↓

2∇ :

�∇�

sg = 0; �

∇T = 0,
↓

2∇ 2g = 0; 2∇T = 0
LC–connection ;

�

s
̂D :
↓

2̂D :

�

s
̂D�

sg = 0; h1
�
̂T = 0, v2

�
̂T = 0, c3

�
̂T = 0, c4

�
̂T = 0,

h1v2
�
̂T 	= 0, h1cs �

̂T 	= 0, v2cs �
̂T 	= 0, c3c4

�
̂T 	= 0,

↓
ŝDsg = 0; h1 ̂T = 0, v2 ̂T = 0, h1v2 ̂T 	= 0,

canonical
s-connection .

(11)
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A s-operator �

s
̂D = (h1

�
̂D, v2

�
̂D, c3

�
̂D, c4

�
̂D) acts

on tangent spaces of phase space, i.e. on TT∗
�
V, with dyadic

(co) vertical splitting, being a s-connection adapted to a N–/s-
connection structure �

sN. Such linear (affine) connections and
N-connections and their s-torsion are nonholonomic when
the torsions of type �

̂T , etc. are computed in standard form.
We use “hat” labels in order to emphasize that such s-adapted
values are determined by a s-metric structure following cer-
tain nonholonomic constraints involving (partial) zero tor-
sion and metric compatibility conditions. When such val-
ues are computed on the spacetime shells s = 1 and 2 and
trivial co-fibers c3 and c4, we can omit the label “�” and
write 2̂D = (h1̂D, v2̂D). The LC-connection �∇ = �

s∇ and
its spacetime projection 2∇ are not a d-/ or s-connections
because such linear connections do not preserve any N-/s-
connection splitting and/or dyadic decompositions under par-
allel transports in respective phase space and spacetime.

In [25,26], we provide all abstract and N- / s-adapted for-
mulas for canonical s-connections and their distortions on
TT∗

�
V.Here, we consider some important nonholonomic for-

muls for 2 + 2 spacetime splitting and �

2
̂Dwhich are important

for our further considerations. We can check by straightfor-
ward computations that the respective conditions from (11)
are satisfied by such s-coefficients,

�

2
̂D = { �

̂	
γ2
α2β2

= (̂Li1
j1k1

,̂La2
b2 k1

, ̂Ci1
j1c2

, ̂Ca2
b2c2

)}, where

̂Li1
j1k1

= 1

2
�gi1r1( �ek1

�g j1r1+ �e j1
�gk1r1− �er1

�g j1k1),

̂La2
b2 k1

= �eb2(
�Na2

k1
) + 1

2
�gb2c2( �ek1

�gb2c2

− �gd2c2
�eb2

�Nd2
k1

− �gd2b2
�ec2

�Nd2
k1
),

̂Ci1
j1c2

= 1

2
�gik �ec

�g jk, ̂Ca2
b2c2

= 1

2
�ga2d2( �ec2

�gb2d2+ �eb2
�gc2d2− �ed2

�gb2c2).

(12)

We can compute a canonical distortion relation to a
canonical s-connection, or respective spacetime canonical
d-connection,

�

s
̂D = �∇ + �

s
̂Z, or 2̂D = 2∇ + 2̂Z. (13)

For instance, the distortion s-tensor, �

s
̂Z = { �

̂Zαs
βsγs

[ �
̂Tαs

βsγs
]}

from (13) is an algebraic combination of the coefficients the
canonical torsion s-tensor �

s
̂T = { �

̂Tαs
βsγs

} of �

s
̂D. Similar

algebraic combinations can be defined for the nonholonomic
spacetime projections with s = 1, 2.

2.1.5 Canonical nonholonomic Ricci and Einstein
d-tensors for (2 + 2)-splitting

For all types of linear connections defined in (11), we can
define and compute in standard forms as in metric-affine

geometry respective torsions, see details on (non) associative
formulations in [25,26]. Here we provide necessary formu-
las without details on computations of s-adapted coefficients
of torsions and curvatures using derivatives and contractions
with s-connection and s-metric coefficients. For a nonholo-
nomic spacetime (2 + 2)-splitting, there are considered fun-
damental geometric objects like torsions 2∇T = 0 and 2̂T ,

and curvature, 2∇R = {∇ Rα2
β2γ2δ2

} and �

2
̂R = { �

̂Rα2
β2γ2δ2

},
s-tensors.

The canonical Ricci s-tensor on the first two shells,

2 ̂Ric = {̂R β2γ2 := ̂Rγ2
α2β2γs

}, is characterized by such a
splitting of s-adapted coefficients,

̂R β2γ2 = {̂R h1 j1 = ̂Ri1
h1 j1i1

, ̂Pj1a2
= − ̂Ri1

j1i1a2
,

̂Pb2k1 = ̂Rc2
b2k1c2

, �
̂Sb2c2 = ̂Ra2

b2c2a2
}. (14)

Using two linear connections (11), we define two different
scalar curvatures,

2̂Rsc := gα2β2 �
̂Rα2β2 = �gi1 j1 �

̂Ri1 j1

+ �ga2b2 �
̂Ra2b2 and �R := �gα2β2 �Rα2β2 .

The modified Einstein equations for (2g,2̂D) on T∗
2�
V with a

nontrivial cosmological constant �λ can be postulated using
the same geometric principles as in GR.5 In abstract geomet-
ric form (see, for instance, [33]), re-defining the geometric
constructions for nonholonomic Lorentz manifolds/(co) bun-
dles [31], we write

2 ̂En := 2 ̂Ric − 1

2
2̂Rsc = �λ2g. (15)

The value 2 ̂En = { ̂Eα2β2
} is by definition the canonical Ein-

stein d-tensor. The cosmological constant �λ encodes as an
effective source certain contributions from cofiber dynamics
of phase space. If we completely ignore such possible con-
tributions, we should write �λ = λ and work with nonholo-
nomic 2 + 2 splitting and Einstein manifolds for the canonical
d-connection. It should be emphasized that 2̂D(2 ̂En) 	= 0.
This means that the conservation laws on nonholonomic
manifolds are subjected to additional non-integrable con-
straints (similar constructions are considered in nonholo-
nomic mechanics). Using distortions (13), we can always
nonholonomically deform such systems of nonlinear PDEs
into equivalent ones, 2 ̂En → ∇En, when 2∇(∇En) = 0.
Such canonical s-distortions are determined by respective
distortions of the curvature and Ricci tensors,

2 ̂R = 2∇R+ 2 ̂Z, 2 ̂Ric = 2∇ Ric + 2 ̂Zic,

2̂Rsc = 2∇ Rsc + 2 ̂Zsc, and

2 ̂En = 2∇En + 2 ̂Zn. (16)

5 We keep the label “�
′′ if this constant is taken for the total phase space

but the geometric objects are nonholonomically constrained on shells
s = 1, 2 and/or projected on a nonholonomic Lorentz base.
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In these formulas, the distortion s-tensors ∇ ̂Z and ∇ ̂Zic
are correspondingly determined by (2̂Z, 2g) on a (pseudo)
Riemannian phase background with LC-connection 2∇
encoding the N-connection coefficients for a nonholonomic
2 + 2 splitting. We omit abstract and cumbersome s-
adapted/coordinate formulas for such s-objects and respec-
tive geometric and physical systems of PDEs. Finally, we
note that all geometric constructions can be performed
equivalently working with different geometric data

(

2g, 2∇)

and/or (2g, 2N, 2̂D) if we prescribe a zero, or non-zero cos-
mological constant of type �λ or λ.

2.2 Nonholonomic geometry of star deformed spacetime
(non) symmetric d-metrics

In [3,4], nonassocitative geometric models determined by
R-flux star deformations are elaborated in coordinate frames
and beginning with a flat (co) fiber metric �η. Star prod-
ucts � are defined in terms of coordinate bases �∂ when
nonassociative generalizations of (pseudo) Riemann geom-
etry are constructed with symmetric, �

�g, and nonsymmet-
ric, �

�G, star-metric structures and a related nonassociative
variant of LC-connection �∇�. Conventionally, there are
considered star-deformations of geometric structures when
( �η, �∂, �∇) → (� , A�,

�

�g,
�

�G, �∂ �∇�), when the con-
structions are adapted to quasi-Hopf algebras A�, or other
type algebraic and geometric structures. In such an approach,
it is difficult technically to decouple physically important
systems of nonlinear PDEs.

2.2.1 Convention 2 for nonassociative phases with
nonholonomic spacetime shells

In our recent partner works [25,26], we followed Convention
2 on constructing nonassociative nonholonomic geometries
which allow the application of the AFCDM for constructing
exact solutoins of graviational and geometric flow equations.
In this paper, we adapt those assumptions for study nonholo-
nomic vacuum Einstein equations with 2 + 2 splitting and

effective sources encoding star and R-flux contributions form
the total 8-d phase space.

Convention 2 (extended) on nonholonomic constraints from
nonassociative phase spaces to spacetime configurations: On
phase spaces, star products (6) are defined via nonholo-
nomic dyadic decompositions on �eαs with R-flux terms and
there are computed respective star deformations of canon-
ical s-adapted geometric objects into nonassociative ones,
with symmetric, �

�sg, and nonsymmetric, �

�sg, star s-metrics
and canonical star s-connection �

sD
�, see definitions below

(details are provided in [25,26]). The nonholonomic dyadic
star deformations of geometric canonical s-structures and
their projections on the spacetime shells s = 1, 2 are defined
by such star transforms of geometric data:

(�N , A�
N ,

�

�g,
�

�g,
�N, �eα, �D�

)

↓
(�2, A�

2,
�2
� g, �2

� g, 2N, eα2 ,
�

2D
�)

⇔
(�s, A�

s ,
�

�sg,
�

�sg,
�

sN,
�eαs ,

�

sD
�
)

↓
(�2, A�

2,
�2
� g, �2

� g, 2N, eα2 ,
�

2D
�)

⇑
( �g, �N, �eα, �

̂D)
↓

( 2g, 2N, eα2 ,2
̂D)

⇔
(�sg,

�

sN,
�eαs ,

�

s
̂D),

↓
(2g, 2N, eα2 ,2

̂D)

(17)

for �D� = �∇�+ �
̂Z� and �

sD
� = �∇�+�

s
̂Z� with respective

spacetime 2 + 2 splitting 2D� = 2∇� + 2̂Z�. This convention
with transforms (17) allows us to construct large classes of
generic off-diagonal solutions on 4-d spacetimes with effec-
tive sources encoding nonassociative R-flux distortions.

2.2.2 Nonsymmetric and symmetric 2 + 2 metrics and their
inverses

In [26], metric s-structures in nonassociative nonholonomic
differential geometry and related quasi-Hopf s-structures are
studied on 8-d phase spaces. A star metric symmetric s-tensor
(8) for shells s = 1, 2, 3, 4, on phase space, and s = 1, 2 on
h-v-decompositions, with R-flux induced terms on a Lorentz
base manifold can be represented in the form

�

�sg = �

�gαsβs �s (
�eαs ⊗�s

�eβs ) ∈ �1
� ⊗�s �

1
�; and

�

�2g = �

�gα2β2 �2 (
�eα2 ⊗�2

�eβ2) ∈ �1
� ⊗�2 �

1
�,

where the geometric objects on spacetime shells do not
depend on co-fiber coordinates only on some special s-
adapted bases. In general, R-flux terms connect and mix
indices of all shells and we need additional assumptions on
how to extract spacetime geometric objects with dependen-
cies only on xα2 coordinates. We can work with background
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metrics with flat cofiber components c3 and c4 when the s-
connection structure is prescribed to be nontrivial only for
s = 1, 2. In our approach, there are considered real-valued
s-adapted coefficients �

�g( �eαs ,
�eβs ) = �

�gαsβs = �

�gβsαs ∈
A�

s , with respective restrictions for s = 1, 2. Such a s-metric
and respective nonholonomic constraints for �

�sg →�

�2g are
both compatible with a star s-connection �

sD
� → �

2D
� if the

conditions

�

sD
��

�sg = 0 and �

2D
��

�2g = 0 (18)

are satisfied. We shall consider below how star deformations
of s-connections and their shell projections are defined and
computed, see details in [25,26].

The models of nonassociative geometry and gravity for-
mulated in [3,4] involve “non-geometric” constructions
when R-flux deformations result in nonsymmetric metric
structures. Such geometric off-diagonal and/or d-/s-objects
have to be considered additionally to the symmetric metric. A
nonsymmetric metric on phase space T∗

�
V with restrictions

to shells s = 1, 2, can be defined in generic off-diagonal
form with respect to local coordinate bases when

�

�Gαβ = �

�gαβ − iκRτξ
α

�∂ξ
�

�gβτ and
�

�Gα2β2 = �

�gα2β2 − iκRτξ
α2

�∂ξ
�

�gβ2τ . (19)

Such coefficients define, respectively, some nonsymmetric
8×8 and 4×4 matrices but on the spacetime shells the coef-
ficients are determined byRτξ

α2 -coefficients even �

�gα2β2 are
constrained to depend only on spacetime coordinates xβ2 .

With respect to s-adapted bases �eξs → �eξ2 and ten-
sor products of their dual s-bases, a nonsymmetric s-metric
structure (9) can be parameterized in a [(2 × 2)+ (2 × 2)]+
[(2×2)+(2×2)] block form which can be nonholonomically
restricted to a matrix [2 × 2]+ [2 × 2], when

�

�gαsβs = �

�gαsβs − iκRτsξs
αs

�eξs
�

�gβsτs → �

�gα2β2

= �

�gα2β2 − iκRτsξs
α2

�eξs
�

�gβ2τs . (20)

Such formulas are similar to (19) but we underline the R-
flux coefficients because they are re-written in s-adapted form

Rτsξs
αs

in order generate a star nonsymmetric generalization
of the commutative s-metric (7). On total phase space, we can
write �

�sg = �

�gαsβs �s (
�eαs ⊗�s

�eβs ) = �

�Gαβ � ( d �uα ⊗�

d �uβ), where �

�gαsβs 	= �

�gβsαs and �

�Gαβ 	= �

�Gβα. We can
also consider nonholonomic constraints for s = 1, 2,

�

�2g = �

�gα2β2 �2 (
�eα2 ⊗�2

�eβ2), (21)

from which we can find off-diagonal �

�Gα2β2 but such coef-
ficients in coordinate bases may depend not only on xβ2 but
also on cofiber coordinates pa3 and pa4 , for s = 3, 4.

In [25,26], we elaborated a nonholonomic and s-adapted
geometric formalism for quasi-Hopf s-structures, It gener-
alized the holonomic procedure for constructing inversions
of matrices for a star quasi-Hopf algebra A� formulated in
[4]. So, working in coordinates, or s-adapted frames, we can

compute, for instance, the inverse matrix �G
−1 = {�

�Gαβ} of
a matrix �G = {�

�Gαβ} as a solution of algebraic equations
�

�Gαβ · �

�Gβγ = �

�Gγβ · �

�Gβα = δαβ . In geometric series, such
matrix formulas are of type

�

�G
αβ = �gαβ − iκ �gατRμν

τ (∂μ
�gνε)

�gεβ + O(κ2),

(22)

which Rμν
τ constructing via nonholonomic transforms. We

can write similar formulas in block s-forms for various matri-
ces constructed from s-adapted coefficients of a nonsymmet-
ric star s-metric �

�gαsβs and, respectively, of a symmetric star
d-metric �

�gαsβs .

2.2.3 Star deformed LC-connections, canonical
s-connections and spacetime projections

Using a star d-metric �

�g (8) with spacetime shells s = 1, 2
nonholonomic constraints (projections) to �

2�g, and applying
tedious computations with star product (6), following Con-
vention 2 (17), we can define and compute star deformations
of respective LC- and canonical s-connections from (11).
Such details are contained for all shells on phase spaces in
our partner work [26]. Here we present some important for-
mulas stated in additional forms for spacetime shells which
allow us to and work in equivalent forms with two different
linear connections both on total phase spaces and on space-
times encoding R-fluxes and star deformations:
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(
�

�sg, �

sN)↓
(

�

�2g,
�

2N)
→

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

�

�∇ :
↓

2
�∇ :

�

�∇ �

�sg=0; �

∇T �=0,

↓
�

�∇ �

�sg=0; �

∇T �=0,

star LC-connection;

�

s
̂D� :
↓

2̂D� :

�

s
̂D� �

�sg = 0; h1
�
̂T � = 0, v2

�
̂T � = 0, c3

�
̂T � = 0, c4

�
̂T � = 0,

h1v2
�
̂T � 	= 0, h1cs �

̂T � 	= 0, v2cs �
̂T � 	= 0, c3c4

�
̂T � 	= 0,

↓
2̂D� �

�2 g=0; h1 2̂T �=0,v2 ̂T �=0,

canonic s-connect.

(23)

In these formulas, decompositions �

s
̂D� = (h1

�
̂D�, v2

�

̂D�, c3
�
̂D�, c4

�
̂D�) and 2̂D� = (h1 ̂D�, v2 ̂D�) are con-

sidered for respective nonholonomic dyadic horizontal and
(co) vertical splitting, which define s-connections adapted
to respective nonlinear s–connection structures �

sN → 2N.6

Such canonical s-connection and d-connection satisfy the
metricity conditions (18) and involve some “mixing shells”
nontrivial torsion coefficients of �

̂T �, and ̂T �.Pure shell tor-
sion coefficients vanish in s-adapted (co) frames �eαs → eα2

(4) and �eαs → eα2 (5). The torsion s-tensor of any s-
connection can be defined in standard form as for any affine
(linear) connection and subjected to respective star defor-
mations (see below some necessary formulas; more details
are presented in [25,26]).

The R-flux s-adapted contributions are proportional to κ ,
can be computed both on total phase space with nontrivial
projections on spacetime shells using respective s-adapted
frames and symmetric s-metric coefficients,

�

[1]̂	�αsβsμs = 1

2
Rξsτs

μs
( �eξs

�eαs
�

�gβsτs

+ �eξs
�eβs

�

�gαsτs ), for s = 1, 2, 3, 4;
�

[1]̂	�α2β2μ2 = 1

2
Rξsτs

μ2
( �eξs

�eα2
�

�gβ2τs + �eξs
�eβ2

�

�gα2τs ).

(24)

We note that formulas (24) involve higher shells (with s =
3, 4) contributions on spacetime shells s = 1, 2 even we
work in s-adapted frames. Using (5), we can define and com-
pute in complete parametric form the s-adapted coefficients
of the star canonical s-connection �

s
̂D� = { �

̂	
γs
�αsβs

} and
respective spacetime components. For simplicity, we pro-
vide only the formulas for spacetime 2 + 2 decompositions
if they do not encode certain higher shell mixing, ̂	

γ2
�α2β2

=
[0]̂	γ2

�α2β2
+iκ [1]̂	γ2

�α2β2
= (̂Li1

� j1k1
, ̂La2

�b2 k1
, ̂Ci1

� j1c2
, ̂Ca2

�b2c2
).

The nonsymmetric s-metric �

�gαsβs (20) is subjected to such
conditions

6 In brief, such formulas are with respective h1-v2-c3-c4 and h1-v2
decompositions.

�e
τs
�s

�

�gτsγs �s
�
̂	
γs
�αsβs

= �e
τs
�s (

�

[0]̂	�τsαsβs + iκ�

[1]̂	�τsαsβs ),

�e
τ2
�2

�

�gτ2γ2 �2
�
̂	
γ2
�α2β2

= �e
τ2
�2 (

�

[0]̂	�τ2α2β2 + iκ�

[1]̂	�τ2α2β2). (25)

In these formulas, the s-components of �

[0]̂	�τsαsβs are deter-
mined by formulas (12) using the respective (inverse) sym-
metric star metric, when �

[1]̂	�αsβsμs and �

[1]̂	�α2β2μ2 (24)

involve respective s-compositions of �

�gβsτs and �

�gβ2τ2 .

All definitions and formulas from [3,4] can be rewritten
in s-adapted form if �∂α → �eαs and �∂α2 → �eα2 as we
prove in [25,26]. Similarly to (13), we can compute s-adapted
coefficients of nonassociative star deformed LC-connections
to respective canonical s-connections,

�

s
̂D� = �∇� + �

�s
̂Z and 2̂D� = 2∇� + �2̂Z. (26)

In explicit form, the s-adapted coefficients of distortion s-
tensor are some algebraic functionals on s-adapted torsion

2T � = { �
̂Tα2

�β2γ2
}, for instance, �

2�
̂Z = { �

̂Zα2
�β2γ2

[ �
̂Tα2

�β2γ2
]}.

We omit such formulas in this work because they are not used
for constructing exact and parametric solutions.

Using nonholonomic dyadic decompositions, we can
describe equivalently in coordinated frames or s-adapted
frames any model of nonassociative phase geometry and
gravity determined by a nonsymmetric s-metric structure
and spacetime projections �

�gαsβs → �gα2β2 . For any given
s-connection and R-flux s-coefficients data, we can con-
sider only the respective symmetric star s-metrics �

�gαsβs →
�gα2β2 . Such nonassociative geometric models with (non)
symmetric s-metrics can be described equivalently both in
terms of the star LC-connections �∇� → ∇� and/or the star
canonical s-connections �

s
̂D� → 2̂D�. The main idea of the

AFCDM is that for constructing exact and parametric solu-
tions of physically important systems of PDEs is more con-
venient to work with nonassociative nonholonomic dyadic
canonical geometric data (

�

�sg,
�

s
̂D�) → (�2g, 2̂D�). We can

redefine the constructions in terms of star deformed LC-
configurations using s-distortions (26) and extract nonasso-
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ciative LC-configurations imposing respective zero s-torsion
conditions

�

�s
̂Z = 0, which is equivalent to �

s
̂D�

|�ŝT=0
= �∇� and

�2̂Z = 0, which is equivalent to 2̂D�
|2̂T=0

= 2∇�. (27)

There are large classes of nontrivial solutions with zero tor-
sion coefficients ( �

̂Tαs
�βsγs

= 0 and ̂Tα2
�β2γ2

= 0), and the
respective coefficients of geometric s-objects solve the equa-
tions (27). In general, such solutions contain certain nonzero
anholonomy coefficients computed on any (dual) s-shell and
on spacetime shells. This states that respective (non) sym-
metric s-metrics can be written in local coordinate forms as
generic off-diagonal matrices. We can not diagonalize such
matrices by coordinate transforms on a finite spacetime or
phase space region if the integrability conditions are not sat-
isfied, i.e. if there are nonzero anholonomy coefficients.

2.3 Parametric decompositions of nonassociative Riemann
and Ricci s-tensors

We re-formulate for spacetime shells with h1-v2 decompo-
sitions the formulas from section 3.3 of [26].

2.3.1 Star and parametric (2 + 2)-deformed canonical
curvature d-tenors

The nonassociative canonical Riemann s-tensor can be com-
puted in standard (non) associative forms for the (star)
canonical s-connection coefficients �

̂	
γs
�αsβs

(25). For shells
s = 1, 2 and using “hat” s-adapted variables with mixing on
certain s = 3, 4 indices, we have

�
̂��μ2

α2β2γ2
= �

1
̂��μ2

α2β2γ2
+ �

2
̂��μ2

α2β2γ2
, where

�

1
̂��μ2

α2β2γ2
= eγ2

̂	
μ2
�α2β2

− eβ2
̂	
μ2
�α2γ2

+ �
̂	
μ2
�νsτs �s (δ

τs
γ2

�
̂	
νs
�α2β2

− δ
τs
β2

�
̂	νs
�α2γ2

)

+ �w
τs
β2γ2

�s
�
̂	
μ2
�α2τs ,

�

2
̂��μ2

α2β2γ2
= iκ �

̂	
μ2
�νsτs �s (Rτsξs

γ2
�eξs

�
̂	
νs
�α2β2

−Rτsξs
β2

�eξs
�
̂	νs
�α2γs

). (28)

These formulas are h1-v2 decompositions with s-adapted
“hat” coefficients of formulas (A.15), (38) and (39) defined
in [26].

Parametric decompositions of the star canonical s-conne-
ctions can be written in s-form on all phase space shells :

�
̂	
νs
�αsβs

= �

[0]̂	
νs
�αsβs

+ iκ�

[1]̂	
νs
�αsβs

= �

[00]̂	
νs∗αsβs + �

[01]̂	
νs∗αsβs (h̄)

+�

[10]̂	
νs∗αsβs (κ)+�

[11]̂	
νs∗αsβs (h̄κ)+O(h̄2, κ2, ...),

with respective formulas for s = 1, 2.Using such parametric
formulas for ( 28), we compute

�
̂��μ2

α2β2γ2
= �

[00]̂��μ2
α2β2γ2

+ �

[01]̂��μ2
α2β2γ2

(h̄)

+ �

[10]̂��μ2
α2β2γ2

(κ) + �

[11]̂��μ2
α2β2γ2

(h̄κ)

+O(h̄2, κ2, ...).

Such nonholonomic dyadic decompositions of (non) asso-
ciative/ commutative canonical Riemann s-tensors and their
star deformations onM = T∗

s�V andVwith s = 1, 2, can be
priscribed for sun nonholonomic configrations when values
�

[00]̂��μs
αsβsγs

→ �

[00]̂��μ2
α2β2γ2

define “hat” variants of “not
star deformed” curvature s-tensors for the respective canon-
ical s-connections �

̂	
μs
�αsτs → �

̂	
μ2
�α2τ2 (11).

2.3.2 Parametric decomposition of star canonical Ricci
s-tensors and spacetime distortions

Contracting on the fist and forth indices in formulas (28)
and using formulas with �

̂	
μs
�αsγs → �

̂	
μ2
�α2γ2 , we define and

compute the h1-v2 s-components of the the nonassociative
canonical Ricci s-tensor,

�

2
̂�ic� = �

̂Ric�α2β2
�2 (

�e
α2 ⊗�2

�e
β2
), where

�
̂Ric�α2β2

:= �

2
̂�ic�( �eα2 ,

�eβ2)

= 〈 �
̂Ric�μ2ν2

�2 (
�e

μ2 ⊗�2
�e

ν2
), �eα2⊗�2

�eβ2〉�2
.

(29)

The parametric decompositions of such s-adapted coeffi-
cients are expressed:

�
̂Ric�α2β2

= �
̂��μ2

α2β2μ2

= �

[00]̂Ric
�
α2β2

+ �

[01]̂Ric
�
α2β2

(h̄)

+�

[10]̂Ric
�
α2β2

(κ) + �

[11]̂Ric
�
α2β2

(h̄κ)

+O(h̄2, κ2, ...), for
�

[00]̂Ric
�
α2β2

= �

[00]̂��μ2
α2β2μ2

,
�

[01]̂Ric
�
α2β2

= �

[01]̂��μ2
α2β2μ2

,
�

[10]̂Ric
�
α2β2

= �

[10]̂��μ2
α2β2μ2

,

�

[11]̂Ric
�
α2β2

= �

[11]̂��μ2
α2β2μ2

. (30)

In appendix A.3.3 of [26], it is shown how to compute para-
metric [00],[01],[10], and [11] canonical Ricci s-coefficients
for all s-coefficients from (30).

We can nonholonomic dyadic distributions with �

[00]̂Ric�α2β2

= ̂R α2β2 (14) but other parametric [01, 10, 11] when �h̄, κ�
components contain nonassociative and noncommutative
contributions from star product deformations on phase space
and which can be real or complex ones. In result, we can
express the star s-deformed Ricci s-tensor in parametric h1-
v2- form
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�

2
̂Ric� = { �

̂R �β2γ2} = �

2
̂Ric + �

2
̂Kic �h̄, κ�

= {̂R β2γ2 + �
̂K β2γ2 �h̄, κ�}, where

�

2
̂Kic = { �

̂K β2γ2 �h̄, κ� = �

[01]̂Ric
�
β2γ2

+ �

[10]̂Ric
�
β2γ2

+ �

[11]̂Ric
�
β2γ2

}. (31)

Such formulas encode nonassociative parametric deforma-
tions of the canonical Ricci s-tenor which, in general, are
computed for all shells s = 1, 2, 3, 4. We can chose an asso-
ciative and commutative solution �gαsβs (7) of nonholonomic
dyadic vacuum Einstein equations (15). Then, we can com-
pute �

�gαsβs (8) and R-flux and star canonical s-deformations
(20) to �

�gτsγs (9). Projections to h1-v2 shells can be con-
sidered for �

�gτ2γ2 (21). For such computations, we consider
�

2
̂Kic = { �

̂K β2γ2 �h̄, κ�}, when nonassociative distortions
of Ricci s-tensors of type �

̂K βsγs �h̄, κ� for s = 3, 4 are
encoded in (31) using certain effective sources and/or cosmo-
logical constants. This is possible because of nonlinear sym-
metries relating generating functions and generating (effec-
tive) sources on total phase spaces, see details in section 5.4
of [26]. In this work, we shall search for solutions of nonasso-
ciative vacuum Einstein equations with R-flux deformations
of Lorentz spacetimes involving parametric decompositions
of type (31).

2.4 Nonassociative vacuum Einstein equations with real
R-flux source

The goal of this subsection is to show how star deformations
of nonholonomic 2 + 2 vacuum Einstein equations (15) trans-
form into systems of nonlinear PDEs with effective R-flux
sources computed in coordinate bases in [4]. We consider
the nonholonomic dyadic formalism, elaborated in [26] for
nonassociative geometry in s-adapted form for R-flux, and
star modifications of vacuum phase space gravitational equa-
tions with (effective) cosmological constant.

2.4.1 Nonassociative R-flux spacetime deformations with
(non) symmetric s-metrics

A nonsymmetric star s-metric can be expressed in the form

�

�gαsβs = �

�g
[0]
αsβs

+ �

�g
[1]
αsβs

(κ) = �

�ǧαsβs + �

�aαsβs , (32)

where �

�ǧα2β2 is the symmetric part and �

�aαsβs is the anti-
symmetric part of star and R-flux deformations of spacetime
s-metrics for s = 1, 2 (for total phase space computations,
see section 4.1.1 and formulas (17), (A.20) in [26] ). We have

�

�ǧα2β2 := 1

2
(��gα2β2 + �

�gβ2α2) = �

�gα2β2

− iκ

2

(

Rτsξs
β2

�eξs
�

�gτsα2 + Rτsξs
α2

�eξs
�

�gβ2τs

)

= �

�ǧ
[0]
α2β2

+ �

�ǧ
[1]
α2β2

(κ),

for �

�ǧ
[0]
α2βs

= �

�gα2β2 and �

�ǧ
[1]
α2β2

(κ)

= − iκ

2

(

Rτsξs
β2

�eξs
�

�gτsα2 + Rτsξs
α2

�eξs
�

�gβ2τs

)

;
(33)

�

�aα2β2 := 1

2
(��gα2β2 − �

�gβ2α2)

= iκ

2

(

Rτsξs
β2

�eξs
�

�gτsα2 − Rτsξs
α2

�eξs
�

�gβ2τs

)

= �

�a
[1]
α2β2

(κ) = 1

2
(��g

[1]
α2β2

(κ) − �

�g
[1]
β2α2

(κ)). (34)

We chose in such formulas y�
�a

[0]
αsβs

= 0 for nonassociative
star deformations of commutative theories with symmetric
metrics. Here we note that for nonassociative geometric mod-
els we have to apply a more sophisticate procedure for com-
puting inverse metrics and/or s-metrics, see respective details
in [4,26]. The symmetric and nonsymmetric parts of a non-
symmetric inverse s-metric with parametric decompositions
can be written similarly to

�

�g
αsβs = �

�ǧ
αsβs + �

�a
αsβs ,

when, in general, �

�ǧ
αsβs is not the inverse to �

�ǧαsβs and �

�a
αsβs

is not inverse to �

�aαsβs .

2.4.2 Vacuum gravitational equations for star deformed
canonical s-connections

In general, a (non) associative canonical Ricci s-tensor
�
̂Ric�μsνs

is not symmetric. We can define and compute the
nonassociative nonholonomic canonical Ricci scalar curva-
ture following formulas

�

s
̂Rsc� := �

�g
μsνs �

̂Ric�μsνs
= (

�

�ǧ
μsνs + �

�a
μsνs

)

(

�
̂Ric�(μsνs )

+ �
̂Ric�[μsνs ]

)

= �

s
̂Rss� + �

s
̂Rsa�,

where �

s
̂Rss� =: �

�ǧ
μsνs �

̂Ric�(μsνs )
and

�

s
̂Rsa� := �

�a
μsνs �

̂Ric�[μsνs ],
for �

̂Ric�μsνs
= �

̂Ric�(μsνs )
+ �

̂Ric�[μsνs ], (35)

with respective symmetrization and anti-symmetrization
with multiple 1/2.

For total phase spaces, such constructions are provided in
details in section 4 of [26] for the nonassociative vacuum Ein-
stein equations of a nonassociative star s-metric �

�gαsβs (32)
defined by s-adapted star deformations using the convention
(17) and formulas (23) for the nonholonomic associative Ein-
stein equations (15). Respective systems of nonlinear PDEs
can be written in a form emphasizing explicitly the symmet-
ric and nonsymmetric components of s-metric,
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�

�ǧμsνs

(

�

sλ + 1

2
�

s
̂Rsc�

)

= �
̂Ric�(μsνs )

and

�

�aμsνs

(

�

sλ + 1

2
�

s
̂Rsc�

)

= �
̂Ric�[μsνs ].

From the second system of equations, we observe that if we
impose the nonholonomic conditions that
(

�

sλ + 1

2
�

s
̂Rsc�

)

= 0 and �
̂Ric�[μsνs ] = 0 (36)

the s-adapted R-fluxes generate decoupled nonsymmetric

components of s–metrics �

�aμsνs [Rτsξs
βs

�eξs
�

�gτsαs ] (34) for

arbitrary symmetric solutions �

�ǧμsνs = �

�gμsνs [��gβsτs ,Rτsξs
βs

�eξs
�

�gτsαs ] of ( 33), where respective s–coefficients are con-
structed as functionals. The symmetric part can taken to be
a solution of

�
̂Ric�μsνs

= �

sλ
�

�gαsβs , (37)

which is a star s-adapted deformation of (15). The symmet-
ric solutions of such PDEs of zero order on parameters h̄
and κ can be used as prime ones for generating general (non)
symmetric solutions with parametric dependence in nonasso-
ciative gravity and geometric flow theories, see next section.

We can use formulas (35) and impose nonholonomic con-
straints

�λ + 1

2
�

s
̂Rsc� = �λ + �Kαs

αs
[h̄κR] = 0, (38)

encoding the contributions from shells s = 3, 4 into an effec-
tive cosmological constant �λ = �

sλ (for any s), when there
are also nontrivial R-flux effective sources on shells s = 1, 2;
for nontrivial quasi-stationary configurations with prescribed
effective sources

�Kαs
βs

= { �Ki1
j1

= [ �

1ϒ(xk1 ) + �

1K(κ, xk1 )]δi1j1 ,
�Ki2

j2
= [ �

2ϒ(xk1 , x3) + �

2K(κ, xk1 , x3)]δa2
b2
,

�Kb3
a3

= [ �

3ϒ(xk2 , � p6) + �

3K(xk2 , � p6)] δb3
a3
,

�Kb4
a4

= [ �

4ϒ(xk3 , � p8) + �

4K(xk3 , � p8)]δb4
a4

},
where �K j2k2 = −�

[11]̂Ric
�
j2k2

(xk1 , x3)

as in formula (77) of [26] ,

for g j2k2 = {g1(x
k1 ), g2(x

k1 ), g3(x
k1 , x3), g4(x

k1 , x3)}.
(39)

In this work, we consider only real spacetime nonholonomic
star R-flux deformations characterize by star s-deformed
Ricci s-tensor in parametric h1-v2- form (31). In such mod-
els, the higher shell s = 3, 4 dynamics with respective data
for �

sϒ and �

sK are encoded into effective �λ from (38),
which can be prescribed in order to have certain compatibil-
ity with some experimental data or higher order theoretical
computations.

The system of real spacetime s-adapted spacetime pro-
jections of parametric nonassociative gravitational equations
(37) with sources (39) transforms into

�
̂R i2 j2 = �Ki2 j2

[h̄κR] , where

�K j2
i2

= [ �

1K(κ, x
k1)δ

j1
i1
,

�

2K(κ, x
k1 , x3)δ

a2
b2

].
(40)

To solve such systems of nonlinear PDEs with parametric
sources we can apply AFCDM method for constructing exact
and parametric solutions of dimensions 2 + 2. For instance,
we can construct (off-) diagonal black hole and cosmolog-
ical solutions following the technique summarized in [37],
see references therein. Prescribing any values for generat-

ing sources �

sK =
[

�

1K,
�

2K
]

, for s = 1, 2, in ( 40), we can

decouple and solve in certain general forms such systems of
nonlinear PDEs.

The main difference of this paper from our previous works
on (non) commutative MGTs and geometric flow models on
Lorentz manifolds and projected is that in this article we
consider a special type of effective parametric sources deter-
mined by star R-flux deformations with

�K j2k2 = −�

[11]̂Ric
�
j2k2

(xk1 , x3)

= − h̄κ

2
Rn+o2 n+q2 n+l2{ �ei2 [( �eo2

�gi2m2)( �eq2
�gm2r2)

( �el2
�
̂	
r2
j2k2

)]
− �ek2 [( �eo2

�gi2m2)( �eq2
�gm2r2)(

�el2
�
̂	
r2
j2i2

)]
+( �el2

�gq2r2)[ �eo2(
�gi2q2 �

̂	
m2
i2k2

)( �eq2
�
̂	
r2
j2m2

)

− �eo2(
�gi2q2 �

̂	
m2
i2m2

)( �eq2
�
̂	
r2
j2k2

)

+
(

�
̂	
m2
j2i2

�eo2(
�gi2r2) − �eo2(

�
̂	
m2
j2i2

) �gi2r2
)

( �eq2
�
̂	
r2
m2k2

)

−
(

�
̂	
m2
j2k2

�eo2(
�gi2r2) − �eo2(

�
̂	
m2
j2k2

) �gi2r2
)

( �eq2
�
̂	
r2
m2i2

)]}. (41)

as we computed in formulas (77) of [26]. In these formulas,
�
̂	
r2
j2k2

are computed as in (12) for

�

�gβsγs � �gβsγs = (gi2 j2(x
k2), 1, 1, 1,−1);

�eo2 = (ei2 ,
�ea3 = �∂a3 ,

�ea4 = �∂a4 , );
�
̂R βsγs = �

[0]ϒβsγs
= �λ �gβsγs . (42)

If we find an exact/parametric solution gi2 j2(x
k2) of (40)

for any prescibed generating source data
[

�

1K,
�

2K
]

encod-

ing an effective cosmological constant �λ and parameters
h̄ and κ, we can compute in explicit form the real R-flux
sources (41) on a Lorentz spacetime base. Such solutions are
also characterized by associated complex values of the Ricci
s-tensor which can be computed but do not contribute as
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real spacetime R-flux deformations. Such solutions are also
charaterized by nontrivial complex components of associated
nonsymmetric metrics, i.e. by �

�ǧα2β2 (33) and �

�aα2β2 (34)
computed respectively for data (42). In our further partner
works, we shall consider such solutions for total phase spaces
when complex configurations may play a substantial role. For
simplicity, in this article we restrict our considerations only
for possible 4-d spacetime real R-flux deformations.

3 Quasi-stationary configurations encoding
nonassociative string R-fluxes and gravity

The main goal of this work is to extend the AFCDM to
applications in nonassociative vacuum gravity described by
dyadic equations (40) with effective sources (41) and prove
a general decoupling property of such nonlinear systems of
PDEs. We shall integrate corresponding equations in a gen-
eral off-diagonal metric form for quasi-stationary spacetime
metrics encoding in parametrical form nonassociative star R-
flux deformations. In explicit form, we shall construct a new
class of black ellipsoid configurations determined by nonas-
sociative effective R-flux sources. We consider for spacetime
shells s = 1, 2 the methods and results outlined in [26], sec-
tion 5, and [37] (see there sections on quasi-stationary off-
diagonal solutions and black hole, BH, configurations).

3.1 Decoupling of nonassociative quasi-stationary solutions

We can prove an important decoupling property of the sys-
tem of modified vacuum Einstein equations (40) with effec-
tive sources induced in parametric forms by nonassociative
star R-flux deformations on shells s = 1, 2, for a class
of generic off-diagonal metrics with Killing symmetry on
∂4 = ∂/∂y4 = ∂t = ∂/∂t .7 For BH solutions and their nonas-
sociative deformations, we can use standard spacetime spher-
ical coordinates with �u1 = x1 = r, �u2 = x2 = θ, �u3 =
y3 = ϕ, �u4 = y4 = t) when the phase space dynamics is
encoded in effective cosmological constants and prescribed
�

1K and �

2K in �Ki2
j2

= δ
i2
j2

�

sK (39) constrained on space-
time shells. Those parametrization of (effective) nonassocia-
tive and associative sources were stated in a quasi-stationary
form. In explicit form, �

sK should be chosen a form which is
compatible with some experimental and/o observational data
or computed for some models of string theory.

For an associative and commutative s-metric �

sg =
�gαsβs

�eαs ⊗ �eβs (42) with spacetime projection to �

2g =
7 Similar decoupling properties can be proven for so-called locally
anisotropic cosmological solutions with Killing symmetry on ∂3 =
∂/∂y3, for higher dimensions, and for more general assumptions when
generic off-diagonal spacetime and/or phase space s-metrics depend
on all coordinates, see details in [32,37] and references therein. For
simplicity, we omit such geometric constructions in this work.

�gα2β2
�eα2 ⊗ �eβ2 (7), we consider a quasi-stationary ansatz

for a linear quadratic element,

d �ŝ2 = ĝ1(r, θ)dr
2 + ĝ2(r, θ)dθ

2

+ĝ3(r, θ, ϕ)δϕ
2 + ĝ4(r, θ, ϕ)δt

2,

where the s-adapted coefficients for the s-metric are param-
eterized in the form

ĝi1 ji = diag[̂gi1(xk1)], for i1, j1 = 1, 2 and

xk1 = (x1 = r, x2 = θ);
ĝa2b2 = diag[̂ga2(x

k1 , y3)], for a2, b2 = 3, 4 and

y3 = x3 = ϕ, y4 = x4 = t;
Such coefficients will encode additional parametric depen-
dencies on h̄ and κ which will be computed in next sections
for respective classes of exact/parametric solutions. We shall
use “hat” labels on s-metric and N-connection coefficients
for a stationary ansatz which will be used for computing the
s-adapted coefficients of a respective canonical s-connection
�

2
̂D (11) with coefficients (12).

The N-adapted co-bases êα2 = (ei1 = dxi1 , êa2 =
d ya2 + ̂Na2

i1
dxi1) (5), with

e1 = dr, e2 = dθ, ê3 = δϕ = dϕ + wi1dx
i1 ,

ê4 = δt = dt + ni1dx
i1 ,

are determined by N-connection coefficients ̂N 3
j1

= 2w j1 =
w j1(r, θ, ϕ), N 4

j1
= 2n j1 = n j1(r, θ, ϕ).

We can use the term “stationary” for metrics with coef-
ficients which in certain adapted coordinates do not depend
on respective time like coordinates but contain some off-
diagonal terms, for instance, as for rotating Kerr BH [33–
36]. In our approach, there are considered more general non-
holonomic configurations (not only with coordinate rotat-
ing frames). The h1-v2 part (i.e. the first 4 components for
a Lorentz manifold base) in (7) is of stationary type. The
term “quasi-stationary” can be used for s-metric ansatz with
associated N-connection s-structure which is nonholonomic
and encode in local anisotropic form R-flux contributions
from a phase space dynamics.

We shall use short notations for partial derivatives when,
for instance, ∂1q = q•, ∂2q = q ′, ∂3q = ∂ϕq = q� and con-
struct quasi-stationary configurations for g�

4 	= 0.8 Explicit
computations of the canonical Ricci s-tensor (14) for �

s
̂D (12)

for a s-metric (7) allows to write the system of vacuum s-
adapted gravitational equations (40)

8 If such conditions are note imposed, we can fine more special classes
of exact and parametric solutions with another type of nonlinear and
nonholonomic structures, possible singularities etc. but the correspond-
ing formulas are quite cumbersome and do not allow general explicit
integration of modified Einstein equations. We do not study such solu-
tions in this work.
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̂R1
1 = ̂R2

2 = 1

2g1g2

[

g•
1g

•
2

2g1
+ (g•

2)
2

2g2
− g••

2 + g′
1g

′
2

2g2

+
(

g′
1

)2

2g1
− g′′

1

]

= − �

1K(κ, r, θ),

̂R3
3 = ̂R4

4 = 1

2g3g4

[
(

g�
4

)2

2g4
+ g�

3 g
�
4

2g3
− g��

4

]

= −�

2K(κ, r, θ, ϕ),

�
̂R3k1 = wk1

2g4

[

g��
4 −

(

g�
4

)2

2g4
− (g�

3 )(g
�
4 )

2g3

]

+ g�
4

4g4

(

∂k1g3

g3
+ ∂k1g4

g4

)

− ∂k1(g
�
3 )

2g3
= 0;

�
̂R4k1 = g4

2g3
n��
k1

+
(

3

2
g�

4 − g4

g3
g�

3

)

n�
k1

2g3
= 0. (43)

On shells s = 1 and s = 2, with i1, k1... = 1, 2, the depen-
dence on string parameter κ is determined by some formulas
(39) related algebraically via some frame transforms to (41).

For such two generating source ansatz �

1K and �

2K,we restrict
nonholonomically the class of possible real R-flux deforma-
tions. This will allow to find exact solutions in explicit form.

Using (43), (14) and (15), we find such formulas for shell
components of quasi-stationary phase spaces,

1 ̂Rsc = 2(̂R1
1), 2 ̂Rsc = 2(̂R1

1 + ̂R3
3),

̂R1
1 = ̂R2

2 = − �

1K; ̂R3
3 = ̂R4

4 = − �

2K. (44)

The nonassociative vacuum gravitational field equations
(40), written in geometric form as (44), computed for a quasi-
stationary s-metric ansatz (7) decouple in a 2 + 2:

s = 1, with gi1 = eψ(h̄,κ;r,θ), i1 = 1, 2

ψ•• + ψ ′′ = 2 �

1K;

s = 2, with

{

αi1=g�
4 ∂i1(2�), 2β=g�

4 (2�)�, 2γ=(ln |g4|3/2

|g3| )�
for 2� = exp(2�), 2� = ln |g�

4 /
√|g3g4|,

(2�)�g�
4 = 2g3g4

�

2K,

2β w j1 − α j1 = 0,

n��
k1

+ 2γ n�
k1

= 0; (45)

These equations can be solved recurrently because possess
an explicit decoupling property on both shells s = 1 and 2.
The first equation in (45) is a 2-d Poisson equation which can
be solved in certain general forms for any prescribed source
�

1K encoding parametric R-flux contributions. Prescribing �

2K
and g3 (or g4) on second shell s = 2, we can find integrating
respective nonlinear equation relating such coefficients and
determine g4 (or g3). This allows us to compute the coeffi-
cients αi1 , 2β and 2γ and determine the N-connection coef-
ficients from respective linear algebraic equations for w j1;
and integrating two times in the last system of equations in
order to compute nk1 .

3.2 Integrability for nonassociative quasi-stationary
vacuum deformations

3.2.1 Quasi-stationary solutions with (non) associative
induced canonical s-torition

The system (45) can be integrated in general form by coeffi-
cients of such a quasi-stationary quadratic linear form,

dŝ2 = eψ(h̄,κ;xk1 )[(dx1)2 + (dx2)2] + [2�
�(h̄, κ; xk1 , y3)]2

4(�2K(h̄, κ; xk1 , y3))2{g[0]
4 − ∫

dϕ[(2�(h̄, κ; xk1 , y3))2]�/4( �

2K(h̄, κ; xk1 , y3))}

×
{

dϕ + ∂i1(2�(h̄, κ; xk1 , y3))

(2�(h̄, κ; xk1 , y3))�
dxi1

}2

+
{

g[0]
4 (h̄, κ; xk1) −

∫

dϕ
[(2�(h̄, κ; xk1 , y3))2]�
4( �

2K(h̄, κ; xk1 , y3))

}

{dt + [1nk1(h̄, κ; xk1)

+2nk1(h̄, κ; xk1)×
∫

dϕ
[(2�(h̄, κ; xk1 , y3))2]�

4( �

2K(h̄, κ; xk1 , y3))2|g[0]
4 − ∫

dϕ[(2�(h̄, κ; xk1 , y3))2]�/4( �

2K(h̄, κ; xk1 , y3))|5/2
]dxk1}. (46)

The coefficients of such an off-diagonal metric are deter-
mined by

generating functions: ψ(h̄, κ; xk1); 2�(h̄, κ; xk1 , y3);
generating sources: �

1K(h̄, κ; xk1); �

2K(h̄, κ; xk1 , y3);
integr. functions: g[0]

4 (h̄, κ; xk1), 1nk1

×(h̄, κ; x j1), 2nk1(h̄, κ; x j1).

Any such off-diagonal solution depends in parametric form
on h̄, κ for any R-flux nonassociative data encoded in �

sK.
The canonical s-torsion structure ̂Tγ2

α2β2
of respective 2̂D =

∇ + 2̂Z is not trivial for a general (46), see similar details on
computing such s-adapted coefficients which are similar to
those presented in [32,37].

Let us discuss the difference of quasi-stationary solu-
tions (46) for any class of stationary solutions (for black
holes, wormholes etc.) outlined in [33–36] etc. In those
monographs, the Einstein equations are transformed for cer-
tain special diagonal ansatz into systems of nonlinear ODEs
depending on one space like variable (such ansatz are stud-
ied similarly in various MGTs). The general solutions of
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such second order ODEs depend on two integration con-
stants which are defined from additional physical consid-
erations, for instance, to get some asymptotic limits to the
Newton gravity potential, or to modify the constructions for
certain nontrivial cosmological constants etc. Nonassocia-
tive R-flux deformations of the GR vacuum structures result
in more general classes of nonlinear PDEs which can not be
transformed in a general form to ODEs. We have to apply a
generalized AFCDM which allow to construct off-diagonal
quasi-stationary solutions, when the coefficients of d-metrics
depend at least on three space coordinates via respective inte-
gration functions (not only on integration constants) and on
generating functions and generating sources. There are para-
metric dependencies on various (non) commutative / asso-
ciative quantum/string parameters etc. The solutions are con-
structed as exact ones by for certain stated values of param-
eters for corresponding effective sources. In such cases, we
have to prescribe integration/generation functions and effec-
tive sources in certain explicit form in order to have com-
patibility with certain experimental/observational data. This
is possible for such types of nonholonomic constraints and
N-adapted frames and canonical distortions of (non) linear
connections, which allow a self-consistent causal physical
descriptions of new classes of quasi-stationary solutions and
their nonholonomic deformations.

3.2.2 Spacetime LC-configurations encoding
nonassociative parametric R-fluxes

We have to impose additional nonholonomic constraints on
generating functions and effective sources in order to extract
zero torsion LC-configurations for a �∇ generated con-
strained on a spacetime encoding a nontrivial real R-flux
structure. A class of solutions (46) can be constrained in such
a form that up to orders h̄, κ and h̄κ, for star deformations
of respective connections, there are satisfied the conditions
�2
�

̂Z = 0, i. e. �

2
̂D�

|�ŝT=0
= �∇�, see (27). By straightforward

computations, we can verify that such equations are solved
by such s-metric and N-connection coefficients:

w�
i1(h̄, κ; xk1 , y3) = ei1 ln

√| g3|, ei1 ln
√| g4|

= 0, ∂i1w j1 = ∂ j1wi1;
n�
i1 = 0 and ∂i1n j1(x

k1) = ∂ j1ni1(x
k1); (47)

Let us analyze the most important LC-conditions on
respective classes of generating functions and generating
sources from (47): If we prescribe a shell generating function

2� = 2�̌(h̄, κ, xi1 , y3), for which [∂i1(2�̌)]� = ∂i1(2�̌)�,
we can solve explicitly the conditions for w j1 in (47) if
�

2K = const, or for a functional �

2K(h̄, κ, xi , y3) = �

2K[2�̌].
The third class of conditions in (47), ∂i1w j1 = ∂ j1wi1 ,

can be solved in parametric form for any generating func-
tion 2 Ǎ = 2 Ǎ(h̄, κ, xk, y3) for which wi1 = w̌i1 =

∂i1 2�/(2�)� = ∂i1 2 Ǎ. The forth class of values can be
solved by any ni1(x

k1) = ∂i1n(x
k1). We summarize these

formulas in the form:

2� = 2�̌(h̄, κ, xi1 , y3), (∂i1 2�̌)� = ∂i1(2�̌)�, w̌i1

= ∂i1(2�̌)/(
�

2�̌)� = ∂i1(2 Ǎ);
ni1 = ∂i1 [ 2n(h̄, κ, xk1)]; �

2K(h̄, κ, x
i , y3)

= �

2K[�2�̌], or �

2K = const; (48)

For subclasses of s-coefficients determined by data (48),
the quadratic line element (46) transforms into

dŝ2
LCst = �

̂ǧi2 j2(h̄, κ)du
i2du j2

= eψ(h̄,κ,x
k1 )[(dx1)2 + (dx2)2]

+ [(2�̌)�]2

4( �

2K[2�̌])2{g[0]
4 − ∫

dϕ[(2�̌)2]�/4( �

2K)}
{dϕ + [∂i1(2 Ǎ)]dxi1} +
{

g[0]
4 −

∫

dϕ
[(2�̌)2]�

4( �

2K[2�̌])

}

{dt + ∂i1 [ 2n(xk1)]dxi1}. (49)

Any solution (49) defines a LC-variant of (46) for quasi-
stationary spacetime solutions with R-flux contributions
encoded in �

1K and �

2K.This way, we generate exact solutions
of the systems of nonassociative vacuum Einstein equations
(40) for �∇� and reduced to (44) with spacetime �∇� → ∇�.

3.2.3 Nonlinear symmetries for stationary generating
functions and R-flux sources

We can change the spacetime nonassociative generating data
with generating functions and effective sources and a pre-
scribed cosmological constant, (2�(h̄, κ, xi1 , y3),

�

2K(h̄, κ,
xi1 , y3)) ↔ (2�(h̄, κ, xi1 , y3), 2�0), if there are used such
nonlinear transforms:

[(2�)2]�
�

2K
= [(2�)

2]�
2�0

, which can be integrated as

(2�)
2 = 2�0

∫

dx3(
�

2K)
−1[(2�)2]� and/or

(2�)2 = (2�0)
−1

∫

dx3(
�

2K)[(2�)
2]�. (50)

Using nonlinear symmetries (50), we can write the
quadratic element (46) in an equivalent form encoding the
nonlinear symmetries of generating functions and generat-
ing sources of R-flux or a respective effective cosmological
constant,

dŝ2 = �gαsβs (h̄, κ, x
k , y3,

�

2�,
�

2�0)d
�uαs d �uβs

= eψ(h̄,κ,x
k1 )[(dx1)2 + (dx2)2]

− (2�)
2[(2�)

�]2

|2�0
∫

dx3(
�

2K)[(2�)2]�|[g[0]
4 − (2�)2/42�0]
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×
{

dx3 + ∂i1
∫

dx3(
�

2K) [(2�)
2]�

(
�

2K) [(2�)2]� dxi1

}2

−
{

g[0]
4 − (2�)

2

42�0

} {

dt +
[

1nk1 + 2nk1

×
∫

dy3 (2�)
2[(2�)

�]2

|2�0
∫

dy3(
�

2K)[(2�)2]�|[g[0]
4 −(2�)2/42�0]5/2

]}

,

(51)

for indices: i1, j1, k1, ... = 1, 2; i2, j2, k2, ... = 1, 2, 3, 4
and

generating functions: ψ(h̄, κ, xk1); 2�(h̄, κ, xk1 y3);
generating sources: �

1K(h̄, κ, x
k1); �

2K(h̄, κ, x
k1 , y3);

integration functions:g[0]
4 (h̄, κ, xk1), 1nk1(h̄, κ, x

j1),

2nk1(h̄, κ, x
j1).

In a similar form, we can define nonlinear symmetries
for generating functions and R-flux sources and introduce
effective cosmological constants �

s�0 for LC-configurations
and quasi-stationary s-metrics (49).

Finally, we note that nonlinear transforms (50) induce
nonlinear symmetries for the symmetric part of the star
deformed s-metric (33) and other geometric s-objects which
may involve both real and complex components. For the cho-
sen class of quasi-stationary spacetime s-metrics, the non-
symmetric part of star deformed s-metrics (34) is still con-
strained to be zero for such re-definitions of generating func-
tions and sources but certain nontrivial components can be
computed on shells s = 3, 4 on (co) tangent Lorentz bundles.

3.3 Nonholonomic dyadic deformations into parametric
solutions

In this section, we adapt for 4-d base spacetimes with shells
s = 1, 2 dyadic decompositions the results for 8-d phase
space nonassociative gravity models from Appendix B [26].
Such extensions of the AFCDM are important for construct-
ing exact and parametric locally anisotropic BH solutions
of the system of nonlinear PDEs (45) generated by nonas-
sociative star nonholonomic deformations and related effec-
tive R-flux sources. There are provided formulas for certain
general quasi-stationary d-metrics encoding nonassociative
deformations. We also derive formulas for such nonholo-
nomic configurations which are defined as small paramet-
ric nonassociative distortions of Schwarzschild metrics via
respective “gravitational polarization” functions. It is pos-
sible to prescribe such generating functions with ellipsoid
symmetry when the generic off-diagonal solutions describe
distorted black ellipsoids, BEs, and other type small nonholo-
nomic deformations of static BHs in so-called Weyl coordi-
nates.

3.3.1 Using some d-metric coefficients as generating
functions

The nonlinear symmetries (50) can be written in the form:

[(2�)2]� = −
∫

dy3(
�

2K)g
�
4 and/or (2�)

2 = −42�0g4.

As a result, we conclude that the quadratic elements for quasi-
periodic solutions (46) and/or (51) can be rewritten equiva-
lently in terms of generating data (g4; �

1K,
�

2K, �

s�),

d ŝ2 = �gi2 j2(h̄, κ, x
k, y3 ; g4 )d ui2d u j2

= eψ(h̄,κ,x
k1 )[(dx1)2 + (dx2)2]

− (g�
4 )

2

| ∫ dy3[( �

2K)g4]�| g4

×
{

dy3 + ∂i1 [
∫

dy3(
�

2K) g�
4 ]

(
�

2K) g�
4

dxi1

}2

+g4

{

dt +
[

1nk1 + 2nk1

×
∫

dy3 (g�
4 )

2

| ∫ dy3[( �

2K)g4]�| [g4]5/2

]

dxḱ1

}

. (52)

The parametric dependence, signs and integration func-
tions/constants in above formulas have to be chosen in some
forms which are compatible with experimental/observational
data or corrections from R-fluxes in string theories.

We can restrict the class generic off-diagonal solutions
(52) to LC-configurations if we use as a generating function
any coefficient ǧ4(h̄, κ, xi1 , y3) and nonlinear symmetries
involving (48) for quasi-stationary solutions (49). For such
zero torsion solutions, the R-flux contributions of effective
sources �

2K are encoded correspondingly in the N-connection
coefficients �

2 Ǎ.

3.3.2 Polarization functions for nonassociative prime and
target spacetime d-metrics

We can elaborate on associative/commutative models of
gravity on a nonholonomic Lorentz manifold enabled with
nonholonomic dyadic structure, �eα2 ∈ T ∗

2 T
∗V (4) and

defined by a prime d-metric 2g̊ structure (7), with possible
star deformations to respective symmetric and nonsymmet-
ric s-metrics of type (8) and (9). For such constructions, we
can consider trivial shells s = 3, 4 enabled with (co) fiber
Minkowski metric structure. In N-adapted form, we param-
eterize such a spacetime d-metric for s = 1, 2 in the form

2g̊ = g̊i2 j2(x
k1 , ya2)d ui2 ⊗ d u j2

= g̊α2β2(2u)
�e̊α2⊗ �e̊

β2

= �g̊i1 j1(x
k1) ei1 ⊗ e j1

+ �g̊a2b2(xi1 , ya2) e̊a2 ⊗ �e̊b2 , for

123



Eur. Phys. J. C (2021) 81 :1145 Page 19 of 27 1145

e̊α2 = (e̊i1 = ∂i1 − N̊ b2
i1
( x, y)∂b2 , ea2 = ∂a2) and

�e̊α2 = (dxi1 , e̊a2 = dya2 + N̊ a2
i1
(x, y)dxi1). (53)

To label coefficients of prime d-metrics and related geomet-
ric d-objects, we shall use left/right/up labels with a small
circle. In general, a prime 2g̊ (53) my be, or not, a solu-
tion of certain gravitational field equations in a MGT or GR.
In this work, we consider that 2g̊ is a Schwarzschild metric
written in some adapted coordinates which allow to apply
the AFCDM and construct generic off-diagonal solutions for
some target metrics. We can always consider phase space
extensions of prime d-metrics resulting in parametric R-
flux deformations to nonassociative configurations following
formulas �

�ǧ
◦
μsνs

= (
�

�ǧ
◦
i1 j1

,
�

�ǧ
◦
a2b2

,
�

�ǧ
a3b3◦ ,

�

�ǧ
a4b4◦ ) (33) and

�

�a
◦
μsνs

= (0, 0, �

�a
◦
c3b3

,
�

�a
◦
c4b4

) (34), when the star-metrics are
parametric extensions of some associative and commutative
s-metrics.

For nontrivial R-flux and star deformations, we can study
nonassociative parametric nonholonomic deformations of a
prime metric 2g̊ (53) to nonlinear quadratic elements deter-
mined by target quasi-stationary d-metrics �

2g, which can be
parameterized in any necessary form (46), (51), or (52). Such
a target �

2g is a solution of the nonassociative vacuum Ein-
stein equations represented in any form (40), (43), or (45).
Nonholonomic star s-deformations of type “prime to target”
s-metrics can be described in terms of gravitational polar-
ization (η−polarization) functions,

�

2g̊ → �

2g = [ �gα2 = �ηα2
�g̊α2 ,

�Na2
i1

= �η
a2
i1

� N̊ a2
i1

],
when the target d-metrics are parameterized in the form

�

2g = gi1(h̄, κ, x
k1 )dxi1 ⊗ dxi1

+ga2 (h̄, κ, x
i1 , yb2 )ea2 ⊗ ea2

= ηi1 (h̄, κ, x
i1 , ya2 ) � g̊i1 (h̄, κ, x

i1 , ya2 )dxi1 ⊗ dxi1

+ηb2 (h̄, κ, x
i1 , ya2 ) � g̊b2 (h̄, κ, x

i1 , ya2 )

�eb2 [η] ⊗ �eb2 [η], for
�eα2 [η] = (dxi1 , ea2 = dya2

+η
a2
i1
(h̄, κ, xi1 , ya2 ) N̊ a2

i1
(h̄, κ, xi1 , ya2 )dxi1 ). (54)

We emphasize that any multiple η g̊ in (54) may depend
on mixed (higher) shell coordinates and various parameters,
sources, etc. To apply the AFCDM for constructing solutions
we have to use products subjected to the condition that the
target d-metrics, for instance, is of type (52) or any equivalent
form. The term “gravitational polarization” is used because
for η-deformations with a small parameter, we can gener-
ate new classes of exact/parametric solutions, for instance,
of black hole/ellipsoid type but with effective polarization
of fundamental physical constants. Such diagonal and off-
diagonal solutions were constructed in (non) commutative
MGTs, see [29–32,37] and reference therein. By straight-
forward computations, we can check that any solution (52)
can be parameterized in a form (54) and described by a

nonlinear quadratic element with explicit dependence on η-
polarizations,

d �ŝ2 = �gαsβs (h̄, κ, x
k , y3; g4,

�

s�0; �

2K)d �uαs d �uβs

= eψ(h̄,κ,x
k1 )[(dx1)2 + (dx2)2]

− [( �η4
� g̊4)

�]2

| ∫ dy3(
�

2K)( �η4
� g̊4)�| ( �η4

� g̊4)

×
{

dy3 + ∂i1 [
∫

dy3(
�

2K) ( �η4
� g̊4)

�]
(

�

2K)( �η4
� g̊4)�

dxi1 }2

+( �η4
� g̊4q)

{

dt +
[

1nk1 + 2nk1

×
∫

dy3 [( �η4
� g̊4)

�]2

| ∫ dy3(
�

2K)( �η4
� g̊4)�| ( �η4

� g̊4)5/2

]

dxḱ1

}

,

(55)

where the polarization functions are determined by gener-
ating data ψ(h̄, κ, xi1) and �η4(h̄, κ, xi1 , y3). We keep left
labels “�

′′ for such spacetime configurations in order to
emphasize that the coefficients encode certain R-flux defor-
mations in the (co) tangent bundle.

3.3.3 Parametric nonassociative transforms to
quasi-stationary spacetime metrics

The nonassociative vacuum gravitational field equations can
be projected on spacetime background, in instance, in the
form (44). Such nonlinear system of PDEs involve in para-
metrical form an effective R-flux source (41). Similar geo-
metric constructions were considered in our previous works
[30–32,37] for (other types) effective sources with paramet-
ric deformations on a small parameter ε, 0 ≤ ε < 1. In [26],
we proved that the same AFCDM can be applied for a quasi-
stationary s-metric ansatz on total phase spaces when as a
small parameter it is considered the string constant, ε → κ.

For the goals of this paper, we adapt those constructions for
generating parametric spacetime solutions with gravitational
polarizations depending in N-adapted form only on space
coordinates.

Let us consider parametric κ–decompositions of the η -
polarization functions in a d-metric (55) resulting in quasi-
stationary solutions of type (46) and/or (51):

�gi1(κ, x
k1) = �ηii

�g̊i1 = �ζi1(x
i1 , ya2)

[1 + κ �χi1(x
i1 , ya2)] �g̊i1(x

i1 , ya2),

�gb2(κ, x
i1 , y3) = �ηb2

�g̊b1 = �ζb2(x
i1 , ya2)

[1 + κ �χb2(x
i1 , ya2)] �g̊b1(x

i1 , ya2),

�Na2
i1
(κ, xk1 , y3) = �η

a2
i1

� N̊ a2
i1

= �ζ
a2
i1
(xi1 , yb2)

[1 + κ �χ
a2
i1
(xi1 , yb2)] � N̊ a2

i1
(xi1 , yb2).

These formulas for star parametric deformations of a d-metric
and N-connection structure on 2T∗

�
V can be written in the

form
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�

2g̊ → �κ
2 g = [ �gα2 = �ζα2(1 + κ �χα2)

�g̊α2 ,

�Na2
i1

= �ζ
a2
i1
(1 + κ �χ

a2
i1
) � N̊ a2

i1
], (56)

where ζ - and χ -coefficients for deformations (56) are gen-
erated by nonholonomic deformation data

�η2 = �ζ2(1 + κ �χ2),
�η4 = �ζ4(1 + κ �χ4).

For quasi-stationary configurations, �η2 and �η4 are consid-
ered as generating functions. In a more general context, we
can consider �g2 and �g4 as generating functions and, for
small parametric deformations, we can take �χ2 and �χ4 as
generating functions.

We can compute parametric deformations following such
a procedure: For s = 1,we consider �ζi1 = ( �g̊i1)

−1eψ0(xk1 )

and �χi1 = ( �g̊i1)
−1 ψ �χ(xk1), where

�ζi1(1 + κ �χi1)
�g̊i1 = eψ(x

k1 )

≈ eψ0(xk1 )(1+κ ψχ(xk1 )) ≈ eψ0(xk1 )(1 + κ ψ �χ)

for ψ0(xk1) and �χ(xk1) defined by a solution of a 2-d Pois-
son equation (45). For s = 2 we have generating func-
tions �ζ4 and �χ4; generating source and cosmological con-
stant, respectively, �

2K and �

2�0; integration functions�

1nk1

and �

2nk1; and certain prescribed data for a prime s-metric,
(�g̊3,

�g̊4; � N̊ 3
i1
, � N̊ 4

k1
). After tedious computations, we

express

�ζ3 = − 4
�g̊3

[(| �ζ4
�g̊4|1/2)�]2

| ∫ dy3{( �

2K)( �ζ4
�g̊4)�}|

and �χ3 = ( �χ4| �ζ4
�g̊4|1/2)�

4(| �ζ4
�g̊4|1/2)�

−
∫

dy3{[( �

2K) ( �ζ4
�g̊4)

�χ4]�}
∫

dy3{( �

2K)( �ζ4
�g̊4)�}

,

�ζ 3
i1 = ∂i1

∫

dy3(
�

2K) ( �ζ4)
�

( � N̊ 3
i1
)(

�

2K)( �ζ4)�
and �χ3

i1 = ∂i1[
∫

dy3(
�

2K)( �ζ4
�χ4)

�]
∂i1 [∫ dy3(

�

2K)( �ζ4)�]
− ( �ζ4

�χ4)
�

( �ζ4)�
,

�ζ 4
k1

= (� N̊ 4
k1
)−1[�1nk1 + 16�

2nk1 ×
[

∫

dy3

{
([( �ζ4

�g̊4)
−1/4]�)2

| ∫ dy3(
�

2K)( �ζ4
�g̊4)�|

]

and

�χ4
k1

= −
16�

2nk1

∫

dy3
([( �ζ4

� g̊4)
−1/4]�)2

| ∫ dy3(
�

2K)[( �ζ4
� g̊4)]�| (

[( �ζ4
� g̊4)

−1/4 �χ4)]�
2[( �ζ4

� g̊4)−1/4]� +
∫

dy3[( �

2K)( �ζ4
�χ4

� g̊4)]�
∫

dy3(
�

2K)(�ζ4
� g̊4)�

)

�

1nk1 + 16�

2nk1

[

∫

dy3 ([(�ζ4
� g̊4)−1/4]�)2

| ∫ dy3(
�

2K)[( �ζ4
� g̊4)]�|

]

.

. (57)

Introducing above coefficients with κ-decomposition
instead of η-coefficients of (55), we obtain respective nonlin-
ear quadratic elements for quasi-stationary solutions encod-
ing nonassociative star R-flux deformations. In next subsec-
tion, there are provided such formulas for such distortions of
Schwarzschild BHs. This subclass of quasi-stationary solu-
tions consist a restriction on shells s = 1, 2 of the phase
space solutions from Appendix B, formulas (B.7) in [26] (in
that works, the solutions are with η-polarization functions
depending also on phase space coordinates).

3.4 Nonassociative distorted black holes and black
ellipsoids

Our goal is to construct exact quasi-stationary solutions
encoding in parametric form nonassociative nonholonomic
(ellipsoid) deformations of the Schwarzschild spacetime.
Such solutions are obtained by assuming that existence of
a R-flux effective matter source (41).

3.4.1 Prime metrics as a distorted Schwarzschild BH

Let us introduce on spacetime V local (prolate spheroidal)
coordinates

u1 = x1 = x ∈ (1,+∞); u2 = x2 = y ∈ [−1, 1];
u3 = x3 = y3 = φ ∈ [0, 2π ];
u4 = x4 = y4 = t ∈ (−∞,+∞), (58)

and consider a prime d-metric 2g̊W =
(

g̊Wi1 , g̊Wa2
, N̊Wa2

i1

)

(53) (with a label W referring to Weyl coordinates (58)) with
such parameterizations of nontrivial coefficients:

g̊W1 = g̊11(x
i1 ) = M2

0 (x + 1)2 exp[2(γ̊ (xi1 ) − ψ̊(xi1 ))]
x2 − 1

,

g̊W2 = g̊22(x
i1 ) = M2

0 (x + 1)2 exp[2(γ̊ (xi1 ) − ψ̊(xi1 ))]
1 − y2 ,

g̊W3 = g̊33(x
i1 ) = M2

0 (x + 1)2(1 − y2) exp[−2ψ̊(xi1 )],

g̊W4 = g̊44(x
i1 ) = − x − 1

x + 1
exp[2ψ̊(xi1 )],

N̊ a2
i1
(uβ2 ) 	= 0 are defined by a fixed

×system of local coordinates . (59)

To avoid coordinate singularities and non-compatible con-
straints for nonholonomic and/or off-diagonal deformation
in d-metrics of type (56), we can consider such coordinate

transforms uα
′
2 → uα

′
2(uα2), when N̊

a′
2

i ′1
(uβ

′
2) = 0 transform
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into some coefficients N̊ a2
i1
(uβ2) 	= 0 of necessary smooth

class, preserving a respective (2 + 2) splitting for the same
d-metric possessing a horizon for x = 1 and singularity for
x = −1. In (59), the parameter M0 can be identified as
the BH mass. We use also distortion functions which can be
expressed in terms of Legendre polynomials Pl (of the first
kind, see details in [41,43,45]),

ψ̊(xi1) =
∑

l>0

al ρ̌
l Pl and

γ̊ (xi1) =
∑

l>0

al

l−1
∑

l ′=0

[(−1)l−l ′+1(x + y) − x + y]ρ̌l ′ Pl ′

+
∑

l,l ′=1

ll ′alal ′
l + l ′

ρ̌l+l ′(Pl Pl ′ − Pl−1Pl ′−1), (60)

where Pl := Pl(xy/ρ̌) for ρ̌ = √

x2 + y2 − 1 . In these
formulas al ∈ R are called multipole moments defining a
distortion due, in our case, to an effective R-flux source. The
Schwarzschild spacetime is recovered for al = 0, a1 = 1 is
considered as the dipole moment, a2 := q̊ is the quadrupole
moment, etc. for higher momenta which describe deviations
from the spherically symmetric shape of a central compact
object.9

3.4.2 Target d-metrics for distorted nonassociative black
ellipsoids

For small κ-ellipsoidal deformations with

exp[κ �χ(xi1)] � 1 + κ �χ(xi1) and

exp[κ �χ3(x
i1 , φ)] � 1 + κ �χ3(x

i1 , φ),

for �χ1 = �χ2 = �χ(xi1), we can define values

M2
0 → M̌2(xi1 , φ) = M2

0 exp[κ �χ3(x
i1 , φ)], and

γ̌ (xi1 , φ) = γ̊ (xi1) + κ

2
[ �χ(xi1) − �χ3(x

i1 , φ)].
(61)

The coefficients (in Weyl coordinates) of a target d-metric

2gW=
(

gWi1 , gWa2
, NWa2

i1

)

with geometric data (59 ) for

9 We consider that in the presence of an external static and axially
symmetric matter distribution the exterior of a BH is described as a
distorted Schwarzschild solution as in [44]. In such a case, a prime
metric (59) defines a static vacuum solution with a regular event horizon
but such a metric is not asymptotically flat [41,43] . We can consider
Schwarzschild coordinates x = r/M0 − 1 and y = cos θ and related
them to the Weyl coordinates ρ = √

r(r − 2M0) sin θ and z = (r −
M0) cos θ. In such variables, a prime metric ( 59) can be written as a
Weyl metric

ds̊2 = e2[γ (ρ,z)−ψ(ρ,z)](dρ2 + dz2) + e−2ψ(ρ,z)ρ2dφ2 − e2ψ(ρ,z)dt2.

For a Schwarzschild solution, we have ψ̊ = 1
2 ln x−1

x+1 and γ̊ =
1
2 ln x2−1

x2−y2 , when ρ = M0
√

(x2 − 1)(1 − y2) and z = M0xy, see
details in [46] and section II of [43].

a nonholonomic deformation for 2g̊ =
(

g̊Wi1 , g̊Wa2
, N̊Wa2

i1

)

(59) can be written in the form

gW1 = W ζ1(1 + κ Wχ1) g̊
W
1 = g̊11(x

i1)

= W ζ1M
2
0

exp[κ Wχ3](x + 1)2 exp[2(γ̌ (xi1 , φ) − ψ̊(xi1))]
x2 − 1

,

gW2 = W ζ2(1 + κ Wχ2) g̊W2 = g̊22(x
i1)

= W ζ2M
2
0

exp[κ Wχ3](x + 1)2 exp[2(γ̌ (xi1 , φ) − ψ̊(xi1))]
1 − y2 ,

gW3 = W ζ3(1 + κ Wχ3) g̊
W
3 = g̊33(x

i1)

= W ζ3M
2
0

exp[κ Wχ3](x + 1)2(1 − y2) exp[−2ψ̊(xi1)],
gW4 = W ζ4(1 + κ Wχ4) g̊

W
4 = g̊44(x

i1)

= − x − (1 + κ Wχ4)

x + 1
W ζ4 exp[2ψ̊(xi1)],

W Na2
i1

= W ζ
a2
i1
(1 + κ Wχ

a2
i1
)

N̊ a2
i1
(uβ2) 	= 0are defined by a fixed system

of local coordinates ,

where we changed labels from (56) as �ζα → W ζα,
�ζ

a2
i1

→
W ζ

a2
i1
, �χ4 → Wχ4, etc. in order to emphasize that we use

Weyl coordinates and begin deformations of a prime Weyl
metric.

In result, we generate a family of such quasi-stationary
off-diagonal solutions

d �ŝ2
W = M2

0 exp[κ Wχ3(x, y, φ)](x + 1)2

× exp[2(γ̌ (x, y, φ) − ψ̊(x, y)]
×

( W ζ1(x, y)

x2 − 1
dx2 +

W ζ2(x, y)

1 − y2 dy2
)

+W ζ3M
2
0 exp[κ Wχ3(x, y, φ)](x + 1)2(1 − y2)

exp[−2ψ̊(x, y)]
×{dφ + W ζ 3

i1(x, y, φ)[1 + κ Wχ3
i1(x, y, φ)] �

N̊ 3
i1(x, y, φ)dx

i1}2

− x − (1 + κ Wχ4(x, y, φ))

x + 1
W ζ4

× exp[2ψ̊(x, y)]{dt + W ζ 3
i1(x, y, φ)

×[1 + κ Wχ4
i1(x, y, φ)] � N̊ 4

i1(x, y, φ)dx
i1}2. (62)

In this quadratic element, the parametric deformations (57)
are computed for the prime metric (59), when the effec-
tive R-sources are computed as functionals W

s K = �

sK[2gW ,
�

W
̂	
m2
i2k2

, �

s�, h̄κR] following formulas (40 ) with effective

sources (41) determined by W
̂	
m2
i2k2

= �
̂	
m2
i2k2

[2gW ],
2g =W

2 g and W
2 g̊ = ( g̊Wα ),
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W ζ3 = − 4

g̊W3

[(| W ζ4 g̊W4 |1/2)�]2

| ∫ dφ{( W
2 K)( W ζ4 g̊W4 )�}| and Wχ3 = ( Wχ4| W ζ4 g̊W4 |1/2)�

4(| W ζ4 g̊W4 |1/2)�
−

∫

dφ{[( W
2 K) ( W ζ4

�g̊W4 ) Wχ4]�}
∫

dφ{( W
2 K)( W ζ4 g̊W4 )�} , (63)

W ζ 3
i1 = ∂i1

∫

dφ( W
2 K) ( W ζ4)

�

( � N̊ 3
i1
)( W

2 K)( W ζ4)�
and Wχ3

i1 = ∂i1 [
∫

dφ( W
2 K)( W ζ4

Wχ4)
�]

∂i1 [∫ dφ( W
2 K)( W ζ4)�]

− ( W ζ4
Wχ4)

�

( W ζ4)�
,

W ζ 4
k1

= ( � N̊ 4
k1
)−1[�1nk1 + 16�

2nk1 ×
[

∫

dφ{
([( W ζ4 g̊W4 )−1/4]�)2

| ∫ dφ( W
2 K)( W ζ4 g̊W4 )�|

]

and

Wχ4
k1

= −
16�

2nk1

∫

dφ
([( W ζ4 g̊W4 )−1/4]�)2

| ∫ dy3( W
2 K)[( W ζ4 g̊W4 )]�| (

[( W ζ4 g̊W4 )−1/4 Wχ4)]�
2[( W ζ4 g̊W4 )−1/4]� +

∫

dy3[( W
2 K)( W ζ4

Wχ4 g̊W4 )]�
∫

dy3( W
2 K)( W ζ4 g̊W4 )� )

�

1nk1 + 16�

2nk1 [
∫

dφ
([( W ζ4 g̊W4 )−1/4]�)2

| ∫ dy3( W
2 K)[( W ζ4 g̊W4 )]�| ].

. (64)

Putting together above coefficients (63), we express the
quadratic linear element (62) for nonassociative R-flux dis-
torted Schwarzschild BH in the form:

d �ŝ2
W = gWα2β2

(x, y, φ)duα2duβ2 = eψ0(x,y)[1 + κ ψ �χ(x, y, φ)][(dx)2 + (dy)2] − { 4[(| W ζ4 g̊W4 |1/2)�]2

�g̊W3 | ∫ dφ{( W
2 K)( W ζ4 g̊W4 )�}|

−κ[ (
Wχ4| W ζ4 g̊W4 |1/2)�

4(| W ζ4 g̊W4 |1/2)�
−

∫

dφ{( W
2 K)[( W ζ4 g̊W4 ) Wχ4]�}

∫

dφ{( W
2 K)( W ζ4 g̊W4 )�} ]}g̊W3 + {dφ + [∂i1

∫

dφ( W
2 K) ( W ζ4)

�

( � N̊ 3
i1
)( W

2 K)( W ζ4)�

+κ(
∂i1[

∫

dφ( W
2 K)( W ζ4

Wχ4)
�]

∂i1 [∫ dφ( W
2 K)( W ζ4)�]

− ( W ζ4
Wχ4)

�

( W ζ4)�
)]( � N̊ 3

i1)dx
i1}2 + W ζ4(1 + κ Wχ4) g̊

W
4 {dt + [( � N̊ 4

k1
)−1[�1nk1

+16�

2nk1

[

∫

dφ{
([( W ζ4 g̊W4 )−1/4]�)2

| ∫ dy3[( W
2 K)( W ζ4 g̊W4 )]�|

]

−κ

16�

2nk1

∫

dφ
([( W ζ4 g̊W4 )−1/4]�)2

| ∫ dy3[( W
2 K)( W ζ4 g̊w4 )]�| (

[( wζ4 g̊w4 )
−1/4 Wχ4)]�

2[( W ζ4 g̊W4 )−1/4]� +
∫

dy3[( W
2 K)( W ζ4

Wχ4 g̊W4 )]�
∫

dy3[( W
2 K)( W ζ4 g̊W4 )]� )

�

1nk1 + 16�

2nk1 [
∫

dφ
([( W ζ4 g̊W4 )−1/4]�)2

| ∫ dy3[( W
2 K)( W ζ4 g̊W4 )]�| ]

]( � N̊ 4
k1
)dxk1 }. (65)

We can prescribe solutions (65) with ellipsoidal configu-
rations for generating functions of type

Wχ4 = eχ4(x, y, φ) = 2χ(x, y) sin(ω0φ + φ0), (66)

for a smooth function χ(x, y) (in particular, χ can be a
constant) and constants ω0 and φ0. Such d-metrics have an
ellipsoidal horizon with eccentricity κ stated by the equation
x = 1+κ Wχ4(x, y, φ) of zero horizon when the coefficients
before W ζ4 exp[2ψ̊(x, y)]{dt + ...dxi }2 in (62). The inte-
gration and generating functions and generating source for
such d-metrics are defined as in (51) but for the case when the
term W ζ4(1 + κ eχ4) is considered as a generating function
as in (52) (see also respective nonlinear symmetries involv-
ing (48) for quasi-stationary solutions (49)). We can restrict
the class generic off-diagonal solutions of type (65) (equiv-
alently (62)), in particular, with ellipsoidal horizons (66) in
order to extract to LC-configurations with zero torsion, when
the R-flux contributions of effective sources W

2 K are encoded
correspondingly in the N-connection coefficients of type �

2 Ǎ.

Finally, we note that black ellipsoid, BE, solutions were
studied in details in a series of our former works, for instance,
see [29,40]. Such BE distorted configurations can be pre-
scribed to obey well-defined stability conditions as in [39].
The stability and instability of some small parametric defor-
mations depend on the type generating and integration func-
tions are used for constructing respective exact/parametric
solutions.

4 Thin accretion disks around nonassociative black
ellipsoids

A series of important astrophysical phenomena (for active
galactic nuclei and/or X-ray binaries) are related to accretion
of matter onto BHs. This topic has been discussed inten-
sively in modern literature, see reviews of results in [42–45].
In addition to numerical simulations, the approach to finding
analytical solutions to accretion disk models and for BH –
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disk systems in GR and various MGTs is essential for study
and understanding properties of such gravitational and astro-
physical models. In this section, we concentrate on accretion
onto compact objects for a particular class of BH and BE like
solutions in nonassociative gravity theories with star R-flux
distortions. Such nonholonomic configurations are defined
in the presence of external effective matter sources defined
for axially symmetric prescribed constraints (40) on effec-
tive R-flux sources (41). This is analogous to external axially
symmetric distributions of some effective mass outside the
horizon. To study such models we use classes of solutions
(62) and (65) of the nonassociative nonholonomic and para-
metric deformed vacuum Einstein equations (45). For such
solutions, we can consider generating functions for black
ellipsoid configurations (66) and impose zero torsion condi-
tions (47) via generating data (48) resulting in metrics of type
(49). All constructions simplify to the Schwarzschild solu-
tion for holonomic (diagonalizable, with trivial N-connection
structure) configurations and if the R-flux source is zero. A
quasi-stationary nonassociative star R-flux spacetime in the
vicinity of an (ellipsoidal, or other type smooth distorted)
horizon is described by an off-diagonal vacuum metric with
the cost of relaxing the assumption of asymptotically flatness
for respective nonholonomic modifications of the Einstein
equations.

4.1 Approximations and equations for locally anisotropic
thin disk models

The structure of thin accretion disks and respective equations
can be defined in a simple form using prolate coordinates (58)
which can easily transformed into distorted Schwarzschild
coordinates easily. We can follow all assumptions and formu-
las from section III of [43] but using locally anisotropic Weyl
coefficients (61) as nonholonomic deformations of Legendre
polynomical formulas (60), when

[M0, ψ̊(x, y), γ̊ (x, y)]
→ [M̌(x, y, φ), ψ̊(x, y), γ̌ (x, y, φ)]

determinedκ-parametrically by generating functions �χ(xi1)
and �χ3(xi1 , φ).We can elaborate on standard thin disk mod-
els and consider small nonholonomic and/or off-diagonal
κ-deformations. This results in geometrically thin, opti-
cally thick, and cold accretion disks which be described as
certain ellipsoid like quasi-stationary configurations. Effec-
tively, such locally anisotropic accretion effects can mod-
elled as standard ones in GR but (in well defined cases) self-
consistently embedded in a nonassociative κ-distorted vac-
uum, when all formulas are written with respect to N-adapted
bases.

Let us analyze three fundamental equations encoding
nonassociative contributions and governing the radial struc-

ture of thin disk models. We adopt the coordinates with
c = 1, G = 1 and M0 = 1. The first equation (in N-adapted
bases) for the particle number conservation are R-distorted

∇α2(ρu
α2) = 0 �⇒ ̂Dα2(ρu

α2) = ̂Zα2(ρu
α2), (67)

where the distortion d-tensor ̂Zα2 defines real canonical s-
deformations of the LC connection by respective nonasso-
ciative R-deformations as in formulas (26). In this formula,
uα2 is the velocity d-vector of a fluid and ρ is its mass den-
sity. Such a (nonholonomic) conservation law means that we
expect that the mass accretion rate is constant in certain N-
adapted frames.

We can introduce the second fundamental equation (for the
radial momentum) as a component of the relativistic Navier-
Stokes equations and their canonical N-adapted deformation,

̂hα2β2∇γ2(T
β2γ2) = 0 �⇒ ̂hα2β2

̂Dγ2(T
β2γ2)

= ̂hα2β2
̂Zγ2(T

β2γ2) (68)

where ̂hα2β2 := uα2uβ2 + ĝα2β2 is the projection d-tensor
defining the spacial d-metric which is normal to uα2 . Such
quasi-stationary values can be defined if ĝα2β2 is determined,
for instance, by a vacuum solution (62) encoding nonasso-
ciative star deformations. The stress-energy d-tensor Tβ2γ2

is for the accreting fluid type matter which is different from
the effective nonassociative R-flux source (41).

The third energy conservation equation is

uβ2∇γ2(T
β2γ2) = 0

�⇒ uβ2
̂Dγ2(T

β2γ2) = uβ2
̂Zγ2(T

β2γ2), (69)

where the stress-energy d-tensor is parameterized in N-
adapted form as

Tβ2γ2 = huβ2uγ2 − P ĝβ2γ2 + qβ2uγ2 + uβ2qγ2 + Sβ2γ2 .

In this formula, h is the enthalpy density (defined as the sum
of internal energy per unit proper volume and the pressure
over the rest mass density); P is the pressure; the d-vectorqβ2

describes the transverse energy flux; and the viscous stress
energy tensor Sβ2γ2 = −2˜λσβ2γ2 is taken in a relativistic
form without no bulk viscosity, where ˜λ is the dynamical
viscosity and σβ2γ2 is the shear d-tensor. In the thin disk
approximation and with respect to N-adapted frames using
prolate coordinates with x1 = r and x3 = φ, one approxi-
mates

σ13 = 1

2
[(̂Dγ2u1)̂h

β2
3 + (̂Dγ2u1)̂h

β2
3 ] − 1

3
̂h 13(̂Dγ2u

γ2).

In coordinate frames and for LC–configurations, we obtain
the formula (24) from [43]. In next subsection, we summarize
certain important formulas and results from sections III.B and
IV of that work using Convention 2 extended in the form (17),
which allows us to transform (non) associative geometric
constructions from coordinate bases to N-adapted ones, and
inversely.
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4.2 Thin accretion disk around nonassociative distorted
quasi-stationary BEs

The system of fundamental equations (67)–(69) and respec-
tive N-adapted energy transport law, the equation of state
and opacity, allow us to derive in dyadic variables the sys-
tem of nonlinear algebraic equations for the thin disk model
[47,48]. Let us introduce such important values compute per
unit mass of geodesic circular motion in equatorial planes
(when θ = π/2, or y = 0 in Weyl coordinates (58)):

E = −u4 �⇒ E̊ = −u4 = −ut , energy;
L = u3 �⇒ L̊ = u3 = uφ, angular momentum;

� = u3/u4 �⇒ �̊ = u3/u4, angular velocity.

Above boldface values are defined and computed in N-
adapted prolated frames for any solution (62) and/or (65)
encoding nonassociative R-flux effects but circle values are
in prolated coordinate frames for prime data (2g̊W , ∇̊) ( 59).

We omit long N-adapted calculations which are similar
to the coordinate ones in [43] (see there all assumptions on
thermodynamic models for thin disk accretion) and provide
such results for most important physical quantities appearing
in the equations of the thin disk model:

E =
(

(x−1)2[q̊x2+q̊x+1]
(x+1)eq̊(x2+3)[2x3q̊+x(1−2q̊)−2]

)1/2

= E̊;

L = M̌

(

−(x+1)eq̊(x
2+3)[−q̊x3+q̊x+1]

2x3q̊+x(1−2q̊)−2

)1/2

�⇒ L̊, for M̌(x, 0, φ) → M0;

� = M̌−1
(

(x+1)3e2q̊(x2+3)[q̊x2+q̊x+1]

)1/2

�⇒ �̊, for M̌(x, 0, φ) → M0,

(70)

where the dipole moment a2 := q̊ from (60) is used, and
the nonassociative polarized mass M̌(x, 0, φ) is determined
by formula (61). All such formulas are valid locally, in some
neighborhood of the horizon y = 1 and have physical mean-
ing for real values which impose some constraints on the
range of coordinate x (considering a prescribed value q̊).

Analyzing formulas (70) we conclude that possible nonas-
sociative real R-flux distortions do not change nearly the
horizon the disk energy of a locally anisotropic BH (or BE
for polarizations of type (66 )) but may result in string con-
stant κ-polarizations on φ of the angular momentum and
angular velocity, L and � , via M̌(x, 0, φ). So, in princi-
ple, nonassociative R-flux modifications can be observed in
certain thin disk accretion processes by additional rotation
on φ effects which can be of ellipsoid type polarization. For
a fixed value φ0 and vanishing q̊, we have monotonically
decreasing function �(φ0, r) of the radius. Such a BH, or
BE, is surrounded by a mass distribution “embedded” into
a nonassociative deformed gravitational vacuum, when after
some distance the behaviour of �(φ, r) manifests the exis-
tence both of an external matter and effective R-flux source.

There is a extremum when the influence of the surrounding
matter becomes strong when the local solution is no longer
valid. Here we note that for q̊ < 0 such an extremum can
appear within a valid range of radial coordinates with real
E,L, and �. For q̊ > 0, such an extremum is usually out-
side the valid range even the additional dependence on x and
φ in M̌ may open some new possibilities comparing to the
case M̌ = M0.

Here we note that the inner edge of the standard thin disk
model in [43] is assumed to be at the Innermost Stable Circu-
lar Orbit (ISCO; it is also called the marginally stable orbit).
Let us analyze the location of the ISCO in the nonassociative
distorted Schwarzschild spacetime. The reflection symme-
try states such a conditions for existence of geodesics in the
equatorial plane: a2l−1 = 0, for l > 0, but this does not give
any new in the study of quadrupoles for prime configurations
(60). Similarly, the nonassociative gravitational polarization
for quasi-stationary solutions does not result in contributions
to the effective potential of R-flux modified Schwarzschild
BH because

E f f V = x − 1

x + 1
e2ψ̊(x,0)

(

1 + L2

M2

e2ψ̊(x,0)

(x + 1)2

)

� x − 1

x + 1
e2ψ̊(x,0)

(

1 − eq̊(x
2+3)[−q̊x3 + q̊x + 1]

2x3q̊ + x(1 − 2q̊) − 2

e2ψ̊(x,0)

(x + 1)

)

,

for (61) and (70),

which is equivalent to formula (49) in [43]. The main results
of the thin disk models for distorted Schwarzschild BH are
described and plotted in section V with figures 1-8 of that
work. Comparing with the usual Schwarzschild spacetimes
in GR, we should mention that formulas for E,L, � and
E f f V characterizing nonassociative BHs and BEs are only
valid locally, i.e. in the vicinity of the horizon. So, we have
only considered the inner part of the respective disks in such
(non) associative and nonholonomically deformed space-
times. The choice of the quadrupole (additionally to ellip-
soidal R-flux distortions) imposes respective limits o which
points we can extend the thin disk solutions. Finally, we con-
clude that the solutions for static BHs in GR extend to cer-
tain quasi-stationary ones when observable thin disk effects
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are κ -polarized on φ with nontrivial contributions to the
angular momentum and angular velocity, L and �, via non-
linear gravitational locally anisotropic polarizations of mass
M̌(x, 0, φ).

5 Summary and conclusions

5.1 Main results

In this work, we constructed and discussed new classes of
exact and parametric solutions for four dimensional, 4-d,
black holes, BHs, and black ellipsoids, BEs, with distortions
encoding nonassociative star deformations and R-flux effec-
tive sources from string theory. Such nonassociative vacuum
solutions are described by generic off–diagonal symmet-
ric metrics when certain nonsymmetric metric components
�

�aμsνs (34) contain nontrivial contributions for higher shells
in corresponding 8-d nonassociative phase spaces. Our geo-
metric method of constructing solutions in modified grav-
ity theories and GR (see [26] and references therein, on
AFCDM and applications) was extended to a level bear-
ing direct relevance to observable nonassociative contribu-
tions using for relativistic thin disk models around such
compact objects. We computed the most important quanti-
ties (energy, angular momentum, and angular velocity) for
the most important physical quantities characterizing the
thin disk model. The results of this paper prove that the
main differences of such formulas in nonassociative grav-
ity and GR are consequences of different types of non-
holonomic structures resulting in angular anisotropies on
φ (in prolate coordinates); generic off-diagonal terms; and,
for respective symmetries of generating functions) ellip-
soidal type deformations, of BH horizons and thin accretion
disks.

In the face-on case, we found that using nonholonomic
frames, analytic approximations with effective cosmological
constants for 8-d phase spaces, via nonlinear symmetries and
parametric decompositions on string constant of nonassocia-
tive geometric objects we obtain effective real sources encod-
ing contributions of star R-flux deformations. Such 8-d and 4-
d nonassociative vacuum Einstein equations were originally
proposed in [3,4]. We have disentangled the roles of phase
and spacetime nonassociative vacuum gravitational dynam-
ics using nonholonomic dyadic decompositions and restrict-
ing the class of effective sources encoding star deformations.
Such 4-d gravitational models can be studied independently
up to a level when we have to compute nonsymmetric met-
rics coefficients, involve generalized phase space nonlinear
symmetries and analyze explicitly certain higher dimension
contributions. The BH and BE solutions constructed in this
work define certain nonassociative generalizations of some

classes of solutions in noncommutative and string gravity
[30].

5.2 Concluding remarks and perspectives

Our work does not attempt to perform a complete study of BH
solutions in nonassociative gravity with R-fluxes. Instead, we
use simple toy models which provide intuition for possible
geometric effects of nonassociative distortions for the 4-d
Schwarzschild solution and imprints on related thin disks
accretion effects. The techniques on generating exact and
parametric nonassociative quasi-stationary phase space solu-
tions elaborated in [26] can be applied to classes of of solu-
tions in 8-d and 10-d phase spaces found in [32,40] and con-
struct new classes of nonassociative phase space and string
BH and BE solutions, generalizing the Tangherlini and higher
dimension Kerr metrics.

Here we note that only for some very special effec-
tive ellipsoid / spheroid horizons, the BHs and BEs can be
characterized by corresponding Bekenstein–Hawking ther-
modynamic models. For more general classes of quasi-
stationary and locally anisotropic solutions, we have to
elaborate on nonassociative generalizations of relativistic
geometric flow theory and Grigory Perelman’s entropic
functionals and statistical/information thermodynamics [38].
In particular, we can treat the 4-d sector of nonasso-
ciative stationary vacuum gravitational solutions as rela-
tivistic Lorentz–Ricci solitons. This will allow to com-
pute corresponding thermodynamical variables determined
by R-flux distortions and encoding star product deforma-
tions and off-diagonal (non) symmetric effects. To study
nonassociative (non) symmetric metric contributions, geo-
metric and information flows (see related associative and
commutative results in [37]) is a project for our future
research.
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