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Abstract The singularity at the center of charged Bañados–
Teitelboim–Zanelli (BTZ) black holes is called a conical sin-
gularity. Unlike the canonical singularity in typical black
holes, a conical singularity does not destroy the causality
of spacetime. Due to the special property of the conical sin-
gularity, we examine the weak cosmic censorship conjecture
(WCCC) using the new version of the gedanken experiment
proposed by Sorce and Wald. A perturbation process wherein
the spherically symmetric matter fields pass through the event
horizon and fall into the black holes is considered. Assum-
ing that the cosmological constant is obtained by the matter
fields, it therefore can be seen as a dynamical variable during
the process. From this perspective, according to the stabil-
ity condition and the null energy condition, the first- and
second-order perturbation inequalities are derived. Based on
the first-order optimal condition and the second-order pertur-
bation inequality, we show that the nearly extremal charged
BTZ black hole cannot be destroyed in the above perturbation
process. The result also implies that even if the singularity
at the center of the black hole is conical, it still should be
surrounded by the event horizon and hidden inside the black
hole.

1 Introduction

A gravitational singularity at the center of black holes is usu-
ally mathematically ill-defined because it can cause the cur-
vature to diverge. Since the divergence can affect the valid-
ity of the causality law of spacetime, the singularity should
always be hidden inside the black hole and is not allowed to
appear in spacetime. In other words, an observer at infinity
cannot detect any information from the singularity. To ensure
well-define spacetime and the validity of the causality law,
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Penrose [1] proposed the weak cosmic censorship conjec-
ture (WCCC). This conjecture postulates that the singularity
should be surrounded by the event horizon and can never be
exposed to spacetime.

Although the WCCC is suggested for any black hole, the
general demonstration for the WCCC is notoriously diffi-
cult. Moreover, the validity of the conjecture also depends
on the research technique. A notable gedanken experiment
attempting to destroy Kerr black holes was proposed by Wald
[2]. For Kerr black holes, the angular momentum should
be bounded by the mass as J ≤ M2 when the event hori-
zon of the black hole is guaranteed. To destroy Kerr black
holes, a process whereby a test particle with sufficient angu-
lar momentum falls into Kerr black holes is considered. If the
particle successfully drops into the black hole, the value of
the angular momentum can exceed the boundary, and the
existence of the event horizon will no longer be guaran-
teed. In this situation, a naked singularity will emerge in
spacetime, and the WCCC for Kerr black holes is no longer
valid. Fortunately, it was shown that when the particle car-
ries the angular momentum sufficient to over-spin the Kerr
black hole, it cannot be captured by the black hole due to
the centrifugal force. This means that the WCCC for Kerr
black holes cannot be violated under this process. Since
this method was introduced, it has been used to examine
the WCCC for other kinds of black holes [3–7]. However,
the method has an inherent defect because the interaction
between the particle and the background spacetime is not
considered. Moreover, Hubeny [8] proposed that using the
above method, violation of the WCCC might occur if one
suitably adds the particle to a slightly non-extremal black
hole. Therefore, to solve the defect, Sorce and Wald [9] pro-
posed a new version of the gedanken experiment to examine
the WCCC for Kerr–Newman black holes. In this experi-
ment, the interaction between the black hole spacetime and
matter fields outside the black hole was sufficiently consid-
ered. In this way, the black hole and matter fields are regarded
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as a complete dynamical system, while the process by which
matter fields pass through the event horizon to perturb the
black hole can be treated as a dynamical evolution process
of the system. From this perspective, it was shown that the
WCCC for near-extremal Kerr–Newman black holes cannot
be as easily violated under the second-order approximation
of the matter field perturbation. Furthermore, based on the
new version of the gedanken experiment, the WCCC has also
been demonstrated to be valid for other kinds of black holes
[10–13].

For three-dimensional Bañados–Teitelboim–Zanelli (BTZ)
black holes, the singularity at the center of the black hole is
called a conical singularity. However, a conical singularity
is not similar to a canonical singularity because it does not
cause the spacetime curvature to diverge [14]. This means
that a conical singularity does not influence the well-defined
spacetime and the validity of the causality law. Moreover,
an assumption was proposed in Ref. [15] which states that if
black holes do not have a canonical singularity, the black hole
will not need to obey the requirement of the WCCC. Due to
the specific property of the conical singularity, investigating
the WCCC for charged BTZ black holes is the best way to
examine the assumption. Therefore, according to Ref. [14],
the WCCC for rotated BTZ black holes was examined using
the new version of the gedanken experiment. It was shown
that after perturbation of the matter fields, the WCCC for
rotated BTZ black holes cannot be violated. However, in
this investigation, the Maxwell field is not contained in the
spacetime, and the cosmological constant is not treated as a
dynamical variable. Therefore, following our previous work
[16], the cosmological constant is regarded as a portion of
matter fields, while black holes and matter fields can be seen
as a complete dynamical system using the new version of the
gedanken experiment. In this case, the cosmological constant
should be regarded as a dynamical variable. From this per-
spective, we will examine the WCCC for charged BTZ black
holes under the second-order approximation of the perturba-
tion to comprehensively check the assumption.

The paper is organized as follows. In Sect. 2, we dis-
cuss the spacetime geometry of charged BTZ black holes
under the perturbation of matter fields. In Sect. 3, based on
the Iyer–Wald formalism, we derive the first-order and the
second-order perturbation inequalities of the black hole. In
Sect. 4, using the first-order optimal option and the second-
order inequality, we examine the WCCC for charged BTZ
black holes under the second-order approximation of the per-
turbation. The paper ends with conclusions in Sect. 5.

2 Perturbed geometry of charged BTZ black holes

For the three-dimensional Einstein–Maxwell–AdS gravita-
tional theory, the Lagrangian three-form is

L = 1

16π

(
R − 2� − FabFab

)
ε, (1)

where R is the Ricci scalar, � is the cosmological con-
stant with a negative value, F = dA is the strength of
the electromagnetic field, A is the gauge potential of the
electromagnetic field, and ε is the volume element of the
three-dimensional spacetime. From the Lagrangian, a class
of static spherically symmetric solutions describing charged
BTZ black holes is given as

ds2 = − f (r)dv2 + 2dvdr + r2dϕ2,

A = −Q ln
(
r
√−�

)
dv, F = Q

r
dv ∧ dr, (2)

where the blackening factor f (r) is

f (r) = −M − Q2 ln
(
−�r2

)
− �r2. (3)

The parameters M and Q in f (r) correspond to the mass
and the electric charge of the black hole. The radius of the
event horizon rh is the largest root of the equation f (r) = 0.
According to the radius of the event horizon, the area, surface
gravity, and electric potential for the event horizon are further
given as

AH = 2πrh, κ = f ′ (rh)
2

, �H = Q

rh
. (4)

Subsequently, we should first consider a process to exam-
ine the WCCC of charged BTZ black holes. In this process,
matter fields pass through the event horizon and fall into the
black hole. We further suggest that the cosmological con-
stant can be regarded as an effective parameter determined by
the matter source coupling to the Einstein–Maxwell gravity.
This implies that the cosmological constant can be treated as
a portion of matter fields. Moreover, the spacetime geometry
of the black hole and matter fields can be seen as a com-
plete dynamical system. From Eq. (1), the Lagrangian of this
dynamical system can be rewritten as

L = 1

16π

(
R − FabF

ab
)

ε + Lmt, (5)

where Lmt is the Lagrangian of matter fields. From the
Lagrangian, the Einstein–Maxwell–AdS gravitational theory
can be efficiently derived again when there is a static solution
of matter fields such that

Tab = − �

8π
gab, (6)

where Tab is the stress–energy tensor of matter fields. Since
the cosmological constant is contained in matter fields, when
matter fields fall into the black hole, their value can vary with
the process. This suggests that the cosmological constant
should be considered a dynamical variable in this situation.
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To simplify the calculation and discussion, we only con-
sider the case in which the configuration of matter fields is
spherically symmetric. When the spacetime of the black hole
and matter fields is treated as the complete dynamical system,
the configurations of the metric gab, the gauge potential of the
electromagnetic field A, and matter fields can be uniformly
described by a symbol α. The variation of the configurations
with the process can be labeled a one-parameter family, i.e.,
α(λ). For the case of λ = 0, α(0) represents the configuration
of the dynamical fields on the background spacetime which
is a charged BTZ black hole. When the change in λ with the
process is small enough, the process can be treated as a per-
turbation. Therefore, under the perturbation, the equation of
motion in this one-parameter family can be written as

Rab(λ) − 1

2
R(λ)gab(λ) = 8π

[
T EM
ab + Tab(λ)

]
,

∇(λ)
a Fab(λ) = 4π ja(λ), (7)

where ja is the current of the electric charge, and T EM
ab is the

stress–energy tensor of the electromagnetic field, which can
be expressed as

T EM
ab = 1

4π

[
FacF

c
b − 1

4
gabFcd F

cd
]

. (8)

The metric of spacetime during the perturbation can be gen-
erally written as

ds2 = − f (v, r, λ)dv2 + 2μ(v, r, λ)dvdr + r2dϕ2, (9)

where μ(v, r, λ) is an arbitrary function. When f (v, r, 0) =
f (r) and μ(v, r, 0) = 1, the metric will degenerate into the
case of the background spacetime.

Following the train of thought proposed by Sorce and
Wald, we also suggest that the perturbation should satisfy
two conditions. The first is that the bifurcation surface B
is not affected by the perturbation. The second is that the
perturbation should satisfy the stability condition. This con-
dition means that after perturbation of the matter fields, the
spacetime geometry can also be described by the class of
charged BTZ solutions. In other words, the solutions of the
equation of motion after the perturbation are still described
by Eq. (2), and the parameters M , Q, and � are replaced by
M(λ), Q(λ), and �(λ), respectively, i.e.,

ds2(λ) = − f (r, λ)dv2 + 2dv dr + r2dϕ2,

A = −Q(λ) ln
(
r
√−�(λ)

)
dv, F(λ) = Q(λ)

r
dv ∧ dr,

(10)

where the blackening factor f (r, λ) is

f (r, λ) = −M(λ) − Q2(λ) ln
[
−�(λ)r2

]
− �(λ)r2. (11)

In addition, when the stability condition is satisfied, the
stress–energy tensor of matter fields at sufficiently late time

should have a similar form as Eq. (6), i.e.,

Tab(λ) = −�(λ)

8π
gab(λ). (12)

The currents with the energy, the electric charge, and the
cosmological constant are supposed to pass through a finite
portion of the future event horizon and drop into the black
hole to ensure that the two conditions are satisfied. So we
can always choose a hypersurface 	 = H ∪ 	1 on space-
time. For the hypersurface, H is a part of the event horizon
which starts from the bifurcation surface B and continues
along the future event horizon until the section of the event
horizon B1 at a sufficiently late time. After that, the hyper-
surface becomes spacelike and goes to asymptotic infinity
through the isochronous surface 	1. Since the hypersurface
	 is independent of the parameter λ, rh is always the radius
of the event horizon of the background spacetime. In addi-
tion, due to the stability condition, the spacetime geometry
on the hypersurface 	1 can be described by Eq. (10) directly.

3 Perturbation inequalities for charged BTZ black holes

Starting with this section, we would like to examine the
WCCC for charged BTZ black holes under perturbation of
the matter fields. Before examining the WCCC, the first-
order and second-order perturbation inequalities should be
derived. According to the Iyer–Wald formalism [17], we
focus mainly on the Lagrangian three-form L of three-
dimensional Einstein–Maxwell gravitational theory and use
the off-shell variation to obtain the two perturbation inequal-
ities. For the theory of gravity, since the dynamical fields
consist of the Lorentz signature metric gab and the electro-
magnetic field A, we also use the unified symbol φ to repre-
sent the configuration of the dynamical field operators, i.e.,
φ = (gab, A). When we consider the perturbation of the
matter fields, the changing behavior of the configuration can
also be described by the one-parameter family λ, i.e., φ(λ),
while the variation of the quantity η related to the dynamical
fields φ is defined by

δη = dη(λ)

dλ

∣∣∣∣
λ=0

, δ2η = d2η(λ)

dλ2

∣∣∣∣
λ=0

. (13)

Using the off-shell variation, the first-order variation of the
Lagrangian L is formally given as

δL = Eφδφ + d�(φ, δφ), (14)

where Eφ = 0 is the equation of motion of the on-shell
fields related to the Lagrangian L, and � is called the sym-
plectic potential two-form which is locally constructed out
of φ and its derivatives. In Einstein–Maxwell gravity, from

123



1133 Page 4 of 12 Eur. Phys. J. C (2021) 81 :1133

the Lagrangian

L = 1

16π

(
R − FabF

ab
)

ε, (15)

the equation of motion is formally given as

Eφδφ = −ε

[
1

2
T abδgab + jaδAa

]
(16)

with

Tab = 1

8π

(
Rab − 1

2
Rgab

)
− T EM

ab , ja = 1

4π
∇a F

ab,

(17)

where Tab and ja are the stress–energy tensor and the elec-
tric current of matter fields, respectively. For the background
spacetime, the form of the stress–energy tensor is similar to
Eq. (6). The total symplectic potential two-form �(φ, δφ) in
Eq. (14) can be decomposed into two parts which represent
the part of gravity and the part of the electromagnetic field,
respectively,

�ab = �GR
ab + �EM

ab , (18)

where

�GR
ab = 1

16π
εcabg

cdgef
(∇ f δgde − ∇dδgef

)
,

�EM
ab = − 1

4π
εcabF

cdδAd . (19)

Using the symplectic potential, the symplectic current
two-form can be defined as

ω(φ, δ1φ, δ2φ) = δ1�(φ, δ2φ) − δ2�(φ, δ1φ). (20)

Since the symplectic potential can be linearly decomposed
as the gravitational part and the electromagnetic part, the
symplectic current can also be decomposed as the two parts,
i.e.,

ω = ωGR + ωEM. (21)

The specific expression of the two parts is respectively given
as

ωGR
ab = 1

16π
εcabw

c,

ωEM
ab = 1

4π

[
δ2

(
εcabF

cd
)

δ1Ad − δ1

(
εcabF

cd
)

δ2Ad

]
.

(22)

For the gravitational part, we denote

wa = Pabcde f (
δ2gbc∇dδ1gef − δ1gbc∇dδ2gef

)
(23)

with

Pabcde f = gaeg f bgcd − 1

2
gadgbeg f c − 1

2
gabgcdgef

−1

2
gbcgaeg f d + 1

2
gbcgadgef . (24)

We set ζ a as an infinitesimal generator of the diffeomor-
phism. Replacing δ with Lζ in Eq. (14), one can define the
Noether current two-form Jζ associated with ζ a as

Jζ = �
(
φ,Lζ φ

) − ζ · L. (25)

In addition, it is shown that the Noether current can also be
represented as [2]

Jζ = Cζ + d Qζ , (26)

where Qζ is called the Noether charge, and Cζ = ζ · C are
the constraints of the theory. If Ca = 0, the dynamical fields
will satisfy the equations of motion. In the theory of Einstein–
Maxwell gravity, the Noether charge can be decomposed into
two parts as well that represent the conservation charge of the
gravity and the electric charge of the electromagnetic field,
i.e.,

Qζ = QGR
ζ + QEM

ζ , (27)

where the specific expression of the QGR
ζ and QEM

ζ can
respectively be given as
(
QGR

ζ

)
a

= − 1

16π
εabc∇bζ c,

(
QEM

ζ

)
a

= − 1

8π
εabcF

bc Adζ
d . (28)

Meanwhile, the constraints Cabc in Eq. (26) are defined as

Cabc = εdbc

(
T d
a + Aa j

d
)

. (29)

To investigate the perturbation that comes from the spheri-
cally symmetric matter fields, the diffeomorphism generated
by the static Killing vector field ξa = (∂/∂v)a on the back-
ground spacetime is involved. Due to the diffeomorphism,
a gauge condition that makes the coordinates (v, r, φ) fixed
under the variation can be chosen. This means that under
the gauge condition, the Killing vector is invariable under
the variation, i.e., δξa = 0. Therefore, taking the first-order
variations of Eqs. (25) and (26), the first-order variational
identity can be expressed as

d
[
δQξ − ξ · � (φ, δφ)

] = ω
(
φ, δφ,Lξ φ

) − ξ · Eφδφ

−δCξ . (30)

Furthermore, taking the variation on the above identity again,
the second-order variational identity can also be obtained as

d
[
δ2 Qξ − ξ · δ� (φ, δφ)

]
= ω

(
φ, δφ,Lξ δφ

)

−ξ · Eφδ2φ − ξ · δEφδφ − δ2Cξ , (31)

where we have used the fact thatLξφ = 0 for the background
dynamical fields.
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In the following, according to Eqs. (30) and (31), we will
derive the first-order and second-order perturbation inequali-
ties, respectively. Furthermore, based on the two inequalities,
we will examine the WCCC for charged BTZ black holes
under the second-order approximation of the matter fields
perturbation.

3.1 The first-order perturbation inequality

We first calculate the integral form of the first-order varia-
tional identity to derive the first-order perturbation inequality.
Integrating the first-order variational identity on the hyper-
surface 	 and utilizing the condition Lξφ = 0, we have
∫

	

d
[
δQξ − ξ · � (φ, δφ)

]

+
∫

	

ξ · Eφδφ +
∫

	

δCξ = 0. (32)

Considering the property whereby the hypersurface 	 con-
sists of a portion of the event horizon H and the spacelike
hypersurface 	1, and using the Stokes’ theorem, the integral
form of the first-order variational identity can be decomposed
as∫

Sc

[
δQξ − ξ · � (φ, δφ)

] −
∫

B

[
δQξ − ξ · � (φ, δφ)

]

+
∫

	1

ξ · Eφδφ +
∫

	1

δCξ

+
∫

H
ξ · Eφδφ +

∫

H
δCξ = 0. (33)

When the cosmological constant is regarded as a variable, the
divergence term will appear as the result of the integral on
the spacelike infinity. In order to formally obtain the result of
the integral, we will choose a cut-off sphere Sc with radius rc
to replace the asymptotic infinity boundary of 	1. Moreover,
we will take the limitation such that the cut-off sphere Sc
approaches asymptotic infinity again to obtain the final result.

Following a similar consideration as Ref. [9], the gauge
condition of the electromagnetic field, ξaδAa = 0, on the
event horizonH can also be imposed. However, on the hyper-
surface 	1, the gauge condition cannot be used to calculate
quantities related to δA and δ2A because the specific expres-
sion of the gauge potential,

A(λ) = −Q(λ) ln
(
r
√−�(λ)

)
dv, (34)

does not satisfy the gauge condition on the hypersurface
	1. Therefore, we need to find another method to calculate
the relevant quantities. Since the strength of electromagnetic
F(λ) is gauge-invariant, it is reasonable for us to calculate
the quantities which contain the gauge potential on hypersur-
face 	1 using the electromagnetic strength. In the following
calculation, we use only the specific expression of F(λ) and

neglect the expression of the gauge potential A(λ) on the
hypersurface 	1.

The volume element on the hypersurface 	1 can be written
as

ε = rdv ∧ dr ∧ dϕ. (35)

Since the expression of ε does not contain the parameter
λ, this implies that the variation of the element volume is
vanishing, i.e., δε = 0. According to the equation of motion,
the stress–energy tensor Tab and electric current ja on 	1

can be expressed as

Tab(λ) = −�(λ)

8π
gab(λ), ja(λ) = 0. (36)

Firstly, we consider the first term in Eq. (33). As mentioned
above, the Noether charge and the symplectic potential are
both decomposed as the gravity part and the electromagnetic
field part. This means that the first term can also be decom-
posed into the two parts,
∫

Sc

[
δQξ − ξ · �(φ, δφ)

]

=
∫

Sc

[
δQGR

ξ − ξ · �GR (φ, δφ)
]

+
∫

Sc

[
δQEM

ξ − ξ · �EM(φ, δφ)
]
. (37)

For the gravity part, from Eqs. (19) and (28), using the spe-
cific expression of the metric in Eq. (10), we can obtain

∫

Sc

[
δQGR

ξ − ξ · �GR (φ, δφ)
]

= 1

8

[
Q2

�
δ� + 2QδQ ln

(
−�r2

c

)
+ δM + δ�r2

c

]
.

(38)

For the electromagnetic field part, using Eqs. (19) and (28),
the integrand can be written as

δQEM
ξ − ξ · �EM(φ, δφ)

= − 1

8π
εabc

(
δFbc Adξ

d + FbcδAdξ
d + 2FcdδAdξ

b
)

.

(39)

Substituting the specific expression of the strength of the
electromagnetic field into Eq. (39), we find the following
relation between the second term and the third term

− εabcF
bcδAdξ

d = 2εabcF
cdδAdξ

b = 2QδAdξ
d(dφ)a .

(40)

This implies that the last two terms in the integrand can cancel
each other exactly, and only the integrand of the electromag-
netic part remains as the first term. Hence, the result of the
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integral can be expressed as

∫

Sc

[
δQEM

ξ − ξ · �EM(φ, δφ)
]

= − 1

8π

∫

Sc
εabcδF

bc Adξ
d = −1

4

[
QδQ ln

(
−�r2

c

)]
.

(41)

Combining Eq. (38) with Eq. (41), the integral result of the
first term in Eq. (33) is

∫

Sc

[
δQξ − ξ · �(φ, δφ)

] = 1

8

(
δM + Q2

�
δ� + δ�r2

c

)
.

(42)

According to the condition wherein the perturbation can-
not influence the bifurcation surface B, the second term in
Eq. (33) can be directly neglected.

Secondly, we will calculate the integrals on the hypersur-
face 	1. For the third term in Eq. (33), substituting Eqs. (16)
and (36) into it, we have
∫

	1

ξ · Eφδφ = −
∫

	1

ξ · ε

[
1

2
T abδgab + jaδAa

]

= �(λ)

16π

∫

	1

ξ · εgabδgab. (43)

From the expression of the metric, we can obtain the condi-
tion gabδgab = 0. This condition implies that the integral of
the third term is equal to zero.

In order to evaluate the fourth term of Eq. (33), we should
calculate the constraints on 	1 firstly. According to Eq. (29),
the expression of the Killing vector contracting with the con-
straints on the hypersurface 	1 can be specifically written
as
[
Cξ (λ)

]
bc = εdbc

[
T d
a (λ)ξa + Aa j

d(λ)ξa
]

= −�(λ)r

8π
(dr)b ∧ (dφ)c. (44)

Taking the variation on the above expression and integrating
it on the hypersurface 	1, the fourth term can be obtained as
∫

	1

δCξ = −δ�

4

∫ rc

rh
rdr = δ�

8

(
r2
h − r2

c

)
. (45)

Finally, we turn to calculate the integrals on the event
horizon H. For the fifth term in Eq. (33), the integral result is
directly equal to zero because the Killing vector contracting
with the volume element vanishes on the event horizon H.
For the sixth term of Eq. (33), according to the definition of
the constraints and j (0) = 0 on the background spacetime,
using the expression of the gauge potential A, we have
∫

H
δCξ = δ

∫

H

[
εdbc

(
T d
a (λ)ξa + Aaξ

a jd(λ)
)]

= −δ

[∫

H
ε̃μ(v, rh)Tad(λ)ξa(dr)d

]

−1

2
Q ln

(
−�r2

h

)
δ

(∫

H
εdbc j

d
)

, (46)

where we have denoted the volume element of the event hori-
zon as ε̃ = dv ∧ ε̂, and ε̂ = rdϕ is the volume element of a
cross-section of the event horizon. According to the electro-
magnetic part of the equation of motion, we can then obtain

δ

(∫

H
εdbc j

d
)

= 1

4π
δ

(∫

H
εdbc∇a F

da
)

= 1

8π
δ

(∫

B1

εdbcF
db −

∫

B
εdbcF

db
)

= −δQ

2
. (47)

Therefore, Eq. (46) can be reduced as
∫

H
δCξ = 1

4
QδQ ln

(
−�r2

h

)

−δ

[∫

H
ε̃μ(v, rh)Tae(λ)ξa(dr)e

]
. (48)

Substituting Eqs. (42), (45), and (48) into Eq. (33), the
integral form of the first-order variational identity can be
written as

δM + Q2

�
δ� + r2

h δ� + 2QδQ ln
(
−�r2

h

)

= 8δ

[∫

H
ε̃μ(v, rh)Tae(λ)ξa(dr)e

]
. (49)

To derive the first-order perturbation inequality, we should
determine the connection between the right-hand side of
Eq. (49) and the null energy condition. During the perturba-
tion, since we consider the process wherein the spherically
symmetric matter fields fall into charged BTZ black holes, a
null vector field can be chosen as

la(λ) = ξa + β(λ)ra, (50)

where

ra =
(

∂

∂r

)a

, β(λ) = f (v, rh, λ)

2μ(v, rh, λ)
. (51)

Using the null vector field, the null energy condition during
the perturbation process can generally be expressed as

Tab(λ)la(λ)lb(λ) ≥ 0. (52)

It can be demonstrated that the null energy condition should
satisfy the following relation

Tab(λ)la(λ)lb(λ) = μ(v, rh, λ)Tab(λ)ξa(dr)b + β(λ)2

×Tab(λ)rarb. (53)
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Utilizing the fact that β(0) = 0 for the background space-
time, the null energy condition under the first-order approx-
imation can be obtained as∫

H
Tab(λ)la(λ)lb(λ)dv ∧ ε̃

	 λδ

[∫

H
ε̃μ(v, rh)Tabξ

a(dr)b
]

≥ 0. (54)

Substituting Eq. (54) into Eq. (49), the integral form of the
first-order variational identity can be reduced as

δM + Q2

�
δ� + r2

h δ� + 2QδQ ln
(
−�r2

h

)
≥ 0. (55)

This inequality is called the first-order perturbation inequal-
ity.

Since the main objective of our investigation is to examine
the WCCC for charged BTZ black holes under a second-order
approximation to check the assumption that if a black hole
does not have a canonical singularity, it does not need to sat-
isfy the requirement of the WCCC. When the first-order per-
turbation inequality is satisfied, this indicates that the WCCC
cannot be violated under the first-order approximation of
the perturbation, while the higher-order approximation can
be largely neglected. However, if a first-order perturbation
inequality is chosen as an optimal option, i.e.,

δM + Q2

�
δ� + r2

h δ� + 2QδQ ln
(
−�r2

h

)
= 0, (56)

the WCCC cannot be examined under the first-order approx-
imation, and the second-order approximation needs to be
further considered in this situation. In addition, the optimal
option also implies that the energy flux through the event
horizon vanishes under the first-order approximation of per-
turbation.

3.2 The second-order perturbation inequality

To consider the second-order approximation of the pertur-
bation, we should sequentially derive the second-order per-
turbation inequality. Integrating the second-order variational
identity on the hypersurface 	, Eq. (31) can be written as
∫

	

δ
[
δQξ − ξ · � (φ, δφ)

] +
∫

	

δ2Cξ

+
∫

	

δ
(
ξ · Eφδφ

) −
∫

	

ω
(
φ, δφ,Lξ δφ

) = 0. (57)

According to Stokes’ theorem, and utilizing the property of
the hypersurface 	, the integral expression can be decom-
posed as

∫

Sc
δ
[
δQξ − ξ · � (φ, δφ)

] −
∫

B
δ
[
δQξ − ξ · � (φ, δφ)

]

+
∫

H
δ2Cξ +

∫

	1

δ2Cξ +
∫

	1

δ
(
ξ · Eφδφ

)

+
∫

H
δ
(
ξ · Eφδφ

) − EH (φ, δφ) − E	1 (φ, δφ) = 0,

(58)

where

EH (φ, δφ) =
∫

H
ω

(
φ, δφ,Lξ δφ

)
,

E	1 (φ, δφ) =
∫

	1

ω
(
φ, δφ,Lξ δφ

)
. (59)

In the integral form of the second-order variational identity,
we can see that, except for the last two terms, any term in
Eq. (58) only takes the variation again on the corresponding
term in the first-order variational identity. Therefore, we can
use the integral result directly in the first-order variational
identity to evaluate the integral of the second-order pertur-
bation inequality.

As with the first-order variational identity, the first term
in Eq. (58) can also be decomposed into the gravity part and
the electromagnetic field part. From Eqs. (38) and (41), the
integrand of the two parts can be obtained as

δ
[
δQGR

ξ − ξ · �GR (φ, δφ)
]

= 1

16π

[
δ2M + r2δ2� + Q2

�
δ2� − Q2

�2 δ�2 + 4Q

�
δQδ�

+2Qδ2Q ln
(−�r2) + 2δQ2 ln

(−�r2)] (dφ)a, (60)

and

δ
[
δQEM

ξ − ξ · �EM (φ, δφ)
]

= − 1

8π
εabcδ

2Fbc Adξ
d − 1

8π
εabcδF

bcδAdξ
d

= − 1

8π
Qδ2Q ln

(
−�r2

)
(dφ)a − 1

8π
εabcδF

bcδAdξ
d .

(61)

Integrating the above two equations on the hypersurface Sc,
respectively, and summing the integral results of the two
parts, the result of the first term in Eq. (58) can be given
as∫

Sc
δ
[
δQξ − ξ · � (φ, δφ)

]

= 1

8

[
δ2M + r2

c δ2� + Q2

�
δ2� − Q2

�2 δ�2

+4Q

�
δQδ� + 2δQ2 ln

(
−�r2

c

)]
− Y (φ, δφ) , (62)

where

Y (φ, δφ) = 1

8π

∫

Sc
εabcδF

bcδAdξ
d . (63)

Based on the definition of the constraints (29) and j (0) = 0
on the background spacetime, the second-order variation of
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the Killing vector contracting with the constraints can be
expressed as

δ2Cξ = δ2
(
εdbcμ(v, rh)T

d
a ξa

)

+εdbc

(
2ξaδAaδ j

d + ξa Aaδ
2 jd

)
. (64)

Integrating Eq. (64) on the event horizon H, using the result
of Eq. (47) and the gauge condition ξaδAa = 0, the integral
result of the third term in Eq. (58) is
∫

H
δ2Cξ = −δ2

(∫

H
ε̃μ(v, rh)Tadξ

a(dr)d
)

+1

4
Qδ2Q ln

(
−�r2

h

)
. (65)

From the result of Eq. (44), the fourth term can be directly
calculated as
∫

	1

δ2Cξ = −δ2�

4

∫ rc

rh
rdr = δ2�

8

(
r2
h − r2

c

)
. (66)

Based on the condition gab(λ)δgab(λ) = 0 and the fact that
ξa contracting with the volume element is zero on the event
horizon H, we have∫

	1

δ
(
ξ · Eφδφ

) =
∫

H
δ
(
ξ · Eφδφ

) = 0. (67)

For the seventh term, since the symplectic current can be
decomposed as the gravitational part and the electromagnetic
part, its integral can be decomposed as the two parts as well,
i.e.,

EH =
∫

H
ωGR +

∫

H
ωEM. (68)

For the integral of the gravitational part, according to the
specific expression of the metric in Eq. (9), the integral can
be directly calculated as
∫

H
ωGR = −rh

2

∫ v1

v0

dv

[
δμ(v, rh)∂vδ f (v, rh)

−∂vδμ(v, rh)δ f (v, rh)

]

= rh
2

δμ(v1, rh)δ f (v1, rh) = 0, (69)

where we have used the optimal option of the first-order
approximation.

To evaluate the integral of the electromagnetic part, the
specific expression of the symplectic current of the electro-
magnetic part should first be considered. Based on the defini-
tion, the symplectic current of the electromagnetic field can
be expressed as

ωEM
ab = 1

4π
εcab

[
δAdLξ δF

cd − δFcdLξ δAd

]

+ 1

4π

[(
Lξ δεcabF

cdδAd − δεcabF
cdLξ δAd

)]
. (70)

The expressions of the electromagnetic field strength in
Eq. (10) indicates that if the index c in the volume element
is chosen as the component of r , i.e., (dr)c, after contracting
(dr)c with Fcd , a proportional relation between the result
of the contraction and the Killing vector can be obtained
as (dr)cFcd ∝ −ξd . According to the proportional relation
and the gauge condition ξaδAa = 0 on the event horizon,
we can find that the last two terms in Eq. (70) both vanish,
and Eq. (70) can be reduced as

ωEM
cab = 1

4π
Lξ

(
εcabδAdδF

cd
)

− 1

2π
εcabδF

cdLξ δAd .

(71)

For the first term in Eq. (71), it will not appear in the final
expression of the integral because it only contains a boundary
term after the integration, and the boundary term will not
contribute to EH. Using the gauge condition ξaδAa = 0
again on the event horizon, the expression of Eq. (68) can
finally be simplified as

EH = 1

2π

∫

H
ε̃(dr)cδF

cdLξ δAd

= 1

2π

∫

H

[
ε̃(dr)aξ

bδFacδFbc + ε̃(dr)aδF
ac∇c(ξ

bδAb)
]

= 1

2π

∫

H
ε̃(dr)aξ

bδFacδFbc. (72)

On the other hand, based on the stress–energy tensor of the
electromagnetic field, the result of Eq. (72) can be rewritten
as

EH = δ2
(∫

H
ε̃μ(v, rh)T

EM
ab ξa(dr)b

)
. (73)

Therefore, combining Eqs. (62), (65), (66), (67), and (73),
the second-order variational identity can be obtained as

1

8

[
δ2M + r2

h δ
2� + Q2

�
δ2�

−Q2

�2 δ�2 + 4Q

�
δQδ� + 2δQ2 ln

(
−�r2

c

)

+2Qδ2Q ln
(
−�r2

h

) ]

−δ2
[∫

H
ε̃μ(v, rh)

(
T EM
ab + Tab

)
(dr)aξb

]

−E	1 (φ, δφ) − Y (φ, δφ) = 0. (74)
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Next we will evaluate the last two terms E	1 (φ, δφ) and
Y (φ, δφ) in Eq. (74) to obtain the complete expression of
the second-order variational identity. From the expressions
of E	1 (φ, δφ) and Y (φ, δφ), we can see that the two quanti-
ties depend only on the first-order variation of the dynamical
fields, and the integral is implemented only on the hyper-
surface 	1. Following the method in Ref. [9], an auxiliary
spacetime should be introduced to calculate the two terms.
Since the auxiliary spacetime involves only the dynamical
fields and their first-order variation, the first-order variation
of the dynamical fields δφ can be labeled δφBTZ, where φBTZ

represents the dynamical fields in the auxiliary spacetime.
Therefore, we can replace δφ with δφBTZ in the expression
of the two quantities, i.e.,

E	1(φ, δφ) = E	1(φ, δφBTZ),

Y(φ, δφ) = Y(φ, δφBTZ). (75)

According to the stability condition, the spacetime geometry
still belongs to the class of charged BTZ solutions after the
perturbation, and the changing behavior of the configurations
of the dynamical fields can be described by the one-parameter
family λ. Therefore, after the perturbation process, the solu-
tions of the equation of motion in the auxiliary spacetime can
be directly written as

ds2
BTZ(λ) = − f BTZ(r, λ)dv2 + 2dv dr + r2dϕ2,

A(λ) = −QBTZ(λ) ln
(
r
√

−�BTZ(λ)
)

dv,

F(λ) = QBTZ(λ)

r
dv ∧ dr, (76)

where the blackening factor f BTZ(r, λ) is

f BTZ(r, λ) = −MBTZ(λ) −
[
QBTZ(λ)

]2
ln

[
−�BTZ(λ)r2

]

−�BTZ(λ)r2. (77)

Since only the first-order variation of the dynamical fields
is contained in the auxiliary spacetime, and the higher-order
variation does not exist, the parameters MBTZ(λ), QBTZ(λ),
and �BTZ(λ) under the first-order approximation can be
expanded as

MBTZ(λ) = M + λδM,

QBTZ(λ) = Q + λδQ,

�BTZ(λ) = � + λδ�, (78)

where δM , δQ, and δ� are chosen to agree with the values
of the first-order approximation. This implies that the rela-
tion δ2M = δ2Q = δ2� = EH(φ, δφ) = 0 will be given
naturally in the auxiliary spacetime. Based on the above dis-
cussions, the two terms E	1 (φ, δφ) and Y (φ, δφ) can be
directly evaluated in the auxiliary spacetime.

Using Stokes’ theorem, the integral of the second-order
variational identity can be written as
∫

Sc
δ
[
δQBTZ

ξ − ξ · �
(
φBTZ, δφBTZ

)]

−
∫

B1

δ
[
δQBTZ

ξ − ξ · �
(
φBTZ, δφBTZ

)]

+
∫

	1

δ2CBTZ
ξ +

∫

	1

δ
(
ξ · EBTZ

φ δφBTZ
)

−E	1

(
φBTZ, δφBTZ

)
= 0. (79)

For the third and fourth terms in Eq. (79), because δ2M =
δ2Q = δ2� = 0, we can easily demonstrate that
∫

	1

δ2CBTZ
ξ =

∫

	1

δ
(
ξ · EBTZ

φ δφBTZ
)

= 0. (80)

Therefore, Eq. (79) can be reduced as
∫

Sc
δ
[
δQBTZ

ξ − ξ · �
(
φBTZ, δφBTZ

)]

−
∫

B1

δ
[
δQBTZ

ξ − ξ · �
(
φBTZ, δφBTZ

)]

= E	1

(
φBTZ, δφBTZ

)
. (81)

Using the result of Eq. (62) and the gauge condition
ξaδABTZ

a = 0 on the event horizon, the first and second
terms of Eq. (81) can be obtained as
∫

Sc
δ
[
δQBTZ

ξ − ξ · �
(
φBTZ, δφBTZ

)]

= 1

8

[
−Q2

�2 δ�2 + 4Q

�
δQδ� + 2δQ2 ln

(
−�r2

c

)]

−Y
(
φBTZ, δφBTZ

)
, (82)

and∫

B1

δ
[
δQBTZ

ξ − ξ · �
(
φBTZ, δφBTZ

)]

= 1

8

[
−Q2

�2 δ�2 + 4Q

�
δQδ� + 2δQ2 ln

(
−�r2

h

)]
.

(83)

Substituting Eqs. (82) and (83) into Eq. (81), we have

E	1(φ, δφ) + Y(φ, δφ)

= 1

8

[
2δQ2 ln

(
−�r2

c

)
− 2δQ2 ln

(
−�r2

h

)]
. (84)

Finally, substituting Eq. (84) into Eq. (74), the complete
expression of the second-order variational identity can be
obtained as

δ2M + r2
h δ

2� + Q2

�
δ2� − Q2

�2 δ�2 + 4Q

�
δQδ�

+2δQ2 ln
(
−�r2

h

)
+ 2Qδ2Q ln

(
−�r2

h

)
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= 8δ2
[∫

H
ε̃μ(v, rh)

(
T EM
ab + Tab

)
(dr)aξb

]
. (85)

According to Eq. (53) and Tab(0) = 0 for the background
spacetime, using the optimal option of the first-order approx-
imation, the null energy condition under the second-order
approximation can be given as
∫

H
Tab(λ)la(λ)lb(λ)dv ∧ ε̃

	 λ2

2
δ2

(∫

H
ε̃μ(v, rh)Tabξ

a(dr)b
)

≥ 0. (86)

Substituting Eq. (86) into Eq. (85), the second-order varia-
tional identity becomes an inequality, i.e.,

δ2M + r2
h δ

2� + Q2

�
δ2�

−Q2

�2 δ�2 + 4Q

�
δQδ� + 2δQ2 ln

(
−�r2

h

)

+2Qδ2Q ln
(
−�r2

h

)
≥ 0, (87)

which is called the second-order perturbation inequality.
Thus far, the first-order and second-order perturbation

inequalities have both been obtained. In the following, based
on the two perturbation inequalities, we will examine the
WCCC for charged BTZ black holes under the second-order
approximation of the perturbation to check whether the coni-
cal singularity should still be surrounded by the event horizon
and hidden inside the black hole.

4 Gedanken experiment to examine nearly extremal
charged BTZ black holes

In the following, based on the first-order and second-order
perturbation inequalities, we would like to examine the
WCCC for charged BTZ black holes under the second-order
approximation of the perturbation. According to the stability
condition, the spacetime geometry on the hypersurface 	1

still belongs to the class of charged BTZ solutions. There-
fore, testing the WCCC is equivalent to testing whether the
event horizon exists after the perturbation. If the event hori-
zon exists, the geometry on 	1 can be described by charged
BTZ black holes. This means that the WCCC cannot be vio-
lated under the perturbation of the matter fields.

Figure 1 shows that the event horizon of the black hole
exists when the minimal value of the blackening factor f (r)
is negative. If the sign of the minimal value of f (r) becomes
positive, the event horizon will disappear, while the naked
singularity will be exposed to spacetime. This implies that
examining the WCCC for charged BTZ black holes is equiv-
alent to checking the sign of the minimal value of f (r, λ) in

Fig. 1 Plot of the blackening factor f (r) for different values of mass
M when Q = 1 and � = −1

Eq. (11). Therefore, we define a function

h(λ) ≡ f (rm (λ) , λ) (88)

to represent the minimal value of the blackening factor, where
rm (λ) is defined as the position of the minimal value of the
function f (r, λ), and its value can be determined by

∂r f (rm (λ) , λ) = 0. (89)

Meanwhile, Eq. (89) also gives the following relation

� = −Q2

r2
m

. (90)

Considering the second-order approximation of the matter
fields perturbation, the expression of h(λ) can be expanded
with respect to the parameter λ at λ = 0. The specific expres-
sion of h(λ) under the second-order approximation is

h(λ) = −M − 2Q2 ln |Q| − Q2 − λ (δM + 4QδQ ln |Q|)
−2λ2

[
2QδQδrm

rm
+ �δr2

m + rmδrmδ�

]

−λ2

2

[
δ2M + 4

(
Qδ2Q + δQ2

)
ln |Q|

−Q2

�2 δ�2 + 4Q

�
δQδ�

]
, (91)

where we have used Eq. (90) to simplify the expression. Tak-
ing the first-order variation of Eq. (89) and using Eq. (90) as
well, the first-order variation of rm can be expressed as

δrm = rm
Q

δQ + r3
m

2Q2 δ�. (92)

Substituting Eq. (92) into Eq. (91), the second-order expan-
sion of h(λ) can be simplified as
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h(λ) = −M + Q2 − 2Q2 ln |Q| + λ (δM + 4QδQ ln |Q|)

− λ2
[
δ2M

2
+ 2δQ2 + 2

(
δQ2 + Qδ2Q

)
ln |Q|

]
.

(93)

Following a similar idea as in Ref. [9], a small parameter ε

which should agree with the first-order approximation of the
matter fields perturbation is introduced. For nearly extremal
charged BTZ black holes, the minimal value of the blacken-
ing factor rm and the radius of the event horizon rh satisfy
the relation rm = (1 − ε)rh . Using this relation, Eq. (89) can
be written as

f ′ (rh) = εrh f
′′ (rh) (94)

under the first-order approximation of ε. The minimal value
of the blackening factor f (rm, λ) under the second-order
approximation of ε is expressed as

f (rm) = f (rh (1 − ε))

= −εrh f
′ (rh) + ε2r2

h

2
f ′′ (rh)

= −1

2
ε2r2

h f ′′ (rh) . (95)

Substituting the specific expression of f (r) into the result of
Eq. (95), we have

− M + Q2 − 2Q2 ln |Q| = ε2
(
r2
h� − Q2

)
. (96)

Utilizing the first-order optimal option and the second-order
perturbation inequality, combining the above results, the
expression of h(λ) under the second-order approximation
is reduced as

h(λ) ≤
(
r2
h� − Q2

)
ε2 +

(
4QδQ + 2r2

h δ�
)

ελ

−
(
2QδQ + r2

h δ�
)2

2Q2 λ2. (97)

In addition, under the zero-order approximation of ε, we have
the following relation

rh = rm =
√

−Q2

�
. (98)

Combining Eq. (98) with Eq. (97), the function h(λ) can
finally be written as

h(λ) ≤ − (λQδ� + 2ε�Q − 2λ�δQ)2

2�2 . (99)

Equation (99) shows that the value of h(λ) is negative under
the second-order approximation. This illustrates that the
event horizon still exists and that the WCCC for a charged
BTZ black hole cannot be violated during the perturbation
of matter fields. This result also implies that even if the sin-
gularity at the center of the black hole is conical, it should

also be surrounded by the event horizon of the black hole and
cannot be exposed to spacetime.

5 Conclusions

Based on the new version of the gedanken experiment pro-
posed by Sorce and Wald, we examine the WCCC for charged
BTZ black holes under a second-order approximation of the
perturbation of the matter fields to check the assumption that
if a black hole does not have a canonical singularity, it does
not need to satisfy the requirement of the WCCC. In our
investigation, we consider a process wherein the spherically
symmetric matter fields pass through the event horizon to
perturb charged BTZ black holes. During the perturbation,
the cosmological constant is regarded as a portion of the
matter fields, while the spacetime geometry of the black hole
and matter fields can be seen as a complete dynamical sys-
tem. In this situation, the cosmological constant should be
considered a dynamical variable. In addition, a stability con-
dition is proposed to examine the WCCC, which states that
the spacetime geometry still belongs to the class of charged
BTZ solutions after the perturbation. According to the sta-
bility condition and the null energy condition, the first-order
and second-order perturbation inequalities are derived. Then,
using the optimal option of the first-order approximation and
the second-order perturbation inequality, based on the sta-
bility condition and the null energy condition, the WCCC
for charged BTZ black holes under the second-order approx-
imation of the perturbation is examined. The result shows
that the event horizon of charged BTZ black holes still exists
after the perturbation of the matter fields, and the WCCC for
charged BTZ black holes cannot be violated. It also illus-
trates that even if the conical singularity does not cause the
spacetime curvature to diverge, it still should be surrounded
by the event horizon and hidden inside the black hole.
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