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Abstract The Generalized Uncertainty Principle (GUP)
naturally emerges in several quantum gravity models, pre-
dicting the existence of a minimal length at Planck scale.
Here, we consider the quadratic GUP as a semiclassical
approach to thermodynamic gravity and constrain the defor-
mation parameter by using observational bounds from Big
Bang Nucleosynthesis and primordial abundances of the light
elements 4He, D, 7Li . We show that our result fits with most
of existing bounds on β derived from other cosmological
studies.

1 Introduction

Quantum Theory and General Relativity are the two best
descriptions of Nature to date. On one hand, Quantum
Mechanics governs the properties of matter at microscopic
scales, laying the foundations of solid state physics. By con-
trast, General Relativity deals with large-scale phenomena in
the Cosmos – from the solar system to the faraway galaxies
– as well as with the evolution of the Universe as a whole.
In spite of providing successful predictions in their respec-
tive domains, these two theories exhibit fatal inconsistencies
when combined together. Much effort has been devoted to the
construction of a unified formalism in the last decades, cul-
minated with the development of a number of promising can-
didate models. Yet despite this striving, a definitive answer is
still far from being reached, thus making the quantization of
gravity a central open question in modern theoretical physics.

A distinctive signature of most approaches to quantum
gravity (QG) is the emergence of a minimal measurable
length at around Planck energy. Implications of this fun-
damental scale are often taken into account by deforming
the Heisenberg Uncertainty Principle (HUP) [1–8], so as to
accommodate a minimal uncertainty in position measure-

a e-mail: gluciano@sa.infn.it (corresponding author)

ments. The most common form of generalized uncertainty
principle (GUP) is obtained by adding a term quadratic in
the momentum over the standard Heisenberg limitation, i.e.

�x �p � h̄

[
1 + 4β

(
�p

mpc

)2
]

, (1)

where the pre-factor has been set of order unity, as seen in [9–
11]. Here, mp � 1019 GeV denotes the Planck mass. To
simplify the notation, henceforth we work in natural units
h̄ = 1 = c.

The (dimensionless) deformation parameter β is not fixed
by the theory, leaving room for an intensive research activ-
ity [12–28,47] (see Tables 1 and 2 for upper bounds of cos-
mological and quantum/gravitational origin, respectively).
Debate also concerns the sign of β: although it is assumed to
be positive in the original formulation of the GUP, arguments
in favor of negative values are not missing [8,18,29,30].

One of the contexts in which the GUP has been studied
most extensively is that of black holes (BH’s). In particular,
in [7] it has been shown that Eq. (1) inevitably affects Hawk-
ing temperature and the related BH evaporation process,
with a non-trivial impact on the whole BH thermodynamics.
Likewise, GUP-induced corrections enter the Bekenstein-
Hawking entropy formula, resulting in a generalized Beken-
stein bound [31] and a modified area law [10,32]. Remark-
ably, implications of the modified area law are also explored
at cosmological level, because of the geometrical – and there-
fore universal – nature of this law, which can be applied to
any causal horizon [33].

The tight interweaving of BH horizon thermodynamics
and GUP has renewed the interest for thermodynamic gravity.
In this approach, Einstein field equations are derived from the
first law of thermodynamics, combined with the entropy area
law [33]. An interesting consequence of this achievement is
that one can recover the cosmological Friedmann equations
by applying the first law of thermodynamics to the appar-
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ent horizon of the Friedmann-Lemaître-Robertson-Walker
(FLRW) spacetime [34–38]. This procedure has recently
been proven to be quite general, being equally applicable in
theories of gravity beyond General Relativity [39] and even
in the presence of a modified entropy-area law [40]. Along
this line, in [41] Friedmann equations have been derived from
the GUP-modified expression of the entropy, obtaining gen-
eralized (i.e. β-dependent) relations. This indicates that GUP
effects at high energies can affect the dynamics of the FLRW
Universe at early times, albeit in a mild way. The resulting
framework is often referred to as GUP Cosmology.

Besides the plethora of theoretical studies on the GUP, a
research direction widely pursued in QG phenomenology is
attempting to quantify the magnitude of GUP corrections by

Table 1 Upper bounds on the GUP parameter from cosmological anal-
ysis

|β| � Physical framework References

108 Baryogenesis [42]

1059 Full data cosmology [43]

1081 4He, D abundances [This work]

1081 Type Ia supernovae [44]

1081 Baryon acoustic oscillations [44]

1081 Late-time cosmology [43]

1082 7Li abundance [This work]

1087 Freeze-out temperature [This work]

Table 2 Upper bounds on the GUP parameter from quantum and grav-
itational experiments.

|β| � Physical framework References

106 Harmonic oscillators [25]

1021 Scanning tunneling microscope [13]

1021 Equiv. princip. violation [45]

1027 Weak equiv. princip. violation [46]

1033 Gravity bar detectors [22]

1036 Lamb shift [13,20]

1036 Interferometry experiments [47]

1039 87Rb Cold atom experiment [48]

1050 Landau levels [13]

1060 Gravitational waves [49]

1069 Perihelion precession [15]

1071 Pulsar periastron shift [15]

1072 Geodetic precession [50]

1073 Gravitational red-shift [50]

1077 Quasiperiodic oscillations [51]

1078 Light deflection [15]

1078 Shapiro time delay [50]

1090 BH shadow (M87*) [52]

constraining the deformation parameter. This is particularly
useful in that it paves the way for a low-energy investiga-
tion of QG, which could be somehow interfaced with exper-
imental data. Nevertheless, to the best of our knowledge,
situations where this kind of analysis is performed in GUP
Cosmology are quite rare in the literature, as witnessed by the
low number of bounds listed in Table 1. If on one hand this
can be understood by observing that bounds of cosmological
origin are less stringent than those obtained through quan-
tum/gravitational experiments, on the other hand it should
be acknowledged that these bounds can be derived with very
high precision, due to the great and accurate amount of cos-
mological data available to date.

Starting from the above premises, the aim of this work
is to explore the implications of GUP Cosmology on Big
Bang Nucleosynthesis (BBN). BBN describes the sequence
of nuclear reactions responsible for the synthesis of primor-
dial light elements, such as Hydrogen H , its isotope Deu-
terium D, Helium isotopes 3He and 4He and Lithium isotope
7Li [53–55]. It is believed to have taken place shortly after
the Big Bang, when the Universe was cooled enough to form
stable protons and neutrons. Since BBN drives the observed
Universe, it is clear that primordial abundances must be very
tightly constrained in order to reproduce the current chemi-
cal composition of the Universe. This fact promotes BBN as
one of the best arena to constrain cosmological models. In
particular, in what follows we shall fix the GUP parameter
by requiring consistency between GUP Cosmology predic-
tions and i) the existing upper bound on the variations of the
freeze-out temperature, ii) the current estimates of the pri-
mordial abundances of 4He, D and 7Li . We show that the
ensuing upper bound on β is consistent with most of existing
constraints derived from other cosmological analysis. The
results here discussed could contribute to the debate of fix-
ing the most reliable scenario among cosmological models
based on the GUP and also provide a possible explanation
for the 7Li puzzle.

The layout of the paper is as follows: in Sect. 2 we review
the derivation of the modified Friedmann equations within
GUP framework. Toward this end, we follow [56,57]. In
Sects. 3 and 4 we constrain the GUP parameter based on
observational data from BBN and primordial abundances,
respectively. Section 5 is devoted to conclusions and outlook.

2 Modified Friedmann equations from GUP

In this section we summarize the main steps leading to the
cosmological Friedmann equations and their generalization
to the GUP framework. As usual, we assume that, for a homo-
geneous and isotropic (1 + 3)-dimensional FRW Universe,
the line element is givenby
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ds2 = habdx
adxb + r̃2(dθ2 + sin2 θdφ2), a, b = {0, 1},

(2)

where hab = diag(−1, a2/(1 − kr2)) is the metric of a
(1 + 1)-dimensional subspace, xa = (t, r), r̃ = a(t)r , with
a(t) being the time-dependent scale factor, r is the comov-
ing radius and k the (constant) spatial curvature. θ, φ are the
angular coordinates.

One can think of the Universe as a physically bounded
region of (apparent) horizon radius

r̃A = 1√
H2 + k

a2

, (3)

and temperature

T = − 1

2π r̃A

(
1 −

˙̃rA
2Hr̃A

)
, (4)

where H = ȧ(t)/a(t) is the Hubble parameter (the dot
denotes time derivative). For our later purposes, we can
roughly neglect the space curvature k, so that Eq. (3) reads
r̃A � 1/H .

By describing the matter and energy content of the Uni-
verse as a perfect fluid, the energy-momentum tensor is

Tμν = (ρ + p)uμuν + pgμν, (5)

where uμ, ρ and p are the four-velocity, energy density and
pressure of the fluid, respectively. The continuity equation

ρ̇ = −3H (ρ + p) , (6)

holds true.
Based on the deep connection between gravity and ther-

modynamics [33], the Friedmann equations in the bulk of the
Universe follow from the first law of thermodynamics

dE = TdS + WdV, (7)

applied on the boundary. Here, the total energy of the matter
existing inside the apparent horizon of entropy S is given
by E = ρV , with V = 4π r̃3

A/3 being the volume enclosed
by the horizon. The work density W is related to the energy
density and pressure by W = − 1

2T
abhab = 1

2 (ρ − p).
In standard Cosmology the horizon entropy obeys the

holographic principle

S = A

4G
, (8)

where A = 4π r̃2
A is the horizon surface area (G denotes

Newton’s gravitational constant). With this as physical input,

it is a straightforward text-book exercise to show that Eq. (7)
leads to the Friedmann equations for a flat Universe

H2 = 8

3
πGρ, (9)

Ḣ = −4πG (ρ + p) . (10)

Following [57], we now suppose that the general expres-
sion for the GUP-modified entropy-area law takes the form

S = f (A)

4G
, (11)

dS

d A
= f ′(A)

4G
, (12)

where the function f (A) is to be determined ( f ′(A) denotes
the derivative of f respect to A). For the quadratic GUP
model (1), this can be done by computing the minimal change
of area �Amin = 8π	2

p E�x of an apparent horizon absorb-
ing a quantum particle of given energy E � �p and finite
size �x � rs = √

A/π (rs = 2MG is the Schwarzschild
radius). After some algebra, one gets [42,57]

dS

d A
= �Smin

�Amin
= 1 + √

1 − β∗/A
8	2

p
, (13)

where �Smin = ln 2 is the minimal increase in entropy, cor-
responding to one bit of information. Here, we have defined
β∗ ≡ 16πβ	2

p and 	p = 1/mp = √
G is the Planck length.

Comparison with Eq. (12) allows us to identify

f ′(A) = 1 + √
1 − β∗/A
2

. (14)

It is easy to check that f ′(A) → 1 for vanishing β∗,
consistently with the holographic relation (8). By plugging
Eq. (14) into (12), and integrating over A, it is also possible to
derive the explicit formula for the GUP-modified Bekenstein-
Hawking entropy. The resulting expression is rather awkward
to exhibit. Since we do not need it explicitly in the following
analysis, we remand the interested reader to [42,57].

We have now all the ingredients to infer GUP effects on
Friedmann equations. Indeed, by replacing Eqs. (12) and (14)
into the first law of thermodynamics (7) and noticing that

dE = 4πρ r̃2
Adr̃A + 4

3
π r̃3

Adρ (15)

on the horizon surface, we are led to

4π

r̃3
A

(
1 +

√
1 − β∗

4π r̃2
A

)
dr̃A = −32

3
π2G dρ. (16)

After integrating the l.h.s. between r̃A and the minimal
length-scale �xmin � √

β∗/π allowed by the GUP (1) and
setting the integration constant ρ (�xmin) in such a way that
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Eq. (9) is recovered for β∗ → 0, we obtain to the leading
order in the deformation parameter1

Hβ(ρ) = H(ρ)

(
1 + 2β

3
πG2ρ

)
, (17)

with H being the standard Hubble parameter given by Eq. (9).
This relation provides the first GUP-modified Friedmann
equation. For later convenience, we recast it in the form

Hβ(ρ) = H(ρ)Zβ(ρ), (18)

where we have separated out the β-dependence of Hβ by
defining

Zβ(ρ) = 1 + 2β

3
πG2ρ. (19)

In view of applying the above formalism to BBN, we can
further manipulate Eq. (18) by using the relation

ρ = π2g(T )

30
T 4, (20)

where g(T ) denotes the effective number of degrees of free-
dom. Equation (18) becomes

Hβ(T ) = H(T )Zβ(T ), (21)

where

H(T ) = 2π

3

√
πGg(T )

5
T 2, (22)

Zβ(T ) = 1 + β

45
π3G2g(T )T 4. (23)

In a similar fashion, one can derive the linearized second
GUP-modified Friedmann equation to be [42]

Ḣβ = Ḣ
(

1 + βGH2
)

, (24)

which still recovers Eq. (10) in the limit of vanishing β.
These GUP-corrected Friedmann equations form the basis

on which variations of the Hubble parameter and of its time
derivative in the early Universe will be studied.

3 Big bang nucleosynthesis in GUP cosmology

In this section we study the BBN within the framework of
GUP Cosmology. We assume that the energy density of rel-
ativistic particles filling up the Universe is given by Eq. (20)

1 Strictly speaking, we are expanding around ε ≡ β	4
pρ. We shall

check a posteriori the degree of validity of this approximation (see
Sect. 3).

with g(T ) = g∗ � 10 (henceforth we consider the radiation
dominated era), the major contribution to the degrees of free-
dom being given by relativistic photons, e+e− pairs and the
three neutrino species.

According to the standard BBN model, neutron and pro-
tons started to form only few thousandths of a second after
the Big Bang, when the temperature dropped low enough.
From the first hundredth of a second up to few minutes, the
abundances of the first very light atomic nuclei were defined.
In particular, the formation of the primordial 4He took place
at around T � 100 MeV, while the energy and number den-
sity were still dominated by relativistic leptons (electrons,
positrons and neutrinos) and photons. Due to their rapid col-
lisions, such particles were in thermal equilibrium, so that
Tν = Te = Tγ = T [54]. On the other hand, the smattering
of protons and neutrons were kept in equilibrium owing to
the following weak interactions with leptons

a) νe + n ←→ p + e−, (25)

b) e+ + n ←→ p + ν̄e, (26)

c) n ←→ p + e− + ν̄e. (27)

Within the framework outlined above, neutron abun-
dance can be computed by estimating the conversion rate
λpn(T ) of protons into neutrons and its inverse λnp(T ) =
e−Q/T λpn(T ), where Q = mn − mp � 1.29 MeV is the
difference between neutron and proton masses. Here λnp is
expressed as the sum of the rates associated to the three pro-
cesses (25)–(27) separately, i.e.2

λnp(T ) = λa(T ) + λb(T ) + λc(T ). (28)

In turn, the total weak interaction rate reads (T ) =
λnp(T ) + λpn(T ).

Following [54], we further assume that, during the freeze-
out period, the temperature T is low in comparison with the
with the characteristic energies contributing to the rates for
the decays (25)–(27). This allows us to estimate the lepton
phase-space density functions by the ”classical” Boltzmann
weights, rather than the Fermi–Dirac distribution. The last
requirement is that the electron mass me can be neglected
with respect to the electron and neutrino energies. Under
these conditions, one can show that [54,56]

2 Notice that the integration over momentum appearing in the defini-
tion of λa , λb and λc might be affected in the GUP framework due to
minimal-length effects. However, we expect these corrections not to
spoil significantly the order of magnitude of the resulting rates, thus
being negligible in first approximation.
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λa(T ) � qT 5 + O
(Q
T

)
= λb(T ), (29)

whereq � 10−10 GeV−4. On the other hand, the contribution
of the free-neutron decay process c) to the total rate is found to
be negligible,3 implying that the total rate λnp(T ) is roughly
twice that given in Eq. (29).

The 4He mass fraction of the total baryonic mass is now
estimated as [53,56]

Yp ≡ γ
2x

(
t f

)
1 + x

(
t f

) , (30)

where γ = e−(tn−t f )/τ � 1 depends on the (relatively short)
time between freeze-out (t f ) and nucleosynthesis (tn) and
on the neutron mean lifetime τ � 877 s. It can be as the
fraction of neutrons that decay into protons in the interval
t ∈ [t f , tn]. x(t f ) = e−Q/T (t f ) is the neutron-to-proton
equilibrium ratio.

Deviations from Yp due to the variation of the freeze-out
temperature T f can be quantified as [56]

δYp = Yp

[(
1 − Yp

2γ

)
log

(
2γ

Yp
− 1

)
− 2t f

τ

]
δT f

T f
, (31)

where δTn has been set to zero, since Tn is fixed by the D-
binding energy [58,59].

The mass fraction of 4He has been recently determined to
a high degree of precision by making use of infrared and vis-
ible 4He emission lines in extragalactic HII regions, obtain-
ing [60]

Yp = 0.2449, |δYp| � 10−4. (32)

Insertion of these values into Eq. (31) gives

∣∣∣∣δT f

T f

∣∣∣∣ � 10−4, (33)

where we have set t f � 1 s and tn � 20 s.
Following [56], we can compute the GUP-modified

freeze-out temperature T f by equating Eqs. (21) and (28).
With the further definition δT f = T f − T0 f , where T0 f �
0.6 MeV [56], we get

∣∣∣∣δT f

T f

∣∣∣∣ =
∣∣∣∣1 − 2βπ4G2g∗

√
πGg∗/5

135q
T0 f

∣∣∣∣ . (34)

The GUP parameter can be fixed by demanding consis-
tency between Eqs. (33) and (34). A straightforward numer-
ical evaluation leadsto

3 For T � 1 MeV this contribution is 3 orders of magnitude lower than
the rate (29) [54].

β ∼ O(1087). (35)

This means that our linearized approximation is well-
justified, since for this value of β we have ε ∼ O(10−2)

(see footnote 1).
By comparison with bounds in Table 1, we see that the

result (35) provides us with a weak cosmological constraint
on β. The gap becomes even wider if compared with bounds
from gravitational/quantum experiments (see Table 2), thus
emphasizing the quite negligible rôle of GUP on cosmic
scales.

4 Primordial 4He, D, 7Li abundances in GUP
cosmology

Let us now constrain the GUP by a slightly different
approach. The basic idea is to study GUP-induced deviations
from standard Cosmology on the primordial abundances of
Helium isotope 4He, Deuterium D and Lithium isotope 7Li .
This will be done by replacing the standard Z -factor enter-
ing primordial abundances with the β-dependent Z -factor
appearing in Eq. (21).

In this regard, we observe that in the ordinary Cosmol-
ogy based on General Relativity, one simply has Z = 1.
Deviations of Z from unity may arise due to either modified
descriptions of gravity or the presence of additional light
particles such as neutrinos, in which case one has [61]

Zν =
[

1 + 7

43
(Nν − 3)

]1/2

, (36)

where Nν is the number of neutrino generations. However,
since we aim to focus on the effects of the GUP on BBN,
hereafter we assume Nν = 3, ruling out the possibility
that in our framework departures of Z from unity are orig-
inated by degrees of freedom of additional particles. Given
the very tight observational constraints on the allowed pri-
mordial abundances, we expect in this way to infer reliable
bounds on the deformation parameter of GUP.

4.1 4He abundance

In order to estimate 4He primordial abundance, we follow
the approach of [62], recently revived in [56]. Let us summa-
rize here the sequence of nuclear reactions responsible for
the production of this element. The first step consists in gen-
erating deuterium D from a neutron and a proton. After that,
deuterium is converted into 3He and tritium T . In short

n + p → D + γ, (37)

D + D → 3He + n, (38)

D + D → T + p. (39)
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The last step of the chain leads to the production of 4He
due to the following processes

D + T → 4He + n, (40)

D + 3He → 4He + p. (41)

According to [63,64], the numerical best fit constrains the
primordial 4He abundance to be

Yp = 0.2485±0.0006+0.0016 [(η10 − 6) + 100 (Z − 1)] ,

(42)

where in our case we have to set Z = Zβ given by Eq. (23).
Here, we have adopted the usual definition of the baryon
density parameter [63,64]

η10 ≡ 1010ηB � 6, (43)

where ηB is the baryon to photon ratio. Notice that, by
setting Z = 1, we recover the standard 4He abundance
Yp = 0.2485 ± 0.0006 predicted by BBN model.

Now, as discussed in [56,62], consistency between obser-
vational data on 4He abundance and Eq. (42) with η10 = 6
allows us to fix [65]

δZ ≡ Z − 1 � O(10−2). (44)

By using the expression (23) for Zβ , we then obtain

β � O(1081), (45)

assuming T � 10 MeV and

β � O(1089), (46)

assuming T � 0.1 MeV.
Let us focus on the most stringent bound (45). Except for

the constraint of [42] (which is however computed by refer-
ring to the much earlier baryogenesis epoch4) we notice that
the result β � O(1081) perfectly fits with other cosmologi-
cal bounds obtained via Type Ia supernovae [44] and baryon
acoustic oscillations measurements [44]. It also agrees with

4 We point out that the gap between the bound on β from GUP baryo-
genesis [42] and other cosmological bounds from different stages of the
evolution of the Universe could be a hint for the need of a GUP model
with a time (or equivalently energy) dependent deformation parame-
ter. Of course, such a running behavior might not be described through
a simply (i.e. monotonically) decreasing function of time, but rather
by a more complicated function. And indeed this should be the case
in order to cure the above inconsistency. In this regard, we mention
that a similar time-dependence of the deformed commutator occurs in
Maguejo–Smolin Doubly Special Relativity [8], which predicts that the
generalized commutator should vanish at Planck scale, while approach-
ing the conventional HUP at low energies.

late-time observational data from Early-Type Galaxies as
Cosmic Chronometers, the H0 Lenses in COSMOGRAIL’s
Wellspring, the “Mayflower” sample of Gamma Ray Bursts
and the latest Planck 2018 release for Cosmic Microwave
Background radiation [43]. Furthermore, Eq. (45) provides
us with a more stringent bound than Eq. (35).

Again, we can see that for the values of β in Eqs. (45), (46),
the approximation ε � 1 works well, since we have ε ∼
O(10−3).

4.2 D abundance

Deuterium D is generated form the process (37). Following
the same analysis as above, D primordial abundance can be
ascertained from the numerical best fit of [66], giving

yDp = 2.6 (1 ± 0.06)

(
6

η10 − 6 (Z − 1)

)1.6

. (47)

As before, the valuesη10 = 6 and Z = 1 yield the standard
BBN prediction yDp = 2.6 ± 0.16.

Observational constraints on D abundance combined with
Eq. (47) allow us to set δZ � O(10−2) [56,62,65], which
is consistent with the constraint from 2He abundance (see
Eq. (44)). Therefore, one still gets the bounds (45)–(46) for
T � (0.1 ÷ 10) MeV.

4.3 7Li abundance

It is well-known that theη10 parameter which successfully fits
the abundances of 4He, D and other light elements is some-
how inconsistent with observations of 7Li . In fact, the ratio
of the predicted value of 7Li abundance to the observed one
lies in the interval [2.4, 4.3] according to the standard cos-
mological theory [61,67]. Quite unexpectedly, neither BBN
nor any alternative model are able to fit this so low abundance
ratio. This puzzle is referred to as Lithium problem.

Once more, we can constrain deviations of Z from unity
by demanding consistency between the numerical best fit
expression for 7Li abundance [66]

yLi p = 4.82 (1 ± 0.1)

[
η10 − 3 (Z − 1)

6

]2

(48)

and observational bounds. In this case one has [56,62,65]

δZ � O(10−1). (49)

Notice that this constraint is one order higher than the
corresponding value in Eq. (44).

Thus, from Eq. (23) we obtain

β � O(1082), (50)
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for T � 10 MeV and

β � O(1090), (51)

for T � 0.1 MeV. Also in this case, the approximation ε � 1
is satisfied, being ε ∼ O(10−2).

As predictable, the overlap between the bound on β from
7Li abundance on one hand and 4He, D abundances on the
other is only partial, though non-vanishing. This discloses
the possibility that the 7Li puzzle might be successfully
addressed within the framework of GUP-modified Cosmol-
ogy for a suitable choice of the GUP parameter. Investiga-
tion along this direction requires further attention and will be
developed elsewhere.

5 Discussion and conclusions

Merging General Relativity and Quantum Theory is one
of the hottest topics in modern theoretical physics. A phe-
nomenological approach to endow Quantum Mechanics with
gravity effects is to modify the Heisenberg Uncertainty Prin-
ciple in such a way as to reproduce a minimal observable
length at Planck scale – Generalized Uncertainty Princi-
ple. Although the natural domain of GUP is high-energy
physics, the best – and, for the time being, unique - arena
to quantify the magnitude of GUP corrections is low-energy
regime. In this vein, it should be understood the large num-
ber of attempts to constrain the GUP deformation parameter
via optomechanical/interferometry experiments on one hand
and gravitational/cosmological measurements on the other
(see [68,69] for a review).

Starting from the well-established connection between the
first law of thermodynamics and the cosmological Friedmann
equations, in this work we have investigated the implications
of GUP on Big Bang Nucleosynthesis and the related abun-
dances of primordial light elements. We emphasize that GUP
enters the Friedmann equations through a non-trivial mod-
ification of the entropy area law (see Eq. (11)), which in
turn affects the standard density/temperature dependence of
Hubble constant and of its time derivative. GUP-corrected
Friedmann equations are given in Eqs. (21) and (24) to the
leading order in the deformation parameter.

Consistency with observational data on (1) variations of
the freeze-out temperature T f and (2) primordial abundances
of 4He, D and 7Li has allowed us to infer various con-
straints on the GUP parameter β, the most stringent being
β � O(1081) derived from the analysis of the 4He and D
abundances. It is worth noticing that such bound fits with
those found in [43,44] from similar cosmological studies,
although it is less stringent than constraints inferred via grav-
itational or quantum experiments. This somehow indicates
the negligible, though non-vanishing, rôle of the GUP on

cosmological scales. In this sense, it would be interesting
to study implications of the Extended Uncertainty Principle
(EUP) [70–73], which naturally emerges in spacetime with a
maximal length (horizon-like) scale, such as (anti)-de Sitter
background. Besides this aspect, another important result of
this work is the possibility that the 7Li problem could be
solved in the framework of modified GUP Cosmology.

A further direction to explore is the study of effects of other
GUP formulations on BBN cosmological model. Indeed, as
argued at the end of the previous section, higher-order GUP
corrections terms might be relevant, particularly in the study
of the 7Li problem.

Finally, we mention that a similar analysis has been carried
out in [56] in the context of non-extensive Tsallis Cosmology,
which is a generalization of the ordinary Cosmology based
on Tsallis non-additive definition of horizon entropy [74].
In light of this extension, it is worth investigating whether
a connection between GUP and Tsallis frameworks can be
established, so as to map the GUP parameter and Tsallis non-
extensivity index into each other. Work along these and other
directions is presently under active consideration and will be
presented in future works.
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