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Abstract In the framework of the chiral quark model
(ChQM), we systematically investigate the strange hidden-
charm tetraquark systems csc̄ū with two structures: qq̄ −qq̄
and qq − q̄q̄ . The bound-state calculation shows that there
is no any bound state in present work, which excludes the
molecular state explanation (D0D∗−

s /D∗0D−
s /D∗0D∗−

s ) of
the reported Zcs(3985)− or Zcs(4000)+. However, the effec-
tive potentials for the cs − c̄ū systems show the possibility
of some resonance states. By applying a stabilization calcu-
lation and coupling all channels of both two structures, two
new resonance states are obtained, which are the I J P = 1

2 0+
state with the energy around 4111–4116 MeV and the I J P =
1
2 1+ state with energy around 4113–4119 MeV, respectively.
Both of them are worthy of search in future experiments. Our
results show that the coupling calculation between the bound
channels and open channels is indispensable to provide the
necessary information for experiments to search for exotic
hadron states.

1 Introduction

In 2013, the BESIII Collaboration reported a new charged
charmonium-like structure in the π± J/ψ invariant spec-
trum, which is called Zc(3900) [1]. At the same time, the
Belle observed a Zc(3895)± state in the process Y (4260) →
J/ψπ+π− [2]. The mass and width of Zc(3900) and
Zc(3895)± are very close within errors, so they are the same
state [3]. Subsequently, a series of the Zc exotic resonances
have been reported experimentally, such as Zc(4020) [4],
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Z±
c (4025) [5], Zc(3885)− [6], Zc(4200)+ [7] and Zc(4025)0

[8].
In the last year, the BESIII Collaboration reported their

study of the processes of e+e− → K+(D−
s D∗0 + D∗−

s D0),
and found a new structure Zcs(3985)− near the D−

s D∗0/D∗−
s

D0 thresholds. The pole mass and width of this state are
(3982.5+1.8

−2.6 ± 2.1) Mev and (12.8+5.3
−4.4 ± 3.0) Mev, respec-

tively [9]. From the production mode, it is easy to get that
the minimum quark component of Zcs(3985)− is csc̄ū, and
this state should be a partner structure of the well-known
Zc(3885)− reported in e+e− → D∗−D0π+ [6]. Besides, it
is the first candidate of the charged hidden-charm tetraquark
state with strangeness, whose discovery can provide more
hints to the quest of charged exotic Z structures. Therefore,
the observation of Zcs(3985)− immediately stimulated a lot
of theoretical discussions [10–24].

Recently, the LHCb Collaboration observed the Zcs

(4000)+ and Zcs(4220)+ with a new quark content cuc̄s̄
decaying to the J/ψK+ final state [25], and the decay
widths of these two states are Γ = 131 ± 15 ± 26 MeV
and Γ = 233 ± 52+97

−73 MeV, respectively. The masses of
Zcs(3985)− and Zcs(4000)+ are very close, but the decay
widths are very different, so there are a lot of theoreti-
cal works to study Zcs states. Some theorists obtained that
Zcs(3985)− and Zcs(4000)+ are the same state [26,27]. In
addition, some people showed that they are not the same state
and give separate explanations [12,28–30]. While discussing
these states, many theoretical workers also found new states
in system of csc̄ū. In Ref. [14], they made a prediction of
the missing kaon spectrum for the potential Zcs(4120) as a
hadronic molecule of D̄∗

s D
∗. In Ref. [26], they predicted

a new state Zcs(4110)− which is the SU (3) f partner of
Zc(4020)+ by Chiral constituent quark model. In Ref. [28],
they predicted some possible tetraquark states by use of an
effective Hamiltonian. The values of two model parameters
are 4141 MeV and 4095 MeV for J P = 0+ respectively,
4163 MeV and 4117 MeV for J P = 1+, 4185 MeV and
4231 MeV for J P = 2+. In Ref. [29], a tensor D̄∗

s D
∗ res-
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onance with mass about 4126 MeV and width 13 MeV was
obtained within a nonrelativistic effective field theory. In
Ref. [20], they found a new state, Zcs(4125), in the D̄∗

s D
∗

system, which can be strange partner of Zc(4020)+ state.
Actually, theoretical predictions of the charged hidden-

charm tetraquark with strangeness have been made in differ-
ent models [31–33]. D.Ebert used relativistic quark model
based on the quasipotential approach to calculate the mass
spectra of tetraquarks [Qs][Q̄q̄]/[Qq][Q̄s̄](Q = c, b) [34].
They found that all S-wave tetraquarks with hidden bot-
tom lie considerably below open bottom thresholds and
they should be narrow states which can be observed experi-
mentally. However hidden-charm tetraquark states all above
open charm thresholds. Dianyong Chen indicated that there
exist enhancement structures with both hidden-charm and
open-strange decays, which are near the DD̄∗

s /D
∗ D̄s and

D∗ D̄∗
s /D̄

∗D∗
s thresholds under the initial single chiral par-

ticle emission (ISChE) mechanism [35]. Chengrong Deng
studied the same charged tetraquark states using the varia-
tional method GEM in the color flux-tube model with a four-
body confinement potential. The numerical results indicated
that some compact resonance states can be formed [36].

Strong interaction is the strongest one of the four interac-
tions in nature, but understanding its nature has always been
a difficult problem in physics. Quantum chromodynamics
(QCD) is widely accepted as the basic theory of strong inter-
actions. QCD can deal with scattering problems by perturba-
tion expansion in high energy regions, but the spontaneous
chiral symmetry breaking and color confinement appear in
low energy regions. To study hadron–hadron interactions and
multiquark states, many quark models based on QCD theory
have been developed. The chiral quark model (ChQM) is one
of the typical models [37]. The interactions in this model
include the colorful one-gluon-exchange and confinement,
colorless Goldstone boson exchange and the chiral partner
σ meson-exchange. Recently, ChQM has been applied to
the study of the fully heavy tetraquark systems [38] and the
reported X (6900) [39] was explained as a compact resonance
state in this model. It is quite natural to extend the study to the
charged hidden-charm tetraquark systems with strangeness.
On the one hand, we want to investigate the reported Zcs

states. On the other hand, we also try to search for other
possible exotic states.

The structure of this paper is as follows. Section 2 gives
a brief introduction of ChQM, and the construction of wave
functions. The numerical results and discussions are given in
Sect. 3. The summary is presented in the last section.

2 Quark model and calculation method

In this work, we investigate the charged charmonium-like
tetraquarks with hidden-charm and open-strange csc̄ū within

ChQM. Two structures: qq̄−qq̄ and qq−q̄q̄ , are considered.
In this sector, we will introduce this model and the wave
functions of the tetraquarks for two structures.

2.1 Quark model

The ChQM has been successfully applied to describe the
properties of hadrons and hadron–hadron interactions [37,
40]. The model details can be found in Refs. [37,40]. The
Hamiltonian of this model is:

H =
4∑

i=1

(
mi + p2

i

2mi

)
− Tcm +

4∑

i< j=1

(VCON
i j + V OGE

i j )

(1)

where Tcm is the kinetic energy of the center of mass; VCON
i j

and V OGE
i j are the interactions of the confinement and the

one-gluon-exchange, respectively. For the csc̄ū system, there
is no σ -exchange interactions, because the σ meson cannot
be exchanged between u/d quark and s/c quark. The forms
of VCON

i j and V OGE
i j are shown below:

VCON
i j = −λc

i · λc
j (acr

2
i j + V0qi q j

) (2)

V OGE
i j =

αsqi q j

4
λc
i · λc

j

[
1

ri j
− π

2
δ(ri j )

(
1

m2
i

+ 1

m2
j

+ 4σ i · σ j

3mim j

)

− 3

4mim jr3
i j

Si j

]
(3)

Si j =
{

3
(σ i · r i j )(σ j · r i j )

r2
i j

− σ i · σ j

}
(4)

where Si j is quark tensor operator; αsqi q j
is the quark–gluon

coupling constant.

2.2 Calculation method

We use the resonating group method (RGM) [41] to carry out
a dynamical calculation. Following the nomenclature of Ref.
[42], we write the conventional ansatz for the two-cluster
(cluster A and B) wave function as

Ψ4q = A
∑

L

[
[ΨAΨB][σ ]I S ⊗

χL(R)
]J

. (5)

The symbol A is the anti-symmetrization operator. For the
csc̄ū system, A = 1 because the quarks are not identical par-
ticles in the SU (3) symmetry and no anti-symmetrization
requirement is needed here. [σ ] = [222] gives the total
color symmetry and all other symbols have their usual mean-
ings. ΨA and ΨB are the 2-quark cluster wave functions(after
removal of the center of mass motion):
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ΨA =
(

1

2πb2

)3/4

e−ρ2
A/(4b2)ηIASAχ

c
A, (6)

ΨB =
(

1

2πb2

)3/4

e−ρ2
B/(4b2)ηIB SBχc

B, (7)

where ηIASA/ηIB SB are the multiplied wave functions of fla-
vor and spin of the cluster A/B; χc

A/χc
B are the internal color

wave functions of cluster A/B, and the Jacobi coordinates are
defined as follows:

ρA = r1 − r2, ρB = r3 − r4,

RA = 1

2
(r1 + r2), RB = 1

2
(r3 + r4),

R = RA − RB, RC = 1

2
(RA + RB). (8)

From the variational principle, after variation with respect
to the relative motion wave function χ(R) = ∑

L χL(R), one
obtains the RGM equation
∫

H(R,R′)χ(R′)dR′ = E
∫

N (R,R′)χ(R′)dR′, (9)

where H(R,R′) and N (R,R′) are Hamiltonian and norm
kernels, respectively. Their detailed expressions can be found
in Ref. [42]. The energies E and the wave functions are
obtained by solving the RGM equation. In practice, it is not
convenient to work with the RGM expressions. Then, the
relative motion wave function χ(R) is expanded by gaussian
bases

χ(R) = 1√
4π

∑

L

(
1

πb2

)3/4 ∑

i

Ci,L

×
∫

e− 1
2 (R−Si )2/b2

Y L(Ŝi)dΩSi , (10)

where Si is the generator coordinate in the model, denoting
the separation of two reference centers. R is the dynamic
coordinate defined in Eq. (8). In each cluster, the reference
center is fixed, and the quarks move around the reference
center, whereas the dynamic coordinateR is a quantity varies
with the motion of each quark. In the right side of Eq. (10),
the angular part of Si is integrated out, and the sum is over
i , so the magnitude of Si is also integrated out. So the left
side of Eq. (10) only depends on R. Ci,L is the expan-
sion coefficient. After the inclusion of the center of mass
motion,

ΦC (RC) =
(

4

πb2

)3/4

e−2R2
C/b2

, (11)

the ansatz, Eq. (5), can be rewritten as

Ψ4q = A
∑

i,L

Ci,L

∫
dΩSi√

4π

2∏

α=1

φα(Si)
4∏

β=3

φβ(−Si)

× [[ηIASAηIB SB ]I SY L(Ŝi)]J [χc
Aχc

B][σ ], (12)

where φα(Si) and φβ(−Si) are the single-particle orbital
wave functions with different reference centers:

φα(Si) =
(

1

πb2

)3/4

e− 1
2 (rα−Si/2)2/b2

,

φβ(−Si) =
(

1

πb2

)3/4

e− 1
2 (rβ+Si/2)2/b2

. (13)

With the reformulated ansatz, Eq. (12), the RGM equation
(9) becomes an algebraic eigenvalue equation:
∑

j,L

C j,L H
L ,L ′
i, j = E

∑

j

C j,L ′NL ′
i, j , (14)

where NL ′
i, j and HL ,L ′

i, j are the wave function (12) overlaps and
Hamiltonian matrix elements (without the summation over
L ′), respectively. By solving the generalized eigen problem,
we can obtain the energies of the 4-quark systems E and cor-
responding expansion coefficient C j,L . Finally, the relative
motion wave function between two clusters can be obtained
by substituting the C j,L into Eq. (10). The flavor, spin and
color wave functions are constructed in the following part.

2.2.1 The flavor wave function

In this work, the flavor wave function for the tetraquark sys-
tem we investigate is csc̄ū. Different structures are obtained
according to different coupling sequences. For the qq̄ − qq̄
structure, we use two kinds of coupling sequence, which are

χ
f 1
m = cc̄ − sū (15)

χ
f 2
m = cū − sc̄. (16)

For the qq − q̄q̄ structure, the coupling sequence is

χ
f 1
d = cs − c̄ū. (17)

Note that this coupling sequence should match the orbital
coupling sequence. For the coupling sequence cc̄ − sū, the
orbital coordinates are defined as Eq. (8); for the coupling
sequence cū − sc̄, the orbital coordinates in Eq. (8) change
to

ρA = r1 − r4, ρB = r3 − r2,

RA = 1

2
(r1 + r4), RB = 1

2
(r3 + r2), (18)
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and for the coupling sequence cs−c̄ū, the orbital coordinates
in Eq. (8) change to

ρA = r1 − r3, ρB = r2 − r4,

RA = 1

2
(r1 + r3), RB = 1

2
(r2 + r4). (19)

2.2.2 The spin wave function

For the spin part, the wave functions for two-body clusters
are:

χ1
σ11 = αα χ2

σ10 =
√

1

2
(αβ + βα)

χ3
σ1−1 = ββ χ4

σ00 =
√

1

2
(αβ − βα) (20)

where the α and β represent spin up (S, Sz) = ( 1
2 , 1

2 ) and spin
down (S, Sz) = ( 1

2 ,− 1
2 ), respectively. Then, the total spin

wave functions for the four-quark system can be obtained by
coupling the wave functions of two clusters.

χσ1
00 = χ4

σ00χ
4
σ00

χσ2
00 =

√
1

3
(χ1

σ11χ
3
σ1−1 − χ2

σ10χ
2
σ10 + χ3

σ1−1χ
1
σ10)

χσ3
11 = χ4

σ00χ
1
σ11

χσ4
11 = χ1

σ11χ
4
σ00

χσ5
11 =

√
1

2
(χ1

σ11χ
2
σ10 − χ2

σ10χ
1
σ11)

χσ6
22 = χ1

σ11χ
1
σ11. (21)

The spin wave function of two structures is the same.

2.2.3 The color wave function

For the qq̄−qq̄ structure, we give the wave functions for the
two-body clusters first, which are

χ1
c[111] =

√
1

3
(rr̄ + gḡ + bb̄) (22)

χ2
c[21] = r b̄ χ3

c[21] = −r ḡ

χ4
c[21] = gb̄ χ5

c[21] = −bḡ

χ6
c[21] = gr̄ χ7

c[21] = br̄

χ8
c[21] =

√
1

2
(rr̄ − gḡ)

χ9
c[21] =

√
1

6
(−rr̄ − gḡ + 2bb̄) (23)

where the subscript [111] and [21] stand for the color singlet
and color octet cluster respectively.

Then, the total color wave functions for the four-quark
system with theqq̄−qq̄ structure can be obtained by coupling

the wave functions of two clusters.

χc1
m = χ1

c[111]χ1
c[111] (24)

χc2
m =

√
1

8
(χ2

c[21]χ7
c[21] − χ4

c[21]χ5
c[21] − χ3

c[21]χ6
c[21]

+ χ8
c[21]χ8

c[21] − χ6
c[21]χ3

c[21] + χ9
c[21]χ9

c[21]
− χ5

c[21]χ4
c[21] + χ7

c[21]χ2
c[21]) (25)

where χc1
m and χc2

m represent the color wave function for the
color-singlet channel (1 × 1) and the hidden-color channel
(8 × 8), respectively.

For the qq − q̄q̄ structure, we firstly give the color wave
functions of the diquark clusters,

χ1
c[2] = rr χ2

c[2] =
√

1

2
(rg + gr) χ3

c[2] = gg

χ4
c[2] =

√
1

2
(rb + br) χ5

c[2] =
√

1

2
(gb + bg)

χ6
c[2] = bb χ7

c[11] =
√

1

2
(rg − gr)

χ8
c[11] =

√
1

2
(rb − br) χ9

c[11] =
√

1

2
(gb − bg) (26)

and the color wave functions of the antidiquark clusters,

χ1
c[22] = r̄ r̄ χ2

c[22] =
√

1

2
(r̄ ḡ + ḡr̄) χ3

c[22] = ḡḡ

χ4
c[22] =

√
1

2
(r̄ b̄ + b̄r̄) χ5

c[22] =
√

1

2
(ḡb̄ + b̄ḡ)

χ6
c[22] = b̄b̄ χ7

c[211] =
√

1

2
(r̄ ḡ − ḡr̄)

χ8
c[211] =

√
1

2
(r̄ b̄ − b̄r̄) χ9

c[211] =
√

1

2
(ḡb̄ − b̄ḡ). (27)

After that, the total wave functions for the four-quark sys-
tem with the qq − q̄q̄ structure are obtained as below,

χc1
d =

√
1

6
[χ1

c[2]χ1
c[22] − χ2

c[2]χ2
c[22] + χ3

c[2]χ3
c[22]

+ χ4
c[2]χ4

c[22] − χ5
c[2]χ5

c[22] + χ5
c[2]χ5

c[22]] (28)

χc2
d =

√
1

3
[χ7

c[11]χ7
c[211] − χ8

c[11]χ8
c[211] + χ9

c[11]χ9
c[211]].

(29)

Finally, we can acquire the total wave functions by sub-
stituting the wave functions of the orbital, the spin, the flavor
and the color parts into the Eq. (5) according to the given
quantum number of the system.

123



Eur. Phys. J. C (2021) 81 :1108 Page 5 of 10 1108

Table 1 Model parameters. We used the same mu(313 MeV),
ms(536 MeV), mc(1728 MeV) and ac(101 MeV fm−2) for the three
sets of parameters

I II III

b( f m) 0.29 0.3 0.31

V0us (MeV) −192.0 −180.6 −170.0

V0uc (MeV) −143.3 −133.6 −124.8

V0sc (MeV) −76.8 −68.1 −59.2

V0cc (MeV) 61.2 76.0 91.0

αsus 0.30 0.33 0.36

αsuc 0.34 0.38 0.42

αssc 0.60 0.66 0.73

αscc 1.51 1.67 1.84

2.3 Model parameters

In fact, the parameter b appeared in Eqs. (6) and (7) repre-
sents the size of the cluster. However, the color-octet cluster
is not the real physical state. So the b is determined by fitting
the size of the mesons. In this work, eight mesons are used,
which are K , K ∗, D, D∗, Ds , D∗

s , ηc, and J/ψ . Our group has
calculated the mass of these mesons by using the Gaussian
expansion method (GEM), and found that the average size of
these mesons is about 0.3 fm. So we take the value ofb around
0.3 fm here. Besides, the quark mass and the parameter ac are
also taken from the work by the GEM [43]. However, we use
the resonating group method (RGM) in this work, the main
feature of which is that it assumes that the clusters are frozen
inside. So we cannot obtain the same mass of these mesons
as the GEM. To obtain the right mass of mesons and keep the
thresholds of the tetraquark system correct, the parameters
αsqi q j

and V0qi q j
are fixed by masses of the corresponding

mesons. Take Ds and D∗
s as an example. The parameter αssc

can be obtained by fitting the mass difference between Ds

and D∗
s . The parameter V0qi q j

is determined by fitting the
mass shift of the absolute and experimental value of each
meson. These parameters are related to the flavor and there-
fore inevitably increase the number of parameters. In order
to test the dependence of the results on the parameters and
give ranges of the results, three sets of parameters are used
in the calculation, which are listed in Table 1. The calculated
masses of the mesons are shown in Table 2.

3 Numerical results and discussions

In this work, we investigate the charged hidden-charm
tetraquark systems with strangeness in two structures: qq̄ −
qq̄ and qq − q̄q̄ . We take into account all the possible
quantum numbers for the S−wave csc̄ū systems, which are
I J P = 1

2 0+, 1
2 1+, and 1

2 2+. For the qq̄ − qq̄ structure, we

Table 2 The calculated masses (in MeV) of the mesons. Experimental
values are taken from the Particle Data Group (PDG)

K K ∗ ηc J/ψ

Exp. 495.0 892.7 2983.9 3096.9

ChQM I 494.8 894.3 2983.8 3096.8

ChQM II 494.6 891.6 2983.6 3096.5

ChQM III 497.4 889.9 2984.2 3096.9

D D∗ Ds D∗
s

Exp. 1864.8 2006.9 1968.3 2112.2

ChQM I 1866.5 2007.0 1967.3 2112.5

ChQM II 1865.5 2007.3 1968.4 2112.2

ChQM III 1865.0 2007.0 1968.0 2112.2

take into account of two color configurations which are the
color singlet–singlet (1 × 1) and color octet–octet (8 × 8)

configurations. For the qq− q̄q̄ structure, two color configu-
rations, antitriplet-triplet (3̄×3) and sextet–antisextet (6×6̄),
are considered.

To find any bound states of the csc̄ū systems, we carry
out a dynamical bound-state calculation. The energies of
both the single channel and the channel-coupling calcula-
tions are obtained. Tables 3 and 4 show the results of the
qq̄ −qq̄ structure and the qq − q̄q̄ structure, respectively. In
the tables, the column headed with [χσi χ f j χck ] denotes the
combination in spin, flavor and color degrees of freedom for
each channel, respectively. The columns headed with Eth

denotes the theoretical threshold of each channel and Esc

represents the lowest energies in the single channel calcula-
tion. For qq̄−qq̄ structure, the column “Channel” represents
the contents of the channel. The results of coupling with all
channels (including color-singlet channels and hidden-color
channels) are labeled as Ecc. For qq − q̄q̄ structure, Ecc

denotes the lowest energies of the coupling of all channels
(including 6 × 6̄ and 3̄ × 3 color configurations). All the
general features of the calculated results are as follows.

3.1 qq̄ − qq̄ structure

For the qq̄ − qq̄ structure, ηcK− and ηc8K
−
8 in Table 3

represent the color singlet–singlet (1 × 1) and color octet–
octet (8 × 8) configurations, respectively. From Table 3 we
can see that the energy of every single channel is above the
corresponding theoretical threshold. The results of the three
sets of parameters also agree with each other. The channel-
coupling calculation cannot help too much, and the energies
by the channel-coupling are still above the theoretical thresh-
old, which indicates that the effect of the channel-coupling
is very small here. This is mainly due to the large energy
difference between each single channel. As a result, in the
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Table 3 The energies of csc̄ū systems with the qq̄ − qq̄ structure (unit: MeV)

I J P [χσi χ f j χck ] Channel ChQM I ChQM II ChQM III

Eth Esc Ecc Eth Esc Ecc Eth Esc Ecc

1
2 0+ χσ1

00 χ
f 1
m χc1

m ηcK− 3478.6 3485.5 3482.3 3478.2 3484.9 3484.9 3481.6 3488.2 3488.1

χσ2
00 χ

f 1
m χc1

m J/ψK ∗− 3991.1 3995.3 3988.1 3994.8 3986.8 3993.9

χσ1
00 χ

f 1
m χc2

m ηc8K
−
8 4484.7 4542.6 4533.6

χσ2
00 χ

f 1
m χc2

m J/ψ8K
∗−
8 4263.2 4363.8 4346.7

χσ1
00 χ

f 2
m χc1

m D0D−
s 3833.8 3839.5 3833.9 3840.6 3833.0 3839.7

χσ2
00 χ

f 2
m χc1

m D∗0D∗−
s 4119.5 4125.3 4119.5 4126.2 4119.2 4125.9

χσ1
00 χ

f 2
m χc2

m D0
8 D

−
s8 4269.3 4395.5 4375.7

χσ2
00 χ

f 2
m χc2

m D∗0
8 D∗−

s8 3920.9 4125.3 4091.2
1
2 1+ χσ3

11 χ
f 1
m χc1

m ηcK ∗− 3878.1 3884.9 3598.3 3875.2 3881.9 3597.8 3874.1 3880.8 3600.9

χσ4
11 χ

f 1
m χc1

m J/ψK− 3591.6 3598.3 3591.1 3597.8 3594.3 3601.0

χσ5
11 χ

f 1
m χc1

m J/ψK ∗− 3991.1 3997.9 3988.1 3994.8 3986.8 3993.5

χσ3
11 χ

f 1
m χc2

m ηc8K
∗−
8 4499.6 4493.0 4484.5

χσ4
11 χ

f 1
m χc2

m J/ψ8K
−
8 4535.4 4528.5 4519.5

χσ5
11 χ

f 1
m χc2

m J/ψ8K
∗−
8 4434.2 4423.6 4411.0

χσ3
11 χ

f 2
m χc1

m D0D∗−
s 3979.0 3985.8 3977.7 3984.4 3977.2 3983.8

χσ4
11 χ

f 2
m χc1

m D∗0D−
s 3974.3 3981.5 3975.7 3982.4 3975.0 3981.7

χσ5
11 χ

f 2
m χc1

m D∗0D∗−
s 4119.5 4126.2 4119.5 4126.2 4119.2 4125.9

χσ3
11 χ

f 2
m χc2

m D0
8 D

∗−
s8 4396.4 4377.5 4357.7

χσ4
11 χ

f 2
m χc2

m D∗0
8 D−

s8 4397.0 4377.7 4357.9

χσ5
11 χ

f 2
m χc2

m D∗0
8 D∗−

s8 4273.8 4247.2 4220.3
1
2 2+ χσ6

11 χ
f 1
m χc1

m J/ψK ∗− 3991.1 3997.9 3997.4 3988.1 3994.8 3994.8 3986.8 3993.5 3993.3

χσ6
11 χ

f 1
m χc2

m J/ψ8K
∗−
8 4532.5 4529.6 4525.1

χσ6
11 χ

f 2
m χc1

m D∗0D∗−
s 4119.5 4126.2 4119.5 4126.2 4119.2 4125.9

χσ6
11 χ

f 2
m χc2

m D∗0
8 D∗−

s8 4473.9 4462.0 4449.0

Table 4 The energies of csc̄ū systems with the qq − q̄q̄ structure (unit: MeV)

I J P [χσi χ f j χck ] ChQM I ChQM II ChQM III

Eth Esc Ecc Eth Esc Ecc Eth Esc Ecc

1
2 0+ χσ1

00 χ
f 1
d χc1

d 3478.6 4478.8 4006.0 3478.2 4462.3 3964.6 3481.6 4363.2 3950.6

χσ2
00 χ

f 1
d χc1

d 4202.7 4171.6 4119.8

χσ1
00 χ

f 1
d χc2

d 4267.2 4263.3 4185.3

χσ2
00 χ

f 1
d χc2

d 4358.2 4350.1 4254.5
1
2 1+ χσ3

11 χ
f 1
d χc1

d 3591.6 4443.7 4125.4 3591.1 4426.8 4091.2 3594.3 4409.1 4058.1

χσ4
11 χ

f 1
d χc1

d 4442.6 4426.3 4408.6

χσ5
11 χ

f 1
d χc1

d 4309.4 4285.7 4261.0

χσ3
11 χ

f 1
d χc2

d 4337.4 4334.2 4329.8

χσ4
11 χ

f 1
d χc2

d 4339.5 4335.2 4330.9

χσ5
11 χ

f 1
d χc2

d 4385.0 4379.1 4372.8
1
2 2+ χσ6

11 χ
f 1
d χc1

d 3991.1 4496.4 4423.5 3988.1 4486.5 4418.1 3986.8 4475.3 4411.1

χσ6
11 χ

f 1
d χc2

d 4432.7 4431.1 4428.9
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qq̄ − qq̄ structure, there is no any bound states. So the
reported Zcs(3985)− or Zcs(4000)+ cannot be explained as
D0D∗−

s /D∗0D−
s /D∗0D∗−

s molecular state in present calcu-
lation.

To study the interaction between two qq̄ clusters, we carry
out the adiabatic calculation of the effective potentials for the
csc̄ū system. The effective potential between two clusters
is defined as V (S) = E(S) − E(∞), where E(S) is the
diagonal matrix element of the Hamiltonian of the system in
the generating coordinate, and it is obtained by:

E(S) = 〈Ψ (S)|H |Ψ (S)〉
〈Ψ (S)|Ψ (S)〉

where 〈Ψ (S)|H |Ψ (S)〉 and 〈Ψ (S)|Ψ (S)〉 are the Hamilto-
nian matrix and the overlap of the state. The Ψ (S) is:

Ψ (S) = A
∫

dΩS√
4π

2∏

α=1

φα(S)

4∏

β=3

φβ(−S)

× [[ηIASAηIB SB ]I SY L(Ŝ)]J [χc
Aχc

B][σ ]. (30)

The results of the three sets of parameters are consistent
with each other. To save space, we only show the results of
ChQM II here. For the color singlet channels, the effective
potentials are shown in Fig. 1, in which we can see that all
effective potentials are repulsive. That’s why we cannot get
any bound state. For the hidden color channel, we gives the
potential of ChQM II in Fig. 2. We can see that the minimum
potential of each channel appears at the separation of 0.3
or 0.4 fm, which indicates that two colorful subclusters are
not willing to huddle together or fall apart, so it is possible
to form some resonance states here. However, the energy
of the hidden color channel listed in Table 3 is among 4.1–
4.6 GeV, which indicates that these resonances may not be
suitable to explain the observed Zcs(3985)− or Zcs(4000)+.
The scattering process of the corresponding open channels
should be studied to confirm if there is any resonance state
or not.

We also try to investigate why the effective potential is
repulsive in the color singlet channels. The Hamiltonian of
the ChQM consists of mass, the kinetic energy (VV K ), the
confinement (VCON ), the Coulomb interaction (VCoul ) and
the color-magnetic interaction (VCMI ). We take the results
of the I J P = 1

2 0+ ηcK− channel in qq̄ −qq̄ structure as an
example. We find that the kinetic energy term in the ChQM
provides repulsion. Since there is no exchange items between
cc̄ and sū in ChQM, the confinement, the Coulomb interac-
tion and the color-magnetic interaction do not contribute to
the effective potential between two color singlet clusters cc̄
and sū. So the interaction between the two mesons is only
affected by the kinetic energy term, which provides repulsive
interactions. Therefore, there is no any term which provides
attractive interaction between two color singlet clusters in

(a) (b) (c)

Fig. 1 The effective potentials of the color singlet channels for the
qq̄ − qq̄ systems in the ChQM II

(a) (b) (c)

Fig. 2 The effective potentials of the hidden-color channels for the
qq̄ − qq̄ systems in the ChQM II

ChQM, which leads to the absence of bound states in this
system.

3.2 qq − q̄q̄ structure

With regards to the qq − q̄q̄ structure, the results of three
sets of parameters in ChQM are listed in Table 4. As shown
in the table, the qq − q̄q̄ structure has higher energy than the
qq̄ − qq̄ structure so there is no any bound state. We also
find that the channel coupling of the qq − q̄q̄ structure can
make the energy lower, but the energy of each state is still
higher than the corresponding threshold. However, since the
confinement potential requires that the colorful subclusters
diquark and antidiquark cannot fall apart directly, resonance
states are possible in this configuration. We perform an adi-
abatic calculation to check the possibility of the existence of
any resonance state, the results of which are shown in Fig. 3.

Obviously, the energy of each single channel will rise
when the two subclusters are too close, so there is a hin-
derance for the state changing structure to qq̄ − qq̄ even if
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Fig. 3 The effective potentials for the qq− q̄q̄ systems in the ChQM II

the energy of the qq − q̄q̄ state is higher than the qq̄ − qq̄
state. So it is possible to form a resonance state. The min-
imum energy of each channel appears at the separation of
0.3–0.4 fm, which indicates that the diquark and antidiquark
subclusters are close to each other in the ChQM. There-
fore, the resonance state may be the compact resonance state.
According to the Table 4, after the channel coupling calcula-
tion, the lowest resonance energies are 3950.6–4006.0 MeV
for I J P = 1

2 0+, 4058.1–4125.4 MeV for I J P = 1
2 1+, and

4411.1–4423.5 MeV for I J P = 1
2 2+. Although the energy

of the I J P = 1
2 0+ state is close to the reported Zcs(3985)−

or Zcs(4000)+, the existence of these resonance states should
be checked by coupling to the corresponding open channels.
Because the coupling to the open channels will shift the mass
of the resonance and give the decay width to the resonance,
or destroy the resonance. So we couple all the channels with
both the qq̄ − qq̄ and the qq − q̄q̄ structures to confirm if
there is any resonance state.

3.3 Two structures coupling

In this section, a stabilization method [44], which is effec-
tive in the study of electron–atom, electron–molecule and
atom–diatom complexes, is used to find the genuine reso-
nance states. This method was also called as the real scaling
method, which has been employed to the pentaquark systems
within the quark model calculation [45,46]. Besides, we also
applied this method to find several resonance states of the
fully heavy tetraquark systems and found that the reported
state X (6900) can be explained as a compact resonance state
with I J P = 00+ [38]. Therefore, extending to the tetraquark
system composed of csc̄ū is feasible. Moreover, a channel-
coupling calculation of all channels with both qq̄ − qq̄ and
qq − q̄q̄ configurations is carried out here. In our calcula-
tion, the distance between two clusters is denoted by Si , and

Fig. 4 The stabilization plots of the energies of the csc̄ū system with
I J P = 1

2 0+ in the ChQM II

Fig. 5 The stabilization plots of the energies of the csc̄ū system with
I J P = 1

2 1+ in the ChQM II

the maximum one is Sm . We increase Sm from 4.8 to 8.5 fm
to observe the change of the energy of the csc̄ū system. If
the eigenvalue decreases and eventually approaches to the
threshold, it means that this is an unbound state, while if the
energy tends to be stable, it indicates that this is a resonance
state. The stabilization plots of the energies of the csc̄ū sys-
tems in the ChQM II with possible quantum numbers are
shown in Figs. 4, 5 and 6.

Figure 4 shows the results of the csc̄ū systems with
I J P = 1

2 0+ in the ChQM II. There are three red horizon-
tal lines, which represent the thresholds of ηcK−, D0D−

s
and J/ψK ∗−, respectively. Another horizontal line around
4115 MeV is stable with the variation of the distance between
two clusters, so it is on behalf of a resonance state. Besides,
we also calculate the component of each channel for this res-
onance state, and find that the main ingredient is D∗0D∗−

s . So
by considering the effect of all channels coupling, the former
resonance state around 3964.6 MeV with qq − q̄q̄ config-
uration disappears. Instead, a new resonance state D∗0D∗−

s
around the energy 4115 MeV is obtained.
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Fig. 6 The stabilization plots of the energies of the csc̄ū system with
I J P = 1

2 2+ in the ChQM II

For the csc̄ū systems with I J P = 1
2 1+, the first

five horizontal lines stand for the thresholds of channels
J/ψK−, ηcK ∗−, D∗0D−

s , D0D∗−
s and J/ψK ∗−, respec-

tively. Another horizontal line around 4118 MeV is stable as
the distance between two clusters increasing, which indicates
that there is a resonance state around the energy of 4118 MeV.
Moreover, the main component of this state is D∗0D∗−

s , too.
The results of the csc̄ū systems with I J P = 1

2 2+ are
shown in Fig. 6. It is obvious that the first two horizontal lines
represent the thresholds of J/ψK ∗− and D∗0D∗−

s . However,
no any resonance state is found here.

Besides, we also find that the results of the three sets of
parameters are consistent with each other. By taking into
account the effect of the channel-coupling, the resonance
state around 3964.6 MeV disappears. We cannot find any
resonance states that could explain the reported Zcs(3985)−
or Zcs(4000)+ at present. However, we find two new res-
onance states, which are I J P = 1

2 0+ state with energy
around 4111–4116 MeV and I J P = 1

2 1+ state with res-
onance energy around 4113–4119 MeV, respectively. The
main component of these two resonant states is D∗0D∗−

s .
This conclusion is consistent with that of many theoreti-
cal studies [14,20,26,28,29], in which the new exotic state
with energy around 4120 MeV is predicated. We suggest
that experiments can verify the existence of these resonance
states.

4 Summary

In this work, we systematically investigate the low-lying
charged hidden-charm tetraquark systems with strangeness
in the ChQM with three different sets of parameters. Two
configurations, qq̄ − qq̄ and qq − q̄q̄ , as well as the cou-
pling of these two structures are considered. The dynami-

cal bound-state calculation is carried out to search for any
bound state in the csc̄ū systems. To investigate the effect of
the channel coupling, both the single channel and the channel
coupling calculation are performed. Meanwhile, an adiabatic
calculation of the effective potentials is added to study the
interactions of the systems and a stabilization calculation is
carried out to find any resonance state.

The bound-state calculation shows that there is no any
bound state in ChQM, which excludes the molecular state
explanation (D0D∗−

s /D∗0D−
s /D∗0D∗−

s ) of the reported
Zcs(3985)− or Zcs(4000)+. The study of the interaction
between two mesons shows that the confinement interaction,
the Coulomb interaction and the color-magnetic interaction
don’t work between two mesons of the csc̄ū systems, because
there is no exchange items between them. So it is difficult to
obtain a molecular state in this csc̄ū system in present work.
However, the effective potentials for the csc̄ū systems of the
qq − q̄q̄ configuration shows the possibility of some reso-
nance states. Although we can obtain a resonance state of
the qq − q̄q̄ structure with I J P = 1

2 0+, the energy of which
is 3964.6 MeV, closing to the Zcs(3985)−, it disappears by
coupling all channels of both qq̄ − qq̄ and qq − q̄q̄ struc-
tures. Nevertheless, two new resonance states are obtained,
which are the I J P = 1

2 0+ state with energy around 4111–
4116 MeV and the I J P = 1

2 1+ state with resonance energy
around 4113–4119 MeV, respectively. Both of them are worth
searching by experiments.

Up to now, none of the exotic hadron states is definitely
confirmed by experiment. To each experimental observa-
tion, there always exists many different theoretical interpreta-
tions. To provide the necessary information for experiments
to search for exotic hadron states, the coupling calculation
between the bound channels and open channels is indispens-
able. The stabilization method is one of the effective ways
to look for the genuine resonances. Besides, the study of the
scattering process of the corresponding open channels is also
an efficient way, which is our further work. However, to dis-
tinguish the various explanations and confirm the existence of
the exotic hadron states is still very difficult, which requires
the joint efforts of both theorists and experimentalists.
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