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Abstract Three-body semileptonic τ -decays offer a path
to understand the properties of light hadronic systems and
CP symmetry violations through searches for electric dipole
moments. In studies of electro-weak physics, the hadronic
part of the final states has traditionally been described using
the language of form factors. Spectroscopic information,
resolved in terms of orbital angular momentum quantum-
numbers, is best being derived from an explicit decomposi-
tion of the hadronic current in the orbital angular momentum
basis. Motivated by the upcoming large data samples from B
factories, we present the full description of the hadronic cur-
rents decomposed into quantum numbers of the hadronic final
state using the isobar picture. We present formulas for orbital
angular momenta up to three and apply the rules derived from
hadron spectroscopy to formulate the decay chain of hadronic
three-body systems of arbitrary mass. We also translate this
formalism to the language of form factors and thereby cor-
rect insufficiencies found in previous analyses of three-body
hadronic final states.

1 Introduction

The upcoming large data samples from Belle and Belle 2 for τ

decays will be an order of magnitude larger than previously
analyzed samples, allowing for analyses of unprecedented
detail. The weak decay of the τ lepton results in leptonic
and semi-leptonic final states. The latter can serve as a clean
source for hadronic systems produced from the vacuum. The
weak current can either be of vector or axial vector nature.
Restricting ourselves to light quarks only, we can view the
W Boson to carry strong isospin I = 1, as it couples to
ud̄ or dū [1]. Based on arguments with conserved G-parity,
odd numbers of pions in the final state can only be produced
from the weak axial current, even ones from the weak vector
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current. Contributions through the weak vector current to odd
numbers of pions are called second class currents [2,3].

The coupling of the weak axial-vector current to final
states with odd numbers of pions can lead to quantum num-
bers J P = 1+ (axial-vector states) or J P = 0− (pseudo-
scalar states) of the hadronic system. Indeed, the decay into
a single pseudo-scalar ground-state pion is one of the domi-
nating τ final states (10.8% branching fraction [4]). J P = 1+
axial vectors on the other hand require at least 3 pions in the
final state to constitute a first class current not suppressed by
G parity.1

In this article, we focus on the semileptonic decay of the
τ lepton into three final state pions. Owing to the presence
of both vector and axial-vector currents, τ decays can a pri-
ori produce three-pion states with various combinations of
quantum numbers J P .

Although semileptonic τ decays have been studied for the
last 30 years, the structure of the hadronic current is still
not understood sufficiently. Neither has the spectral distri-
bution of the pseudo-scalar current been studied, nor have
second class currents been found. In addition, the results on
the decay branching for the a1(1260) shows large deviations
from results obtained by direct production in hadronic beam
experiments, namely the contribution of the (ππ)S-wave in
the isobar seems much enhanced in Ref. [5] as compared
to other experiments like in Refs. [6,7]. The precise knowl-
edge of the hadronic current, however, is a key requirement
for determining the τ magnetic moment through measure-
ments of the τ polarization or for searches for an electric
dipole moment through spin correlations within the τ±-pair
system.

All past analyses of the decay τ− → 3πντ were restricted
to the strong axial-vector component, which is dominantly
passing through the a1(1260) resonance. Possible addi-

1 J P denotes the spin J of a state and P its eigenvalue under the parity
transformation.
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tional contributions from pseudo-scalar resonances like the
π ′(1300) or from spin-exotic vector resonances like the
π1(1600), were assumed to have vanishing contributions and
were neglected.

Hadronic systems within τ decays are modeled by a
hadronic current consisting of various contributions, called
partial waves, that represent various hadronic resonances
generating different orbital angular momenta in their decay
chains.2 Omitting vector and pseudo-scalar partial waves in
modelling the τ decay to three pions, as done previously, led
to a very limited set of seven partial waves. Partial waves
describing decay chains including orbital angular momenta
larger than two units of h̄ were also neglected [5,8].

The presence of partial waves describing 3π states other
than the a1(1260) not only allows to study their resonance
nature, but also presents the opportunity to study the a1(1260)

itself in the absence of further hadronic interactions. Such
interactions are present in alternative production mecha-
nisms, like decays of heavy mesons or the production through
strongly interacting hadrons. Possible additional resonances
with different J P can serve as phase reference for the
a1(1260), which improves constraints to the fit of the line
shape as compared to a mere fit to the intensity distribution
alone [5,11].

The detailed study of axial-vectors, vectors, and pseudo-
scalars in τ -decays requires the derivation of previously omit-
ted contributions to the hadronic current. We will construct
these contributions for partial waves with appearing angular
momenta of up to three units of h̄ in their decay chain. In
Sect. 2, we introduce the general structure of the amplitude
and in Sect. 3 we lay out the basic components to formu-
late hadronic currents. We give the explicit expressions in
Sects. 4, 5, and 6. In Sect. 7 we discuss the scope and limita-
tions of our model, relate our findings to the more common
language of form factors in Sect. 8, and compare to previous
work in Sect. 9. In Sect. 10, we will summarize and discuss
the impact of the uncertainty on the hadronic current for the
search of a tau lepton electric dipole moment.

2 The hadronic current

The amplitude of the semileptonic decay of a τ lepton into a
neutrino and any hadronic final state is governed by the weak
interaction and takes the form:

M ∝ ūνγμ

(
1 − γ 5

)
uτ J

μ
had, (1)

where the left part describes the leptonic current, given by the
corresponding Dirac spinors uτ and uν and the Dirac matri-

2 Note, that we use the term“partial wave analysis” as developed in
Ref. [9], rather than the more commonly known definition given in
Ref. [10].

ces γ . The hadronic current Jμ
had is given by the final-state

kinematics. The energy released in the decay can be shared
among the neutrino and the hadronic final state resulting in a
continuous spectrum of the invariant mass of the latter. Since
the hadronic current is governed by the strong interaction,
there is no ab-initio calculation, but it is usually modeled as
a sum of various contributions, which we will call partial
waves from hereon:

Jμ
had =

∑
w∈waves

Cw jμw . (2)

The sum extends over a set of partial waves w describing the
kinematics of the final-state particles. The complex-valued
coefficients Cw encode the relative strengths and phases of
the individual partial waves and are not known a priori but
must be extracted from data via a partial-wave analysis. Even
though this approach is applicable to all multi-body hadronic
final-states, here we will focus on three-particle final-states,
particularly on τ− → ντ + π+π−π−.

A partial wave corresponds to a particular description of
the decay process, starting with the production of a three-
pion intermediate state X with given J P

X quantum numbers.
It also includes its decay into a two-pion intermediate state
– the isobar ξ with given J P

ξ quantum numbers – and a sin-
gle π− with an orbital angular momentum L with respect to
the isobar and the final decay of the isobar into two pions
ξ → π+ + π−. The quantum numbers J P

X and J P
ξ of the

intermediate states X and ξ and the orbital angular momen-
tum L fully determine a partial wave w, which we will denote
as

w = X [ξπ ]L . (3)

In our case, the a1 [ρπ ]S wave will dominate the spectral
intensity distribution, which corresponds to a synthesis of
the a1(1260) resonance decaying into a ρ(770) and a π in a
relative S wave and the subsequent decay of the ρ(770) into
two charged pions in a relative P wave.

The appearance of two undistinguishable π− in the final
state π+

1 π−
2 π−

3 , requires the partial wave w of the hadronic
current to be constructed observing Bose symmetry and thus
contains two coherently summed parts:

jμw = BX (sX)
[
Bξ

(
s(12)

)
tμ(12),w + Bξ

(
s(13)

)
tμ(13),w

]
. (4)

The real-valued tensor structures tμ(i j),w describe the two-
particle combination (i j) to form the isobar. The complex-
valued dynamic amplitudes BX (sX) and Bξ

(
s(i j)

)
describe

the spectral distributions for X and ξ with respect to their
invariant mass-squares sX and s(i j).

In contrast to the tensor structures tμ(i j),w, the dynamic
amplitudes cannot be derived from first principles, but have
to be parameterized using existing knowledge. The particu-
lar choice of a dynamic amplitude parameterization can be
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difficult and e.g. Refs. [5,12,13] use more elaborate param-
eterizations e.g. including a mass function for the a1(1260).
In general, the dynamic amplitude can be written as [14]:

Ba (s) = na(s)

Da(s)
, (5)

where the real-valued na(s) encodes production effects and
cancels singularities in the unphysical regions at sa = 0
arising from the projection operator gμν

a [see definition in
Eq. (10)]. This is possible, since the projection operator
is always associated with an intermediate state a and thus
its dynamic amplitude Ba(s). Its numerator na(s) is often
parameterized as low-order polynomial in s.

The denominator Da(s) encodes the resonance content of
the dynamic amplitude and is most commonly described by
a Breit–Wigner-like amplitude:

Da(s) = m2
a − s − imaΓ (s) . (6)

They describe with a resonance mass ma and width Γa an
isolated resonance within a particular partial wave which lays
far from any threshold.3 The mass-dependent width is hereby
commonly described by:

Γ (s) = Γa

(
q (s)

q
(
m2

a

)
)2	+1

ma√
s
. (7)

Here, 	 is the orbital angular momentum appearing in the
two body decay of the described resonance in its rest frame:
X → ξ + π− or ξ → π+π− (hereafter, the generic two-
body decay will be dubbed as a → b+c). The corresponding
breakup momentum q

(
s = m2

a

)
in the decays of X and ξ has

the generic form:

q (s) =
√
s2 + m4

b + m4
c − 2

(
sm2

b + sm2
c + m2

bm
2
c

)

4s
. (8)

While Breit-Wigner-like amplitudes constitute the most
common parameterizations of the resonance content, more
sophisticated approaches, e.g. in Ref. [15], can also be used.
Such approaches become necessary in the case of overlap-
ping resonances or opening thresholds.

3 Construction of hadronic tensors

We now construct the hadronic tensors tμ(i j),w defined in
Eq. (4) corresponding to the angular momentum quantum
numbers in a given partial wave. From group theoretical con-
siderations of the rotational group SO(3) one can show, that
an object with orbital angular momentum quantum number
L is described by a tensor, which is:

3 Partial-wave analyses performed in kinematic bins of sX alleviate the
necessity of a parameterization of BX (sX) and allow to extract this
shape from data instead.

1. symmetric,
2. traceless,
3. of rank L ,
4. and transversal to the four-momentum of the decaying

particle.

In the rest frame of the decaying particle, the transversality
condition translates to the tensor only having space-like com-
ponents. Rotations in the rest frame of a particle are governed
by the rotational group SO(3), subgroup of the full Lorentz
group, mixing only space-like components of tensors and
leaving time components untouched. Thus, a tensor describ-
ing an object of non-zero spin cannot have time-like com-
ponents in the corresponding rest frame. The requirements
1 and 2 are only relevant for an orbital angular momentum
greater than one, since symmetry and trace are quantities
defined only for tensors with rank greater than one.

We will begin with the construction of tensor amplitudes
for the general two-body decay a → b + c. Energy and
momentum conservation requires for their four-momenta to
fulfill:

pμ
a = pμ

b + pμ
c . (9)

Based on these four-momenta we can now define the follow-
ing objects4,5:

qμ
a = 1

2

(
pμ

b − pμ
c

) ; gμν
a = ημν − pμ

a pν
a

sa
; kμ

a = gμν
a qa,ν , (10)

where sa = m2
a = pμ

a paμ and ημν is the usual Minkowski
metric. gμν

a projects out the components of a four vector,
which are transversal to pμ

a . Thus, kμ
a is the only four-vector

transversal to pμ
a , which we can construct.

Using the objects defined in Eq. (10), we now construct
the tensor structures T

μ1...μL
a , which describe the decay of

the particle a involving an orbital angular momentum L , thus
requiring L Lorentz indices μ1 to μL . The tensor for an S-
wave decay of orbital angular momentum zeroTa is isotropic
and thus simply given by unity. The first non-trivial tensor
represents a P-wave decay and is given by the components
kμ
a transversal to pμ

a :

T
μ
a = kμ

a , (11)

since kμ
a is the only vector we can construct from the avail-

able four-vectors in Eq. (9), fulfilling all requirements listed
above: kμ

a pa,μ = 0.

4 In the a rest frame, qμ
a = (

q0
a,qa

)ᵀ
with |qa| = q

(
m2

a

)
as defined

in Eq. (8).
5 Kinematic singularities due to the factor 1/sa in this projector gμν

a

have to be canceled by na(s) in Eq. (5).
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The next higher order tensor of interest is Tμν
a of rank two

corresponding to a D-wave decay. It is given by

T
μν
a = 3

2
kμ
a k

ν
a − 1

2
gμν
a

(
k�
aka,�

)
, (12)

which can be shown to fulfill all requirements listed above:

T
μν
a paμ = 0; T

μν
a = T

νμ
a ; T

μ
a,μ = 0. (13)

An F-wave decay is then described by the following rank 3
tensor:

T
μν�
a = 5

2
kμ
a k

ν
ak

�
a

− 1

2

(
kσ
a ka,σ

) (
kμ
a g

ν�
a + kν

ag
μ�
a + k�

ag
μν
a

)
, (14)

which again can be shown to fulfil all requirements. A recur-
sive formula for the construction of higher orbital angular
momenta L tensors T

μ1...μL
a , with a number of L Lorentz

indices μ1 to μL can be found in Eq. [16] (9) of Ref. [16].

4 Axial vector currents

Since the weak interaction violates parity, it proceeds via
both vector and axial-vector currents, with J P = 1− and
J P = 1+. Since the axial-vector current is not strictly con-
served, the corresponding component in the weak interaction
may give rise to contributions to the hadronic current with
quantum numbers J P

X = 0− and J P
X = 1+, the latter of which

is expected to dominate in the three-pion channel. Thus, we
begin by constructing its contributions to the hadronic cur-
rent.

Using the tensors defined in Sect. 3, we can construct the
non-symmetrized hadronic currents tμ(i j),w for a partial wave
w as defined in Eq. (4) and with particles (i j) forming the
isobar. The most simple axial wave is a1 [f0π ]P, with the
a1(1260) quantum numbers being J P

a1
= 1+. Here, the only

non-zero angular momenta are the spin of the a1(1260) and
the orbital angular momentum L = 1 enclosed by f0 and
π−.6 Thus, we find:

tμ(12),a1[f0π ]P
= T

μ
X, (15)

defined in Eq. (11), with X = a1(1260). As the f0 decays
into two particles labeled 1 and 2, we denote the tensor in
Eq. (15) with (12) such that pμ

b = pμ

(12) and pμ
c = pμ

3 , as
defined in Sect. 3.

The next partial wave we discuss is a1 [ρπ ]S, which
describes the decay of an a1(1260) axial vector meson into
the ρ(770) and π− enclosing a relative S wave. Here, the only
non-zero angular momentum is given by the isobar spin, since

6 f0 denotes a generic isobar resonance with J P
ξ = 0+.

the final state pions π+
1 and π−

2 are spinless and thus their rel-
ative orbital angular momentum must equal the isobar spin.
The corresponding tensor is Tμ

(12), defined in Eq. (11) with

pμ

b = pμ
1 and pμ

c = pμ
2 . This tensor is transversal to pμ

(12)

by definition, but not transversal to pμ
X. To ensure this, we

need to apply gμν
X , given in Eq. (10), and obtain:

tμ(12),a1[ρπ ]S
= gμν

X T(12),ν . (16)

Since the spin of the a1(1260) and the ρ(770) can also
couple to L = 2, we now also consider the partial wave
a1 [ρπ ]D. The orbital angular momentum of L = 2 is rep-
resented by T

μν
X given in Eq. (12), with pμ

b = pμ

(12) and

pμ
c = pμ

3 . The decay of ρ(770) is described by the same
structure as in Eq. (16) and we find for the total decay chain:

tμ(12),a1[ρπ ]D
= T

μν
X T(12),ν, (17)

which is transversal to pμ
X by definition.

Finally we consider the wave a1 [f2π ]P. The appearance of
an orbital angular momentum L = 1 is described by T

μ
X, like

in Eq. (15) and the decay of the f2(1270) isobar is described by
T

μν

(12). As discussed for the decay of the ρ(770), the orbital

angular momentum between π+
1 and π−

2 must match the
isobar spin. Again, Tμν

(12) – defined in Eq. (12) with pμ

b = pμ
1

and pμ
c = pμ

2 – is not transversal to pμ
X, so we use gμν

X to
obtain:

tμ(12),a1[f2π ]P
= gμν

X T(12),ν�T
�

(12). (18)

For a general amplitude with arbitrary L we need an isobar
spin of Jξ = L ± 1 to be able to construct a spin 1 tensor.
For L = Jξ + 1 we find

tμ
(12),a1[ξ jπ]L

= T
μν1...νJξ
X T(12),ν1...νJξ

, (19)

since the only non-contracted Lorentz index μ comes from

T
μν1...νJξ
X , which is already transversal to pμ

X. This is not the
case for L = Jξ − 1, where we need to apply the projection
operator and find:

tμ
(12),a1[ξ jπ]L

= gμν
X T(12),ν�1...�LT

�1...�L
X . (20)

For the Bose symmetrized tensors tμ(13),a , defined in

Eq. (4), the four-momenta pμ
2 and pμ

3 are interchanged in
all formulas. Even though we only explicitly mentioned
the ground-state a1(1260) resonance and the ρ(770) and
f2(1270) isobars, the formulas in this section are equally valid
for all excited a′

1, ρ′, f ′
0 and f ′

2 resonances.

5 Vector currents

Since the vector current is conserved, the vector component
of the weak interaction can only give rise to a hadronic vector
current with quantum numbers J P

X = 1− and not J P
X =
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0+. Owing to G-parity, the hadronic vector current is only
expected to contribute to final states with an even number
of final-state pions, while its contributions to the three-pion
final state is usually assumed to vanish. In this section, we
nevertheless give the expected dominant contribution to a
hadronic three-pion vector current to be able to explicitly
search for isospin violation.

The most prominent example of this is the π1 [ρπ ]P wave,
which involves the spin exotic state π1(1600) with J P

π1
= 1−.

In this wave, the isobar spin and the orbital angular momen-
tum are equal Jξ = L = 1 and thus we cannot obtain a
tensor of spin 1 by simple contraction of Lorentz indices as
in Sect. 4. Using the totally antisymmetric tensor εμν�σ , we
construct:

tμ(12),π1[ρπ ]P
= εμν�σ pX,νTX,�T(12),σ , (21)

which is transversal to pμ
X by definition, due to the permu-

tation properties of εμν�σ . The tensors of orbital angular
momentum 1, Tμ

X and T
μ

(12), are given in Eqs. (15) and (16).

Due to the antisymmetric tensor εμν�σ , the tensor tμ(12),π1[ρπ ]P
transforms differently under the parity operator than the ten-
sors constructed in Sect. 4 and therefore the corresponding
three-pion state is of type π1 instead of type a1.

For the construction of vector currents involving higher
isobar spins Jξ and angular momenta L , both must be equal
and all but one of the Lorentz indices on both correspond-
ing tensors must be contracted with one another. The single
remaining index of both tensors is contracted with εμν�σ ,
similar to Eq. (21).

6 Current for pseudo-scalars

As mentioned in Sect. 4, the non-conservation of the axial-
vector current in the weak interaction also allows pseudo-
scalar resonances with J P

X = 0− to contribute to the hadronic
current. In analogy to the decay of τ leptons into a single pion,
which also carries J P

π = 0−, the pseudo-scalar hadronic
current is simply given by pμ

X multiplied by a Lorentz scalar
t(12),π ′[ξπ ]L :

tμ
(12),π ′[ξπ ]L

= pμ
X t(12),π ′[ξπ ]L , (22)

where the spin Jξ of the isobar and L must be equal. The
scalar factor t(12),π ′[ξπ ]L for the decay of a pseudo-scalar X
via an isobar ξ can be constructed from the same tensors, as
the axial and vector currents:

t(12),π ′[ξπ ]L = T
μ1...μL
X T(12),μ1...μL . (23)

Note, that in contrast to axial and vector currents, this pseudo
scalar current does not have to be transversal to pμ

X, since it
must be invariant under rotations in the X rest frame and
therefore can have only a time component.

7 Scope and limitations of the isobar model

The amplitudes derived here are all formulated within the
isobar model, i.e. the assumptions of two subsequent two-
particle decays producing the three-body final state. This
isobar model [9] is the reliable tool for amplitude analyses
for three-body final states and is used in all analyses relating
kinematic information to J PC decompositions. The underly-
ing assumptions have shown to be valid [17,18]. In addition,
the isobar model can be extended by waves of given J PC

quantum numbers without pre-imposing a specific resonance
content [17,18].

Apart from a model fully formulated within the isobar
model, the amplitudes developed here can be used to extend
alternative models, like resonance chiral theory, to include
contributions from resonances with higher mass or spin, like
f2(1270) or a1(1420) which are typically absent from such
approaches [19].

8 Connection to form factors

We may also use a formulation for the hadronic current,
which is complementary to Eq. (2), namely an expansion
in terms of the four four-vectors constructed from the four-
momenta of the final state particles. This expansion intro-
duces complex-valued form factors to describe the hadronic
structure. These four-vectors are:

pμ
i⊥ = gμν

X pi,ν

pμ
ε = εμνλσ p1,ν p2,λ p3,σ

pμ
X = pμ

1 + pμ
2 + pμ

3 , (24)

where pμ
i are the pion-momenta and gμν

X is defined in
Eq. (10). Thus, pμ

i⊥ are the components of pμ
i that are

transversal to pμ
X. Using these, the expansion of the hadronic

current in terms of form factors Fv reads:

Jμ
had = pμ

2⊥F2 + pμ
3⊥F3 + pμ

ε Fε + pμ
XFs, (25)

where F2 and F3 are two axial form-factors, Fε is the
vector form-factor, and Fs is the scalar from factor. The
form factors are functions of the Lorentz invariant quanti-
ties {sX, s(12), s(13), s(23),m2

π }. Similar decompositions into
form factors of the hadronic current have already been given
in Refs. [5,8] to which we relate our results in Sect. 9.

Since there is only one four-vector for each of the scalar
and vector form-factors with the respective transformation
properties, only a single scalar form-factor and a single vector
form-factor appear. There are two independent axial form-
factors, since there are only two linearly independent corre-
sponding four-vectors due to momentum conservation in the
X rest frame:
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pμ
1⊥ = −pμ

2⊥ − pμ
3⊥. (26)

Analogue to the hadronic current, we can expand the form
factors into a series of partial waves:

Fv =
∑

w∈waves

CwBX (sX)
[
Bξ

(
s(12)

)
f (12)
v,w

+ Bξ

(
s(13)

)
f (13)
v,w

]
. (27)

The sum extends over the sub-set of partial waves w with J P
X

quantum numbers matching the corresponding Fv . Partial-
wave form-factors f (i j)

v,w encode the contribution of partial
wave w to the form factor v ∈ {2, 3, ε, s}. (i j) denote the
final-state particles forming the isobar. In the following, we
will match the tensor expressions derived in Sects. 4–6 to the
corresponding form factors in Eq. (27).

8.1 Axial form factors

Here, we discuss the expansion of the axial currents from
Sect. 4 for a partial wave w in terms of partial-wave form-
factors f (12)

v,w , such that:

tμ(12),w = pμ
2⊥ f (12)

2,w + pμ
3⊥ f (12)

3,w . (28)

For the axial-vector like waves discussed in Sect. 4, we derive
the corresponding form factors by performing all Lorentz-
contractions given in Sect. 4:

f (12)
2,a1[f0π ]P

= 0; f (12)
3,a1[f0π ]P

= −1 (29)

and

f (12)
2,a1[ρπ ]S

= −1; f (12)
3,a1[ρπ ]S

= −1

2
. (30)

For the a1 [ρπ ]D wave, the respective form factors are:

f (12)
2,a1[ρπ ]D

= 1

8

(
2s(12) − sX + 2m2

π

)
−

(
s(12) − m2

π

)2

8sX
;

f (12)
3,a1[ρπ ]D

= 3

16

(
s(13) − s(23)

) (
1 + s(12) − m2

π

sX

)

+ f (12)
2,a1[ρπ ]D

/
2 . (31)

And for a1 [f2π ]P:

f (12)
2,a1[f2π ]P

= 3

16

(
s(13) − s(23)

) (
1 + s(12) − m2

π

sX

)
;

f (12)
3,a1[f2π ]P

= 4m2
π − s(12)

32sXs(12)

(
sX + s(12) − m2

π

)2

+ f (12)
2,a1(f2π)P

/2. (32)

Note, that Eqs. (30)–(32) are only valid in the case of identi-
cal final state masses7 m2

i = pμ
i pi,μ = m2

π , while the results
of Sect. 4 are valid in full generality. For arbitrary final-state
masses, we give the form factors in Sect. A. The Bose sym-
metrized axial form-factors are obtained as:

f (13)
2,w = f (12)

3,w

∣∣∣
s(12)↔s(13)

and f (13)
3,w = f (12)

2,w

∣∣∣
s(12)↔s(13)

.(33)

In Sect. A, we also give form factors for the a1 [f2π ]F and the
a1 [ρ3π ]D waves, the latter containing the spin 3 resonance
ρ3(1690).

8.2 Vector form-factor

For the vector current, we can write the tensor amplitude
derived in Sect. 5 as:

tμ(i j),π1[ρπ ]P
= pμ

ε f (i j)
ε,π1[ρπ ]P

, (34)

for which we find

f (12)
ε,π1[ρπ ]P

= 1; f (13)
ε,π1[ρπ ]P

= −1. (35)

8.3 Scalar form-factors

Since the scalar part of the hadronic current already contains
the desired structure for the decomposition into form-factors
we simply identify f (12)

s,w = t(12),w defined in Eq. (22). Here,
we give explicit expressions for π ′ [f0π ]S and π ′ [ρπ ]P:

f (12)

s,π ′[f0π ]S
= 1 (36)

and

f (12)

s,π ′[ρπ ]P
= 1

8

(
s(23) − s(13)

) (
1 + s(12) − m2

π

sX

)
. (37)

Note, that Eq. (37) again only holds for equal final-state
masses. The formulas for arbitrary final state masses and
for the π ′ [f2π ]D- and π ′ [ρ3π ]F-waves are given in Sect. A.
The Bose symmetrized scalar form-factors are:

f (13)
s,w = f (12)

s,w

∣∣∣
s(12)↔s(13)

(38)

9 Comparison with previous work

In this section, we relate our findings to previously published
work in Refs. [5,8].

In Ref. [8], the decomposition of the hadronic currents
is given in Eq.[8] (3), using four form factors labeled F [8]

i

modifying the vectors V [8]μ
i built from a combination of the

7 We used pμ
i pμ

j = s(i j)−2m2
π

2 in the calculation.
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four momenta of the outgoing three-particle state.8 The vec-
tor V [8]μ

4 corresponds to our pμ
X and we can identify F [8]

4
with our scalar form-factor Fs.

The ordering of final-state particles in Ref. [8] is given by
π−

1 π−
2 π+

3 and thus we identify the corresponding momenta

q[8]μ
i with our momenta pμ

i such, that:

q[8]μ
1 = pμ

2 ; q [8]μ
2 = pμ

3 ; q[8]μ
3 = pμ

1 . (39)

This corresponds to two permutations in the definition of
V [8]μ

3 as compared to Eq. (24). We can identify the vec-

tor form-factor as Fε = i F [8]
3 . The remaining vectors in

Eq.[8] (3) of Ref. [8] are:

V [8]μ
1 = pμ

2⊥ − pμ
1⊥; V [8]μ

2 = pμ
3⊥ − pμ

1⊥. (40)

Using Eq. (26), we can relate our axial form-factors F2 and
F3 to the axial form-factors F [8]

1 and F [8]
2 of Ref. [8], as

follows:

F2 = 2F [8]
1 + F [8]

2 ; F3 = F [8]
1 + 2F [8]

2 . (41)

In Ref. [5], the decomposition of the hadronic current is
given in Eq.[5] (A2) of Ref. [5]. The authors of Ref. [5] do
not eliminate one of the axial form-factors using Eq. (26) and
thus use a total of five form factors. Ref. [5] discusses the
decay into π0

1 π0
2 π−

3 , thus we translate it to the 3π± chan-
nel using the particle ordering π−

1 π−
2 π+

3 , consistent with
Ref. [8].
Using this ordering, we identify:

Fs = c4F
[5]
4 ; Fε = ic5F

[5]
5 . (42)

The axial part Jμ
axial of the hadronic current of Ref. [5] can

be written as:

Jμ
axial = c1

(
pμ

3⊥ − pμ
1⊥

)
F [5]

1

+ c2
(
pμ

1⊥ − pμ
2⊥

)
F [5]

2 + c3
(
pμ

2⊥ − pμ
3⊥

)
F [5]

3 .

(43)

And we identify the form factors F2 and F3 from Eq. (26):

F2 = c1F
[5]
1 − 2c2F

[5]
2 + c3F

[5]
3 (44)

F3 = 2c1F
[5]
1 − c2F

[5]
2 − c3F

[5]
3 . (45)

The Lorentz invariant quantities contained in the form factors
match as:

s1 = s(13); s2 = s(12); s3 = s(23). (46)

We also compare the results for the individual partial wave
contributions to the hadronic current given in Sect. 4 above
with the expressions given in Eq. [5](A3). First, we note that

8 Since our work uses similar notation to previous work, we annotate
quantities defined outside this article with the respective literature ref-
erence to avoid confusion.

Ref. [5] does not include a parameterization for the dynamic
amplitude of the 3π state X, since the analysis was performed
independently in mass bins of X,m3π = √

sX. Second, in the
dynamic amplitudes in Ref. [5] an additional factor FRj (kk)
multiplies the isobar Breit–Wigner.9 Since this real-valued
factor only depends on the invariant masses of X and ξ , it
can be absorbed into na(s) of Eq. (5). As stated in Sect. 2,
we do not discuss this factor.

Finally, we compare the tensor structures for the individual
partial waves. The mathematical formulation of the ampli-
tudes corresponds to the π0π0π− final state and thus Bose
symmetrization is already explicitly written in Ref. [5] for
ρ-like isobars, since these can be formed by both possible
(π−π0) systems. However, no symmetrization is needed for
f0-like and f2-like isobars, since these can only be formed by
(π0π0). For our final state π+π−π−, all isobars appear with
a Bose symmetrization term.

We now compare the Bose-symmetrization terms for the
individual partial waves. For the a1 [f0π ]P wave, which cor-
responds to waves 6 and 7 in Ref. [5] our results agree with
Eq.[5] (A3).

For the a1 [ρπ ]S waves, which correspond to waves 1 and
2 in Ref. [5], we only agree in case of equal-mass mesons
forming the isobar. Thus, for π0π0π− a small deviation is
introduced, owing to the difference between mπ± and mπ0 .
The origin of this deviation is a missing projection opera-
tor gμν

(12), as defined in Eq. (10), coming from the ρ(770)

propagator [21].
For a1 [ρπ ]D waves, there is a discrepancy with respect to

the corresponding waves 3 and 4 of Ref. [5]. This might not be
surprising at first sight, as their amplitudes do not correspond
to L eigenstates, but to two Born term amplitudes. Using the
naming scheme of Eq. (3), replacing the upper case letters
for L by lower case letters and thus following Ref. [5], we
can write these Born term amplitudes as given in Eq.[21] (1)
of Ref. [21]:

tμ(12),a1[ρπ ]s
= gμν

X ην� k�

(12), (47)

tμ(12),a1[ρπ ]d
= gμν

X p(12),ν pX� k�

(12). (48)

Ref. [21] states, that every linear combination of these two
Born term amplitudes with Lorentz scalar coefficients consti-
tutes a valid amplitude for the decay τ → 3π± + ν. Indeed,
we can write the amplitudes corresponding to L eigenstates
as such linear combinations of Born term amplitudes. For

9 The nominal fit of Ref. [5] has FRj (kk) = 1, making it equal to our
approach.
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our D-wave amplitude we find10:

tμ(12),a1[ρπ ]D
= cs

(
sX, s(12)

)
tμ(12),a1[ρπ ]s

+ cd
(
sX, s(12)

)
tμ(12),a1[ρπ ]d

, (49)

where cs
(
sX, s(12)

)
and cd

(
sX, s(12)

)
are two Lorentz-scalar

coefficients that, however, depend on sX and s(12). We can
invert this to obtain the Born term amplitudes as linear com-
bination of the amplitudes describing L eigenstates in an
analogue way:

tμ(12),a1[ρπ ]d
= − cs

(
sX, s(12)

)

cd
(
sX, s(12)

) tμ(12),a1[ρπ ]S

+ 1

cd
(
sX, s(12)

) tμ(12),a1[ρπ ]D
. (50)

We now insert the Born term a1 [ρπ ]d tensor structure into
Eq. (4) to construct the corresponding partial-wave hadronic-
current within the isobar model and find using Eq. (50):

jμa1[ρπ ]d
= Ba1 (sX) Bρ

(
s(12)

)
(

− cs
(
sX, s(12)

)

cd
(
sX, s(12)

) tμ(12),a1[ρπ ]S

+ 1

cd
(
sX, s(12)

) tμ(12),a1[ρπ ]D

)
+Bose symm. (51)

The coefficients in Eq. (50), which depend on sX and s(12),
now result in additional terms multiplying the partial-wave
hadronic-currents in Eq. (51), expressed in the L-eigenstate
basis. Thus, the naive use of Born term amplitudes within the
context of the isobar model results in effective distortions of
the dynamic isobar amplitudes Ba1 (sX) and Bρ

(
s(12)

)
.

We also find discrepancies for the a1 [f2π ]P wave, again
resulting in an sX and s(12) dependent factor, which can be
absorbed into the dynamic amplitudes, leading to distortions
in the corresponding two-hadron dynamic amplitude. We
attribute the discrepancy to a missing projector for the P-
wave tensor, which is due to the amplitudes of Ref. [5] not
corresponding to L-eigenstates. And as Ref. [5] does not
include the a1 [f2π ] f , amplitudes for L eigenstates cannot
be constructed as linear combinations.

Finally, additional discrepancies between our approach
and Ref. [5] appear for the case of final-states formed by non-
equal mass particles for the a1 [ρπ ]D-wave and the a1 [f2π ]P-
wave. This is again due to a missing projection operator for
the isobar, as in the a1 [ρπ ]S-wave.

10 The L eigenstates in Ref. [21] correspond to the ones in the helic-
ity formalism e.g. layed out in Ref. [22], while we use the covariant
tensor formalism described in Ref. [16]. The connection between both
formalisms can be found in Ref. [23].

10 Summary and discussion

In this article, we introduced the general formalism to
describe the hadronic current in semileptonic τ decays within
the framework of the isobar model. We explicitly constructed
individual partial wave contributions using the decay τ− →
3π± + ν as an example.

For this formalism, we included contributions from par-
tial waves with orbital angular momenta up to three units of
h̄, which had not been accounted for in previous works. In
addition to contributions from axial-vector currents, we also
allowed for contributions from vector and pseudo-scalar res-
onances, which were assumed to vanish in Refs. [5,8]. These
additional contributions allow for the search of pseudo-scalar
3π resonances, like the π(1300), and of vector resonances,
like the π1(1600) in τ decays.

We then translated the individual contributions of the
partial-wave hadronic currents into the formalism of form
factors and compared to previous results from Refs. [5,8].

Finally, we confront our results for the individual partial
wave currents to the ones quoted in Ref. [5] and we find two
sources of discrepancies. First, it is important to note that the
waves in Ref. [5] are not describing L-eigenstates and thus
do not trivially translate to the isobar model, as they cause
distortions of the dynamic amplitudes. Second, the waves
in Ref. [5] do not project out the transversal components of
the tensor structure describing the isobar decay. This leads
to discrepancies with respect to our approach for the case of
final states with non-equal mass particles.

We want to state, that an explicit construction of partial
waves with given quantum numbers is necessary to make
results interpretable in terms of the hadronic excitation spec-
trum. A fit with partial waves with mixed quantum num-
bers and distorted dynamic amplitudes does not give reliable
information on the physics sorted by orbital angular momen-
tum quantum numbers in τ decays.

The expressions developed here allow for the first time to
extend partial-wave analyses of the decay τ → 3π−+ντ , by
including previously neglected contributions: higher orbital
angular momenta with L > 2, as well as pseudo-scalar and
vector contributions.

Beyond the study of the hadronic spectrum itself, a proper
description of the decay kinematics of the decay τ → 3π±+
ν is necessary for the precision measurements of τ properties
like the electric dipole moment (EDM). For this, we have to
correlate the decay distributions of both τ± leptons in τ -pair
production. For the measurement of an EDM we single out
CP odd correlations and search for CP violations therein. We
thereby rely on maximal sensitivity to the spin correlation
of the τ± pair. The necessary spin analyzing power is best
obtained from hadronic final states [20]. If we use three-
pion final states we need to know the contributions of the
different partial waves for we have to precisely describe the
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τ → 3π +ν decay distribution. Using three pions in the final
state, we rely on the proper description of the τ → 3π± + ν

decay kinematics reflecting the contributions of the partial
waves.

We have investigated the sensitivity of the value for the
EDM extracted from pseudo data on the description used for
the 3π final state. For this, we have first generated pseudo
data using various input values for the EDM and then ana-
lyzed the data using the method from Ref. [20]. For the anal-
ysis, we assumed a variety of partial wave compositions and
determined the deviation of the extracted EDM values from
the input values. In particular, the use of a wrong hadronic
model leads to an under-estimation of the EDM by a fac-
tor of up to two. We found these deviations to depend on
the overlap between the input hadronic model and the model
used in the analysis. We thus demonstrated that a false EDM
may be extracted from data, which is generated through an
incomplete understanding of the hadronic final states.
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A Form factors for arbitrary final-state masses

To complete the discussion in Sect. 8, we extend the formulae
for the form factors to three-hadron final states with arbitrary
masses, m1, m2 and m3. The isobar shall be formed by par-
ticles 1 and 2, as denoted in (12). The form factors for the
wave a1 [f0π ]P are described in Eq. (29). To obtain the proper
expression for a1 [ρπ ]S we express all Lorentz contractions
in the tensor formalism (see Sect. 3) by Lorentz invariants:

f (12)
2,a1[ρπ ]S

= −1; f (12)
3,a1[ρπ ]S

= −1

2

(
1 − m2

1 − m2
2

s(12)

)
. (52)

In order to extend the formulation of form factors for par-
tial waves involving higher oribital angular momenta, we
define the following expressions for convenience:

FI = −s2
X −

(
m2

3 − s(12)

)2 + 2sX

(
s(12) + m2

3

)
(53)

FII =
(
sX + s(12) − m2

3

) (
m2

2m
2
3 + s(12)

(
m2

2 + m2
3

)

−s2
(12) + sX

(
s(12) − m2

2

)

+m2
1

(
sX − m2

3 + s(12)

)
− 2s(12)s(13)

)
(54)

FIII = sXs(12)

(
m2

1 − m2
2

)2

−sXs
2
(12)

(
2m2

1 + 2m2
2 − s(12)

)
(55)

FIV = m4
1 +

(
s(12) − m2

2

)2 − 2m2
1

(
s(12) + m2

2

)
(56)

FV =
(
sX − m2

3

) (
m2

1 − m2
2

)

−s(12)

(
s(13) − s(23)

)
. (57)

For the a1 [ρπ ]D wave, f (12)
2,a1[ρπ ]D

stays unchanged and is

given in Eq. (31), where m2
π is substituted with m2

3. For

f (12)
3,a1[ρπ ]D

we find:

f (12)
3,a1[ρπ ]D

= 1

16sXs(12)

[ (
s(12) − m2

1 + m2
2

)
FI

−3
(
sX − m2

3 + s(12)

)
FV

]
(58)

For the generalized version of the a1 [f2π ]P form factors, we
find:

f (12)
2,a1[f2π ]P

= −3
sX + s(12) − m2

3

16sXs(12)

FV (59)

and

f (12)
3,a1[f2π ]P

= s(12) − m2
1 + m2

2

2s(12)

f (12)
2,a1[f2π ]P

+ FIII

32s2
Xs

3
(12)

·
[
sX

(
3s(12) − sX + m2

3

)
− 4sXs(12)

+
(
m2

3 − s(12)

) (
sX − m2

3 + s(12)

) ]
(60)

For completeness, we also give the from factors for orbital
angular momenta of three. For the a1 [f2π ]F wave, we find:

f (12)
2,a1[f2π ]F

= 3FI · FII

64s2
Xs(12)

(61)

and

f (12)
3,a1[f2π ]F

= 1

256s2
Xs

2
(12)

[
− 3FI ·

(
4FIII + FV2

−2
(
s(12) − m2

1 + m2
2

)
FII

)

+2FIV · FI2 − 15FII2
]
. (62)
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The form factors for the a1 [ρ3π ]D are given by:

f (12)
2,a1[ρ3π ]D

= 1

256s2
Xs

2
(12)

[
− 3

(
sX − m2

3 + s(12)

)2
FIV · FI

−15FII2 + FI ·
(

− 20FIII − 5FV2
)

+ FIV

·
(

16sXs(12) +
(
sX − m2

3 + s(12)

)2
) ]

(63)

and

f (12)
3,a1[ρ3π ]D

= − 1

512s3
Xs

4
(12)

[(
10FV2

(
s(12) − m2

1 + m2
2

)

·sXs(12) + 4FIIIFV ·
(
sX − m2

3 + s(12)

) )

((
sX + s(12) − m2

3

)2 + 2sXs(12)

)

+3FI · FIII
(
s(12) − m2

1 + m2
2

) (
sX − m2

3 + s(12)

)2

+FIII ·
(
s(12) − m2

1 + m2
2

)

((
sX + m2

3 − s(12)

)2 − 4sXm
2
3

)2 ]
. (64)

Below we give the scalar form factors for arbitrary final-state
masses. For the π ′ [f0π ]S wave, we again find f (12)

s,π ′[f0π ]S
= 1

and for the π ′ [ρπ ]P we find:

f (12)

s,π ′[ρπ ]P
= −2/3 f (12)

2,a1[f2π ]P
. (65)

The scalar form factors for partial waves involving f2 and ρ3

isobars are given by:

f (12)

s,π ′[f2π ]D
= 1

256s2
Xs

2
(12)

[
−

(
s2

X − 2sX

(
m2

3 − 5s(12)

)

+
(
m2

3 − s(12)

)2 − 3
(
sX − m2

3 + s(12)

)2 )

·FIV · FI + 9
(
sX − m2

3 + s(12)

)2
FV2

+3FI
(

4FIII + FV2
)]

(66)

and

f (12)

s,π ′[ρ3π ]F
= FII

200s3
Xs

3
(12)

[
15

(
sX − m2

3 + s(12)

)2
FIV · FI

−3FIV · FI
(−3FI + 20sXs(12)

)

+25FII2 + 15FI
(

4FIII + FV2
) ]

. (67)

Since in contrast to axial-vector and pseudo-scalar contribu-
tions, vector contributions are suppressed by G-parity, we do
not give explicit expressions for vector form factors involving
higher orbital angular momenta.
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