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Abstract We perform a systematic analysis of Standard
Model extensions with an additional anomaly-free gauge
U (1) symmetry, to generate tree-level Dirac neutrino masses.
An anomaly-free symmetry demands nontrivial conditions
on the charges of the unavoidable new states. An intensive
scan was performed, looking for solutions generating neu-
trino masses by the type-I and type-II tree-level Dirac seesaw
mechanism, via operators with dimension 5 and 6, that cor-
respond to active or dark symmetries. Special attention was
paid to the cases featuring no extra massless chiral fermions
or multicomponent dark matter with unconditional stability.

1 Introduction

Despite its enormous success, the standard model (SM) has
to be extended in order to account for neutrino masses and
dark matter (DM). Regarding neutrinos, the oscillation data
is compatible with both Majorana or Dirac neutrino masses
[1], with no strong preference for either of the two possibil-
ities. Even if most of the literature assumes that neutrinos
are Majorana in nature (see, e.g., Ref. [2] for a review), the
mass generation mechanism for Dirac neutrinos has recently
received increased attention.

To explain Dirac neutrino masses, right-handed neutrinos
(RHNs) have to be introduced. Additionally, an extra local
symmetry is also required to guarantee proper total lepton
number conservation [3]. Even so, the required Yukawa cou-
plings are typically very suppressed, of the order O (

10−10
)
,

if Dirac neutrino masses are induced directly from the SM
Higgs mechanism [4,5]. Nevertheless, if the symmetry for-
bids the tree-level contribution driven by the SM Higgs,
a Dirac-seesaw mechanism can be implemented [6,7]. For
example, the type-I Dirac-seesaw [8–10] could appear in the
context of anomaly-free gauge U (1)B−L [3] or U (1)R [11]
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symmetries. Specific models have been studied for producing
neutrino masses via the type-II Dirac Seesaw [12,13] with
both anomaly-free gauge U (1)B−L symmetries [14,15] or
with anomaly-free Abelian dark symmetries [16]. The extra
chiral singlet fermions required to cancel out the anomalies
can be part of a hidden sector with DM candidates, as in
the case type-I [17,18] or type-II [19] Majorana seesaw. At
loop level, the heavy particles in the radiative seesaw can be
fully associated to an Abelian gauge dark symmetry U (1)D
with the lightest of them as DM candidate [20–23], as well to
an active Abelian gauge symmetry U (1)X , like an U (1)B−L

[4,23–25]. The studies of one-loop Dirac neutrino masses
have typically focused on finding specific anomaly-free solu-
tions of this two kinds of symmetries, see, e.g., Refs. [11,26–
29]. Only few studies have performed systematic analysis of
SM extensions with an additional anomaly-free gauge U (1)

symmetry to generate Dirac neutrino masses [30,31].
Here we continue the effort of performing a systematic

analysis of SM extensions, presenting a complete set of rel-
evant anomaly-free solutions to the general problem of the
generation of neutrino masses by the type-I and type-II tree-
level Dirac seesaw mechanism, via dimension 5 and 6 opera-
tors. A full set of relevant solutions is obtained. Our method
can be easily applied to find the full set of anomaly-free solu-
tions to well defined phenomenological problems.

In this work, we look for anomaly-free solutions to SM
extensions with an additional U (1) gauge symmetry, giv-
ing rise to tree-level Dirac neutrino masses. For that pur-
pose, in Sect. 2 we briefly revise the conditions to have a
non-anomalous U (1) gauge symmetry. In Sect. 3 we dis-
cuss solutions giving rise to neutrino masses, by the type-I
and type-II tree-level Dirac seesaw mechanism, via opera-
tors with dimensions 5 and 6, corresponding to active or dark
symmetries. Finally, in Sect. 4 our conclusions are presented.
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2 Anomaly conditions

We consider an extension of the SM with an additionalU (1)X
gauge symmetry, and N ′ right-handed chiral fields ψρ sin-
glets under the SM SU (3)c ⊗ SU (2)L ⊗U (1)Y group, with
charges nρ under the U (1)X , where ρ = 1, . . . , N ′. Addi-
tionally, we assume that the SM right-handed chiral fermions
transform under the active U (1)X symmetry, with charges
denoted with the same name of the field.1 To avoid having
an anomalous U (1)X , the three linear anomaly conditions to
be fulfilled are

[SU (3)c]
2 U (1)X : [3u + 3d] + [3 × 2Q] = 0 , (1)

[SU (2)L ]2 U (1)X : [2L + 3 × 2Q] = 0 , (2)

[U (1)Y ]2 U (1)X :
[

(−2)2e + 3

(
4

3

)2

u

+3

(
−2

3

)2

d

]

+
[

2(1)2L + 3 × 2

(
−1

3

)2

Q

]

= 0 .

(3)

As they only depend on the SM fermions, three of their X -
charges can be expressed in terms of the other two [23,32–
34], chosen to be e and L , as

u = − e − 2

3
L , d = e + 4

3
L , Q = −1

3
L . (4)

We note that the quadratic anomaly condition in U (1)X is
trivially satisfied. However, the mixed gauge-gravitational
[Grav]2 U (1)X and the cubic [U (1)X ]3 anomalies do depend
on the extra fermion charges nρ , and therefore two additional
conditions have to be imposed in order to avoid an anomalous
U (1)X [23]:

N ′∑

ρ=1

nρ + 3m = 0 ,

N ′∑

ρ=1

n3
ρ + 3m3 = 0 , (5)

where m ≡ e+2L . Equation (4) can be conveniently rewrit-
ten as

u =4L

3
− m , d = m − 2L

3
, Q = − L

3
, e =m − 2L .

(6)

Finally, we note that the SM Higgs must have an X -charge

h = −e − L = L − m (7)

1 Q and L are the X -charges of the fermion doublets Q† and L†, respec-
tively. Also, for the hypercharges we have YL† = +1 and YQ† = − 1

3 .

to guarantee that SM quarks and charged leptons acquire
masses through the standard Higgs mechanism.2 Along these
lines, we also assume that the singlet chiral fermions ψρ only
acquire mass through the spontaneous symmetry breaking
(SSB) of the extra U (1)X symmetry. This excludes solutions
with vector-like states. We note that the existence of fields
charged under both hypercharge and U (1)X induce at loop
level the kinetic mixing operator L ⊃ ε

2 B
μνXμν , where Bμν

and Xμν are the field strengths related to the U (1)Y and the
extra U (1)X , respectively. The dimensionless parameter ε

depends on the masses of the particles in the loop, as well
as their specific charge assignment and the gauge couplings
under the two U (1) symmetries [35–37].

It is interesting to note that the conditions in Eq. (5) are
completely equivalent to the ones coming from a scenario
where the SM is extended with a dark U (1)D gauge symme-
try with N = N ′ + 3 right-handed singlet chiral fermions,
N ′ of them with the charges nρ and three with charge m,
and where the SM is invariant (hence a dark symmetry) [31].
Even if comparable, there is a major technical advantage of
the latter approach: If the SM is extended with and additional
dark U (1)D gauge symmetry (under which it is uncharged),
and N right-handed chiral fields singlets under the SM group,
the U (1)D is not anomalous if the Diophantine equations

N∑

ρ=1

nρ = 0 and
N∑

ρ=1

n3
ρ = 0 , (8)

coming from the mixed gauge-gravitational [Grav]2 U (1)D
and cubic [U (1)D]3 conditions are fulfilled.

3 Dirac seesaw models

In this section we look for anomaly-freeU (1)X gauge exten-
sions of the SM, with N singlet chiral fermions, realizing the
effective Dirac neutrino mass operators [12,38] at tree-level.
In the two-component spinor notation, they can be written as

Leff = hαi
ν (νRα)† εab L

a
i H

b
(
S∗

�

)δ

+ H.c., with i = 1, 2, 3 , (9)

and δ = 1 or 2 for dimension 5 (D-5) or 6 (D-6) operators,
respectively. Here hαi

ν correspond to dimensionless induced
couplings, νRα are at least two RHNs (α = 1, 2, . . .) with
the same X -charge ν, Li are the lepton doublets with X -
charge −L , H is the SM Higgs doublet with X -charge h =
2 In particular, if h = 0 a gauge symmetry with SM-fermion charge
X = m (B − L) is obtained, where B − L are the baryon-minus-lepton
charges.
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L νRχR χL
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Fig. 1 Diagram leading to tree-level type-I Dirac neutrino masses, via
the dimension 6 operator described in Eq. (9)

L − m, S is the complex singlet scalar responsible for the
SSB of the anomaly-free gauge symmetry with X -charge
s = −(ν + m)/δ, respectively, and � is a scale of new
physics, which is parametrically the typical mass scale of
the new (heavy) states. In general, after the SSB, a remnant
Z|s| discrete symmetry is left, which guarantees the stability
of a potential DM candidate [21].

3.1 Type-I Dirac seesaw

The realizations of type-I Dirac seesaw with D-5 operators
automatically imply a vector-like pair of singlet fermions,
and is therefore not possible with only chiral fermions.
Hence, we will not consider that case any longer in this study.
However, the situation is different for D-6 operators. Figure 1
presents the diagram realizing the D-6 effective Lagrangian
in Eq. (9) for type-I seesaw, if one only allows SSB masses
for the singlet chiral fermions. It is important to note that this
process can only take place for active symmetries (a dark
symmetry would imply a state χR with charge r = 0). In
that figure, the flux of charges in each vertex imply that

−m = r, r = s − l, −l = s + ν. (10)

The charge of S can be expressed as a function of l and m as

s = l − m , (11)

and the chiral fermion charges obey

ν + 2l = m . (12)

It is important to note that the first condition in Eq. (10) does
not imply vector-like fermions, even if it contains particles
with opposite charges, since the charge m is associated to
SM doublets. In this way, for any chiral solution (i.e., without
opposite charges) we have two minimal ways of building a
solution satisfying the condition in Eq. (12):

• If m is already present in the solution as a non-repeated
X -charge (m, . . .), we can add two sets of opposite sign

charges m, such that

(m, . . .) → (m,m,m,−m,−m, . . .) (13)

where −m is the X -charge of two new chiral fields χR1,
χR2. This is the minimal requirement for a rank-2 neu-
trino mass matrix for light neutrinos. We note that if the
original solution satisfies the Diophantine equations, the
second will trivially do it as well.

• If m is not present in the solution we can add three sets
of opposite sign charges m, and identify the X -charges
of three new chiral fields χR1, χR2 and χR3 as −m.

As mentioned previously, in order to limit the total number
of solutions that cancel the anomaly induced by the additional
U (1)X , the following restrictions are taken into account:

1. By construction, all new chiral fermions have to be
charged under U (1)X , i.e., solutions with vanishing
charges are disregarded.

2. For the chiral fields, the maximal charge allowed (in abso-
lute value) is 30.

3. Solutions with vector-like fermions are disregarded. We
emphasize that the first condition in Eq. (10) together with
the requirement of a rank-2 neutrino mass matrix demand
at least 2 opposite pairs of charges. However, this does
not imply vector-like fermions, since the charges m are
associated to SM doublets.

4. At least two charges have to be equal. Their corresponding
fields are identified with the RHNs.

5. A second set of at least two equal charges have to exist.
Their corresponding fields are identified with the heavy
left-handed chiral fermions. This is due to the need of a
neutrino mass matrix for the light neutrinos of at least
rank 2.

6. A third set of three equal charges is required. Their cor-
responding fields are identified with the SM doublets
charged under the new U (1)X .

7. We restrict ourselves to N ≤ 9 fields, with charges satis-
fying the two Diophantine conditions in Eq. (8), and take
the minimal charge (in absolute value) to be positive. We
note that there are no solutions for N ≤ 5 with at least
two sets of equal charges [39,40].

8. The numbers of left-handed chiral fermions χR and χL

has to be the same, for their masses to be generated by the
SSB of the S.

9. The charge assignment may not allow all chiral fields
to acquire masses via the SSB. We only consider solu-
tions which have extra massless chiral fields all of them
acquiring masses through an extra singlet scalar S′ with
X -charge s′. This implies that these charges cannot be
repeated.
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10. We want RHN masses to be generated by tree-level Dirac
seesaw. That implies that all vertices between S, the RHN
and the other chiral fields should be forbidden by the sym-
metries.

11. In the case of new set of chiral fermions which get masses
through S′ the lightest fermion must be a viable DM can-
didate .

12. In order to have a viable type-I Dirac seesaw, new heavy
chiral fermions have to satisfy the condition in Eq. (12).
For type-II Dirac seesaw, the conditions to be imposed
appear in Eqs. (15) and (17) for active or dark symmetries,
respectively, as will be seen in the following.

Additionally, we note that for a fixed number of chiral fields,
different solutions could share the same qualitative behav-
ior. For example, the second solution in Table 1 is (1, 2,

2,−3,−3,−3, 4) and has to be expanded with the set of
opposite charges (1, 1,−1,−1) to get (1, 1, 1,−1,−1, 2,

2,−3,−3,−3, 4). That solution and (3, 3, 3,−5,−5, 7, 7,

−7,−7,−7, 8) are equivalent (and therefore the latter is
omitted in the table) in the sense that both contain three
RHNs (with charges ν = −3 and ν = 3, respectively), two
heavy Dirac fermions (with charges (−1, 2) and (−5, 7)),
and a single massless Majorana fermion (with charge 4 and
8). Therefore, in this case only one solution (the one with the
smallest charge in absolute value) is reported in Table 1.

The solutions of the Diophantine equations satisfying all
the previously enumerated conditions are shown in Table 1.
The solutions for N extra chiral fermions are parametrized as
a function of two sets of integers 
 and k (first three columns).
The fourth column shows the charge assignments, whereas
the fifth the general common denominator (GCD) of the orig-
inal solution. Technically speaking, the solutions were found
using the package anomalies3 [31]. We note that even if
most of the solutions contain massless chiral fermion, there
are two solutions without (N highlighted in bold). Regarding
these solutions without massless fermions, a few comments
are in order:

• The first solution corresponds to N = 9 and has
the charge assignment (6, 6, 6, −6, −6, 2, −5, 9, 9,
−12,−12,−13, 16). In this case, there are two RHNs with
charges ν = −12, two χL with charge l = 9, and there-
fore S has to have a charge s = −ν−l = 3. Additionally,
three states with chargesm = ν+2l = 6 are required. As
the original solution contains a single state with charge
6, two extra chiral fields with the same charge are added,
together with two χR with charge r = −m = −6.
Finally, there are two extra Dirac fermions (2,−5) and
(−13, 16) that get mass via the SSB by the scalar S, each
of them being independent DM candidates protected by a

3 https://pypi.org/project/anomalies/.

residual Z3 symmetry. Other particles (i.e., the SM dou-
blets, the RHNs and the heavy fermionic mediators of the
type-I Dirac Seesaw) are neutral under such symmetry.

• The second solution also needs N = 9 new chiral
fermions and corresponds to the charge assignment (−3,

−3,−3, 3, 3, 3, 1, 2,−6,−6,−6, 8, 9, 9,−11). It con-
tains two RHNs with charge ν = 9, and three χL

with l = −6. As none of the three states with charges
m = ν + 2l = −3 were present, three extra chiral
fermions χL with charges r = −m = 3 have been added.
Finally, two Dirac fermions (1, 2) and (8,−11) acquire
mass via the scalar S with charge s = −ν − l = −3.

All other solutions presented in Table 1 have a number of
massless chiral fermions. They can be either extra relativis-
tic degrees of freedom, or additional DM candidates if they
acquire mass from another mechanism.

Concerning the solutions with multicomponent DM, we
explore the cases which feature at least two DM candidates
with unconditional stability [41]. This happens when there
are two remnant symmetries such that Z|s| ∼= Zp ⊗ Zq with
Zp ⊗ Zq coprimes, which guaranteed the stability of each
lightest state under Zp and Zq respectively, without impos-
ing any kinematical restriction. For the two DM candidates
associated to the set of chiral fields ψi and χ j , we consider
the first two possibilities for |s| [41]

• Z6 ∼= Z2 ⊗Z3: solutions with at least a set of chiral fields
with ψi ∼ [

ω2
6 ∨ ω4

6

]
underZ6, and at least a set of chiral

fields with χi ∼ ω3
6 under Z6,

• Z10 ∼= Z2 ⊗ Z5: solutions with at least a set of chiral
fields with ψi ∼ [

ω2
10 ∨ ω6

10 ∨ ω8
10

]
under Z10 and at

least a set of chiral fields with χi ∼ ω5
10 under Z10,

where ω|s| = ei 2π/|s|. The solutions with unconditional
stability are highlighted with a bold font in the column s
of Table 1. In this case, we have only a Z10 solution in
which we have a first set of singlet chiral fermions ψi with
charges (ω2

10, ω8
10) and a second singlet chiral fermion χ

with charge ω5
10. This give to arise a Dirac fermion DM can-

didate
(
ψ1 (ψ2)

†
)T

protected by Z5 and a Majorana fermion

DM
(
χ (χ)†

)T
protected by Z2.

Finally, the type-I Dirac seesaw realizations of the effec-
tive operator of D-6 in Eq. (9) have to have a sufficiently
rich hαi

ν structure to explain the full neutrino oscillation data.
That can be guaranteed by having a rank 2 or 3 Dirac neu-
trino mass matrix, via the inclusion of a proper set of chiral
fermions for each solution. For example, consider the first
solution (1,−4,−4, 9, 9,−11), which is promoted to (1, 1,

1,−1,−1,−4,−4, 9, 9,−11) by adding two pairs of extra
states (1,−1). We assignm = 1, r = −1, l = −4 and ν = 9,
such that s = −5 gives masses to two Dirac neutrinos. For
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Fig. 2 Diagrams leading to tree-level type-II Dirac neutrino masses,
via the dimension 5 (left panel) or dimension 6 (right panel) operators
described in Eq. (9)

avoiding the chiral fermion with charge −11 to be massless,
an extra scalar S′ with X -charge 22 can be introduced to give
a Majorana mass.

3.2 Type-II Dirac seesaw

Contrary to type-I, type-II Dirac seesaw with only chiral
fermions can be realized via D-5 operators. Figure 2 presents
the diagrams realizing the D-5 (left panel) and D-6 (right
panel) effective Lagrangian in Eq. (9) for type-II seesaw, if
one only allows SSB masses for the singlet chiral fermions.

For the case D-5, the flux of the X -charges in each vertex
for an active symmetry satisfy

L − m = η + s, −L + η = ν, (14)

which implies that

ν + m + s = 0 . (15)

For D-6, the type-II seesaw simply implies a change of charge
of s to s/2, as in the upper vertex there are two ongoing S
instead of a single one.

3.2.1 Active symmetry

The solutions of the Diophantine equations satisfying all the
previously enumerated conditions for a type-II Dirac neutrino
masses and an active symmetry, are shown in Table 2 for the
D-5 operator.

We note that even if most of the solutions contain mass-
less chiral fermions, there is a single solution without (high-
lighted in bold). It corresponds to a case with N = 6 new
chiral fermions, with the charge assignment (1, 2,−6,−6,

−6, 8, 9, 9,−11). It contains two RHNs with charge ν = 9,
and three states with charge m = −6. The other four chi-
ral fermions form two Dirac states (1, 2) and (9,−11) that
obtain mass via the scalar S with charge s = −ν −m = −3,
and that could be viable DM candidates.

3.2.2 Dark symmetry

Contrary to the type-I seesaw, the type-II seesaw can accom-
modate a dark symmetry [16]. 4 For the case D-5, the flux of
charges in each vertex is

0 = η + s, η = ν. (16)

In general, for realizing the Type-II Dirac Seesaw, one
requires

ν + m + s/δ = 0 , (17)

with m for a gauge U (1)D symmetry, δ = 1 or 2 for D-5 or
D-6 realizations, as in the upper vertex there are two ongoing
S instead of a single one.

The solutions of the Diophantine equations satisfying all
the previously enumerated conditions for a type-II Dirac see-
saw neutrino mass mechanism and an dark symmetry, are
shown in Table 3, for the D-5 operator. A total of 19 solu-
tions where found, 3 of them (highlighted in bold) without
massless fermions.5

Regarding these solutions without massless fermions, a
few comments are in order:

• The first solution corresponds to N = 6 and has the
charge assignment (1,−2,−3, 5, 5,−6). It contains two
RHNs with charge ν = 5. There are also two extra Dirac
fermions (1,−6) and (−2,−3) that get mass via the SSB
by the scalar S with charge s = −ν = −5, each of them
being independent DM candidates protected by a residual
Z5 symmetry.

• The other two solutions contain N = 9 new chiral
fermions, the first with the assignment (1,−2, 3, 4, 6,−7,

−7,−7, 9). It contains three RHNs with charge ν = −7,
and three Dirac fermions (1, 6), (−2, 9) and (3, 4) gain-
ing mass via a scalar of charge s = 7.

• Finally, the last solution has charges (1, 1,−4,−5, 9, 9,

9,−10,−10). It contains three RHNs with charge ν =
9, and three Dirac fermions (1,−10), (1,−10) and
(−4,−5) that obtain mass via the scalar S with charge
s = −9. Additionally, the scalar η has charge η = ν = 9.
The dark U (1)D symmetry is broken by S down to a Z9

symmetry.

We also have four solutions with unconditional stability.
Concerning the second with Z6 ∼= Z2 ⊗ Z3, some phe-
nomenological considerations are in order: the particle con-
tent of the model, along with the charges of the remnant sym-

4 We note that this case reduces to the one with an active symmetry in
the limit L = 0 = m.
5 The first two solutions were recently presented in Ref. [16].
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Table 2 Type-II Dirac neutrino masses for an active symmetry: Set of
charges satisfying the Diophantine equations together with the condi-
tions enumerated in the text, for N extra singlet chiral fermions, featur-

ing Dirac neutrino masses generated by D-5 operators. The solutions
without massless chiral fermions are highlighted with a bold font

N 
 k Solution GCD m ν s Massless s′

6 (−1, −2) (−1, 2) (1, 1, 1, −4, −4, 5) [14] 1 1 −4 3 (5) 10

7 (−1, 1) (−1, 0, −1) (1, 2, 2, −3, −3, −3, 4) 1 −3 2 1 (1, 4) 5

8 (1, −3, −2) (−4, −9, −5, −3) (1, 3, 3, 3, −5, −7, −7, 9) 1 3 −7 4 (9) 18

8 (−8, −1, −4) (−2, −6, 4, −5) (7, −8, −18, −18, 20, 20, 20, −23) 2 20 −18 −2 (−23, −8, 7) 16

9 (3, 0, −1, 1) (−6, −5, 5, −1) (2, 2, 2, −3, −3, 4, −5, −5, 6) 1 2 −5 3 (4) 8

9 (1, −1, −2, −1) (−6, −5, −3, −5) (1, 1, 2, 2, 2, −3, −6, −8, 9) 1 2 1 −3 (−8, −3) 11

9 (−2, −3, 0, 1) (−2, −4, −3, 0) (1, 4, 5, −6, −6, −6, 9, 9, −10) 1 −6 9 −3 (−10, 1, 4, 5) 5

9 (1, 2, 1, −1) (−6, −3, −5, −3) (1, 2, −6, −6, −6, 8, 9, 9, −11) 1 −6 9 −3 () −
9 (−5, −2, 3) (−1, −2, 3, −4) (3, 5, 5, −8, −8, −8, 12, 12, −13) 3 −8 12 −4 (−13, 3, 5) 10

Table 3 Type-II Dirac neutrino masses for a dark symmetry: Set of
charges satisfying the Diophantine equations together with the condi-
tions enumerated in the text, for N extra singlet chiral fermions, fea-

turing Dirac neutrino masses generated by D-5 operators. None of the
present solutions contain massless chiral fermions

N 
 k Solution GCD ν s Massless s′

6 (−1, −2) (−1, 2) (1, 1, 1, −4, −4, 5) [16] 1 1 −1 (−4) −8

6 (−1, 1) (−2, 0) (1, −2, −3, 5, 5, −6) [16] 1 5 −5 () −
6 (0, 2) (−1, −2, 1) (1, 1, 8, −11, −16, 17) 1 1 −1 (−11, 8) 3

7 (−1, 1) (−1, −2, −1) (1, 3, −4, 5, −6, −6, 7) 1 −6 6 (−4, 7) 3

7 (−1, 0, −2) (−1, 0, −1) (1, 7, 8, −9, −9, −9, 11) 1 −9 9 (7, 11) 18

8 (−1, 2, −2) (−7, 4, 0) (1, 2, 2, 2, −3, −5, −6, 7) 1 2 −2 (−6) 12

8 (3, 2, −2) (−7, −10, −4) (2, −3, −4, 5, −6, 7, 7, −8) 1 7 −7 (−8, −6) 14

8 (1, −2, 2) (−1, 0, −3, 5) (4, −5, −5, 7, 8, −10, −10, 11) 1 −10 10 (4, 7, 8, 11) 15

8 (−2, −1, 2) (−2, −5, 1) (1, 2, 2, −7, −7, 10, 10, −11) 2 10 −10 (−7, 2) 5

9 (−2, −3, −1, −2) (−2, −6, −5, 3) (3, −4, −6, −6, −8, 10, 14, 16, −19) 1 −6 6 (−19, 16) 3

9 (1, 0, 4, 3) (−2, 0, −2, −4) (1, −3, 6, 6, 6, −7, −10, −15, 16) 1 6 − 6 (−15) 30

9 (−6, −3, −6, −2) (−6, −4, −1, −5) (1, 1, 2, 2, 3, −5, −6, −6, 8) 1 2 −2 (−6) −12

9 (−2, −3, 1, −1) (−3, −1, −2, −1) (1, −2, 3, 4, 6, −7, −7, −7, 9) 1 −7 7 () −
9 (−3, −1, 5) (−9, 3, −4, −1) (1, 2, −3, 4, −5, −6, 8, 8, −9) 1 8 −8 (−6, 2) 4

9 (−2, 1, −2) (−1, −2, −1, 3) (2, 2, 4, −5, −5, −5, 8, 8, −9) 1 −5 5 (2, 8) 10

9 (4, 5, −1) (−2, −1, −3, −2) (2, −5, 8, 10, 10, −12, −16, −18, 21) 1 10 − 10 (−16, 21) 5

9 (−2, 0, 2) (−1, 1, 0, −1) (1, 1, −4, −5, 9, 9, 9, −10, −10) 1 9 −9 () −
9 (2, −2, 1, 3) (−5, −4, −3, −1) (1, −2, −2, −2, 5, −7, 8, 9, −10) 1 −2 2 (9) 18

9 (−2, −3, 0, 1) (−2, −4, −3, 0) (1, 4, 5, −6, −6, −6, 9, 9, −10) 1 −6 6 (9) 18

9 (−4, −5, 3) (−2, 0, −1, −2) (3, 3, −4, 5, 5, −6, −8, −8, 10) 1 −8 8 (−6, 10) 4

9 (1, 0, 2, 1) (−5, 3, −3, −6) (1, −3, −3, −4, −5, 8, 9, 9, −12) 1 −3 3 (9) 18

9 (−2, 0, 1, 3) (−1, 0, −1, 3) (1, 1, 2, 2, −6, 9, −10, −12, 13) 1 1 −1 (−6, 2) 4

9 (3, 0, 5) (−2, −5, −4, −2) (1, 5, 9, −10, −10, −10, 16, 25, −26) 3 −10 10 (25) 50

metries, are presented in Table 4. The interaction Lagrangian
includes

Lint ⊃ yχ
abχχ S∗ + yψψ1ψ2S + yξ ξ1ξ2S

∗

+ hαi (νRα)† Li · η + H.c. − V (η, H, S) , (18)

where

V (η, H, S) ⊃ μ2H†H + λ
(
H†H

)2

+ μ2
ηη

†η + λη

(
η†η

)† + μ2
S S

∗S + λS
(
S∗S

)2
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Table 4 Charges for last solution. i = 1, 2, 3, α = 1, 2, 3. Note that(
ωd
n

)∗ = ω−d
n = ωn−d

n

Field SU (2)L U (1)Y U (1)D Z6 Z2 Z3

Li 2 −1 0 1 + 1

νRα 1 0 6 1 + 1

ψ1 1 0 −10 ω2
6 + ω2

3

ψ2 1 0 16 ω4
6 + ω3

χ 1 0 −3 ω3
6 − 1

χ ′ 1 0 −15 ω3
6 − 1

ξ1 1 0 1 ω6 − ω3

ξ2 1 0 −7 ω5
6 − ω2

3

H 2 1 0 1 + 1

η 2 1/2 6 1 + 1

S 1 0 −6 1 + 1

+ λSH S∗SH†H + ληHη†ηH†H

+ λSηS
∗Sη†η +

[
κH†ηS + H.c.

]
, (19)

and

〈H〉 = v√
2

, 〈η〉 = vη√
2

, 〈S〉 = vS√
2

. (20)

After the spontaneous symmetry breaking, the neutrino
mass matrix reads

Mαi = 1√
2
hαi vη , (21)

and therefore, vη must be small to allow for sizeable Yukawa
couplings. This condition can be easily satisfied if vη � v.
In fact

vη ≈ κ
vvS

2M2
η

(22)

is expected to be much more smaller than v for large Mη.
Contrary to the scotogenic model, the dark sector is com-

pletely independent of the heavy particles associated to the
type-II Dirac seesaw. Moreover, because the Z6 symme-
try has two subgroups, the subsequent two dark sectors
are completely independent between them, and therefore,
we have at least two independent DM candidates. The first
one, protected by the subgroup Z3, is the Dirac fermion

ψ = (
ψ1 (ψ2)

†
)T

, while the second one, protected by the

subgroup Z2, is the Majorana fermion � = (
χ (χ)†

)T
. For

simplicity, we assume that other potential DM candidates
are heavier than ψ and � and have very small densities in
the early universe, primarily by DM conversion into ψ and
� mediated by Z ′ and S [30]. Besides the DM conversion

processes, the proper relic density for the Majorana DM can-
didate through the annihilation �� → SS (mS < |m�|), and
compatible with direct detection constraints from PandaX-
4T [42], was analyzed for the first model in Table 3 in Ref.
[16]. The authors did the same analysis for the second model
in Table 3 with one of Dirac DM candidates through the
annihilation ψψ → ZDZD (mD < |mψ |).

We can also introduce an extra singlet scalar in the dark
sector with a D-charge different from ±6, φ, to allow the
Yukawa coupling between one of the heavy chiral fields with
the right-handed neutrinos [43], as for example yφαψ1νRαφ

for a φ with D-charge 4. This coupling leads to a Dirac neu-
trino portal scenario which can explain fermion DM in the
context of the type-II Dirac seesaw [44].

4 Conclusions

Studies on tree-level Dirac neutrino masses have typically
focused on finding specific anomaly-free solutions for a given
kind of symmetry, either for an active or dark symmetry.
Alternatively, in the present work a complete set of relevant
anomaly-free solutions to the general problem of the genera-
tion of Dirac neutrino masses at tree level with chiral singlet
fermions has been presented. In particular, we restricted the
analysis to solutions satisfying a set of general conditions
enumerated in the text. An intensive scan was performed,
looking for solutions generating neutrino masses by the type-
I and type-II tree-level Dirac seesaw mechanism, via oper-
ators with dimension 5 and 6, that correspond to active or
dark symmetries. Each of the presented solutions leads to a
unique model with specific phenomenological implications.

It is interestingly to note that type-I Dirac seesaw can only
take place for active symmetries, if one demands all extra
fermions to be charged under the new symmetry. Addition-
ally, type-I Dirac seesaw with dimension-5 operators auto-
matically implies a vector-like pair of singlet fermions, and
is therefore not possible with only chiral fermions. However,
for dimension-6 operators we found a set of 36 solutions of
the Diophantine equations (i.e. anomaly-free solutions) satis-
fying general conditions enumerated in the text (see Table 1).
Among them, only 2 solutions with all extra fermions get-
ting mass via the spontaneous symmetry breaking of the new
Higgs field. The massless fermions of the other solutions can
either contribute to the relativistic degrees of freedom �Neff

in the early universe [23], or acquire masses after the intro-
duction of an extra singlet scalar, becoming independent DM
candidates [17].

Contrary to type-I, type-II Dirac seesaw with only chiral
fermions can be realized via dimension-5 operators. For the
case of an active symmetry and dimension-5 operators, 9
solutions were found, only one of them without massless
chiral fermions (see Table 2). Alternatively, for the case of a
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dark symmetry, 19 solutions were found, 3 of them without
massless chiral fermions (see Table 3).

Most of the solutions found could feature multicomponent
DM. Special attention was brought to those with at least two
DM candidates with unconditional stability, which guaran-
tees the viability of DM without imposing any kinematical
restriction.
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38. G. Cleaver, M. Cvetič, J.R. Espinosa, L.L. Everett, P. Lan-
gacker, Intermediate scales, μ parameter, and fermion masses
from string models. Phys. Rev. D 57, 2701–2715 (1998).
arXiv:hep-ph/9705391

39. H. Davoudiasl, R. Kitano, G.D. Kribs, H. Murayama, Models of
neutrino mass with a low cutoff scale. Phys. Rev. D 71, 113004
(2005). arXiv:hep-ph/0502176

40. K. Nakayama, F. Takahashi, T.T. Yanagida, Number-theory dark
matter. Phys. Lett. B 699, 360–363 (2011). arXiv:1102.4688 [hep-
ph]

41. C.E. Yaguna, Ó. Zapata, Multi-component scalar dark matter from
a ZN symmetry: a systematic analysis. JHEP 03, 109 (2020).
arXiv:1911.05515 [hep-ph]

42. Y. Meng et al., Dark matter search results from the PandaX-4T
Commissioning Run (2021). arXiv:2107.13438 [hep-ex]

43. S.-Y. Guo, Z.-L. Han, Observable signatures of Scotogenic Dirac
model. JHEP 12, 062 (2020). arXiv:2005.08287 [hep-ph]

44. A. Biswas, D. Borah, D. Nanda, Light Dirac neutrino por-
tal dark matter with observable �Neff. JCAP 10, 002 (2021).
arXiv:2103.05648 [hep-ph]

123

http://arxiv.org/abs/hep-ph/0212073
http://arxiv.org/abs/1705.05388
http://arxiv.org/abs/1710.03377
http://arxiv.org/abs/0902.3246
http://arxiv.org/abs/1909.00696
http://arxiv.org/abs/hep-ph/9705391
http://arxiv.org/abs/hep-ph/0502176
http://arxiv.org/abs/1102.4688
http://arxiv.org/abs/1911.05515
http://arxiv.org/abs/2107.13438
http://arxiv.org/abs/2005.08287
http://arxiv.org/abs/2103.05648

	Anomaly-free Abelian gauge symmetries with Dirac seesaws
	Abstract 
	1 Introduction
	2 Anomaly conditions
	3 Dirac seesaw models
	3.1 Type-I Dirac seesaw
	3.2 Type-II Dirac seesaw
	3.2.1 Active symmetry
	3.2.2 Dark symmetry


	4 Conclusions
	Acknowledgements
	References




