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Abstract In this study, we consider a gas in the Morris–
Thorne traversable wormhole space-time, and analyze the
critical temperature of the Bose-Einstein condensate in the
vicinity of its throat. Our results show that it is equal to zero.
Then, from this result, we point out that a state analogous to
the Josephson junction is always formed at any temperature
in the vicinity of its throat. This is of interest as a gravitational
phenomenology. Of course, there is the problem of the exotic
matter, but we perform this work without treating it.

1 Introduction

Issues concerning wormholes in space-time as a solution
and the occurrence of these phenomena are a problem that
has been widely investigated. Since this paper will treat a
phenomenological issue in wormhole space-times, we refer
to various phenomenological works on wormhole space-
times, including gravitational lensing [1–8], shadows [9–
11], observation [12], the Casimir effect [13], teleportation
[14], the collision of two particles [15], and the creation of a
traversable wormhole [16].

Today, many studies are actively investigating wormholes
in space-time. This is because it was recently found that
the Einstein–Rosen (ER) bridge [17] gives some type of
Einstein–Podolsky–Rosen (EPR) pair [18–21], which plays
a very important role in the literature on the information para-
dox [22]. It would be also its reason that there are common
features and behaviors between AdS2 wormholes and the
SYK models, from which currently we can perform various
interesting studies [23–26].

Also, there are studies to construct a graphene wormhole
in the material physics from some brane configurations in
superstring theory [27,28]. From these studies, Chern-Simon
current in the graphene wormhole is studied in [29].
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In the present study, we consider the Morris–Thorne
traversable wormhole (traversable wormhole) [30] in a sit-
uation in which a gas fills its whole space-time, where it
is assumed that a Bose–Einstein condensate (BEC) can be
formed at some temperature in this gas. Then, we point out
that a state analogous to the Josephson junction is always
formed at any temperature except zero in the vicinity of its
throat.

For this, we first analyze the critical Unruh temperature
of the gas with regard to the BEC in the Rindler space, then
check that it agrees with the critical temperature obtained in
the flat Euclidean space.

We do this to check that our analytical method is valid
for obtaining the critical temperature of the BEC in curved
space-times. Our analytical method in curved space-time is
actually different from the traditional one in the flat Euclidean
space [31] to treat curved space-times. However, since the
accelerated system is equivalent to an inertial system with
the same temperature as the Unruh temperature, the criti-
cal Unruh temperature obtained in the Rindler space should
agree with that in the flat Euclidean space.

Then, considering the same gas in the traversable worm-
hole, we analyze its critical temperature with respect to BEC
in the vicinity of its throat.

Here, it is known that generally, the effective potential
always diverges, and a BEC is not formed in the flat Euclidean
space, if the number of its spatial dimensions is two or less.
Then, since the spatial part of the vicinity of the throat in the
traversable wormhole space-time becomes effectively one-
dimensional, we can expect that the critical temperature of a
BEC in the vicinity of the throat is always zero (if the critical
temperature is zero, the state is considered always to be in
the normal state).

Then,

• If the critical temperature is always zero in the vicinity of
the throat, since the throat exists in a form to separate the
wormhole space-time from the other side of the worm-
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Fig. 1 Penrose diagram for the (t , r ) part of the traversable wormhole
space-time. The dotted line represents the throat of the wormhole. The
yellow and blue parts represent the normal and superconductor states
that we expect to appear, respectively. As the normal state appears in a
form to separate the space-time, we can expect that a state analogous to
the Josephson junction is formed in the vicinity of the throat

hole space-time, the normal state also always appears in a
form to separate the wormhole space-time from the other
side of the wormhole space-time, as in Fig. 1.

• The far region of the wormhole space-time is asymptoti-
cally flat space-time. Therefore, the critical temperature
of BEC in the far region is given by the one calculated in
the flat space-time.

• Then, by extrapolation of the results between the throat
region and the far region, we can obtain an expectation
that a state analogous to the Josephson junction is always
formed at any temperature except zero in the vicinity of
the throat.

Since this could be considered a gravitational phe-
nomenology, it would be interesting. It would also be interest-
ing because we can consider the possibility that the Josephson
current flows from one side of the wormhole to the other side.
Of course, the wave function of the current may be damped
when it tunnels, and the Josephson current does not exist in
practice. However, this is the subject of future work, and we
cannot currently make any explicit claims on this point from
the analysis in this study. We discuss this in Sect. 5.

The wormholes we consider in this study are the ER bridge
and the traversable wormhole space-time. Then, first, some
hard tidal force exists in both of these near-throat regions. We
will not consider this problem in this study. In what follows,
we point out some other problems in each of these.

The ER bridge is given by patching the part of the event
horizon of two Schwarzschild black holes together; there-
fore, it is no different from the Schwarzschild black hole
if it is viewed from the outside. The fact that everything is
sucked into the horizon in the vicinity of the horizon may
then be a problem in our consideration for the formation of
the Josephson junction and current in the ER bridge.

The traversable wormhole is free from this problem, but
it needs the exotic matter (some matter to have some neg-
ative energy density) [39] so that the traversable wormhole
space-time can be the solution of the Einstein equation. We
explicitly show this in Sect. 4.2. This is a critical problem,
as it means that the matter should be tachyonic and cannot
exist; therefore, the traversable wormhole space-time cannot
be the solution and cannot be realized. The ER bridge is free
from this problem, as it is given using a stable solution, the
Schwarzschild black hole. For some recent studies on exotic
matter and the attempt to make it into a solution, see [49–
56]. In this study, we consider the traversable wormhole with
knowledge of this problem.

The paper is organized as follows. We analyze the critical
Unruh temperature of the gas with respect to the BEC in the
Rindler space in Sect. 2, in the Euclidean space in Sect. 3, and
in the traversable wormhole space-time in Sect. 4. Then, in
Sect. 5, we point out that a state analogous to the Josephson
junction is formed in the vicinity of its throat. In Sect. 6, we
obtain the phase structure for the BEC/normal state transition
in the ER bridge. In Sect. 7, we summarize the results of this
study and discuss examples in which phenomenology anal-
ogous to our Josephson junction is formed in other systems.
In Appendix B, we note some points in the mechanism for
the formation of BEC in this study.

2 Critical temperature of BEC in accelerating system

2.1 Rindler coordinates and Unruh temperature

As a theoretical model, we consider a gas that completely
fills the Minkowski space-time and performs a uniformly
accelerating motion with acceleration a in one direction. The
space-time of such a gas is given by the Rindler coordinate
system. We denote its coordinates as (η, ρ, y, z); then, using
these, its squared line element can be written as

ds2 = ρ2dη2 − dρ2 − dx2⊥, (1)

where (y, z) are common with those in the Minkowski coor-
dinates, and we use the notation x⊥ ≡ (y, z) in what follows.
Note that we do not take a sphere coordinates, but plane
coordinates, for the x⊥-direction. (η, ρ) are related to the
Minkowski coordinates (t, x) by the following relations:

(t, x) = a−1( sinh η, cosh η
) = ρ (sinh η, cosh η) . (2)

The gas in the Rindler coordinate system can be consid-
ered to be at the following Unruh temperatures:
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TU = a/2π = 1/2πρ, (3)

where ρ = 1/a, as can be seen from (2).
We can see from (3) that locating at different ρ means

having a different Unruh temperature. Therefore, we should
be cautious as to the physical meaning when we perform the
ρ-integral and so on. For this point, see [32]. Snd finally we
can see that the particles comprising the gas should locate
at smaller ρ, as these are close to the trailing endpoint of
the gas to maintain its original figure. Therefore, we will
finally analyze the critical Unruh temperature by separating
the effective potential by each ρ.

2.2 Hamiltonian in finite density, probability amplitude and
Euclideanization

We start with the following Lagrangian density for the com-
plex scalar field for the particles comprising the gas that we
mention in Sect. 2.1 that fills the whole space:

L = gμν∂μφ∗∂νφ − m2φ∗φ, (4)

where φ = 1√
2
(φ1 + iφ2) (φ1,2 are real scalar fields, and

indices μ, ν and gμν refer to the Rindler coordinates (η, ρ,
x⊥) and the matrices in (1).

We define (π, π∗) as the canonical momenta for (φ∗, φ),
and (π̄ , π̄∗) as those with lower indices:

(π, π∗) ≡
(

∂L
∂(∂ηφ∗)

,
∂L

∂(∂ηφ)

)
= (gηη∂ηφ, gηη∂ηφ

∗),

(π̄ , π̄∗) ≡ (gηηπ, gηηπ
∗) = (∂ηφ, ∂ηφ

∗). (5)

Corresponding to φ = 1√
2
(φ1 + iφ2), π1,2 and π̄1,2 are

defined as

π1,2 ≡ gηη∂ηφ1,2, π̄1,2 ≡ gηηπ1,2 = ∂ηφ1,2. (6)

With these, the Hamiltonian density associated with the
Lagrangian density (4) is given as

H = π ∂ηφ + π∗ ∂ηφ
∗ − L

= π∗π̄ − gi j∂iφ
∗∂ jφ + m2φ∗φ, (7)

where i, j = ρ, x⊥. Then, we can write the Hamiltonian in
the grand canonical ensemble, H − μR q, as

H − μR q = 1

2

(
gηη
(
π̄1π̄1 + π̄2π̄2

)

− gi j (∂iφ1∂ jφ1 + ∂iφ2∂ jφ2) + m2(φ2
1 + φ2

2

))

− μR(π2φ1 − π1φ2), (8)

where μR is the chemical potential and q ≡ −i gηη(φ ∂ηφ
∗−

φ∗ ∂ηφ) is the particle density.

With (8), we can write the probability amplitude as

Z =
∫

Dπ̄Dπ̄∗Dφ exp

[
i
∫

I
d4x γR (gηηπ̄∂ηφ

+ gηηπ̄∗∂ηφ
∗ − (H − μR q))

]

= CR
∫

Dφ1Dφ2 exp

×
[
i

2

∫

I
d4x γR (gηη(∂ηφ1 + μR φ2)

2 + (∂iφ1)
2

+ gηη(∂ηφ2 + μR φ1)
2 + (∂iφ2)

2 − m2(φ1
2 + φ2

2))

]
,

(9)

where I represents the whole Rindler wedge I, γR ≡√− det gμν , and we perform the following redefinitions for
the canonical momenta:

π̄1 − (∂ηφ1 − μR φ2) → π̄1, (10a)

π̄2 − (∂ηφ2 + μR φ1) → π̄2. (10b)

CR is given as

CR ≡
∫

Dπ1Dπ2 exp
[
i
∫

	I

d4x γR gηη((π1)
2 + (π2)

2)
]
.

(11)

Since CR is some number irrelevant to μR , and we finally
take the derivative with regard to μR to obtain the e.v. of the
particle density, we can ignore CR in our analysis in what
follows.

We perform Euclideanization:

η → −iτ. (12)

At this time,

(πα, π̄α) → i(πα, π̄α), (13a)

q → iq, (13b)

ds2 → −ρ2dτ 2 − dρ2, 0 ≤ τ < 2π, (13c)

gηη → gττ , gττ = gηη, (13d)

where there is no change in the content between gττ and
gηη except for the notations. Therefore, we can see that the
period of the imaginary time βR is 2π , so the momenta in
the η-direction can be written as

2πn/βR = n ≡ ωn (βR = 2π). (14)
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Under the Euclideanization (12) with (13), Z in (9) can be
rewritten as

Z =
∫

Dφ1Dφ2 exp

[
− 1

2

∫
d3x

∫ βR

0
dτ γR

× (φ1 φ2
)
(

Ĝ R + M2
R −2igττμR ∂η

2igττμR ∂η Ĝ R + M2
R

)(
φ1

φ2

)]
,

(15)

where Ĝ R ≡ −gττ ∂τ ∂τ +γ −1
R gi j∂i (γR∂ j ) and M2

R ≡ m2 −
gττμ2

R .

2.3 Description for BEC and upper limit of chemical
potential

In order to express the fields in the superconducting state, we
separately rewrite φ1,2 as the e.v. part and the original φ1,2

as the following [31]:

φ1 ≡ √
2 α cos � + φ̃1, (16a)

φ2 ≡ √
2 α sin � + φ̃2. (16b)

where α and � represent the absolute value and the phase of
e.v., and

α

{
= 0 corresponds to the normal state,

�= 0 corresponds to the BEC state.
(17)

Rewriting Z in (15) and employing the expressions in (16),
we can obtain the following Z :

Z = exp

[
−α2βRV⊥

∫
dργR M2

R

]

×
∫

Dφ̃1Dφ̃2 exp

[
−1

2

∫ ∞

0
dρ
∫ ∞

−∞
d2x⊥

∫ βR

0
dτ γR

× ( φ̃1 φ̃2
)
(

Ĝ R + M2
R 2igττμR ∂η

−2igττμR ∂η Ĝ R + M2
R

)(
φ̃1

φ̃2

)]

,

(18)

where V⊥ ≡ ∫ dx2⊥ = ∫ dk2⊥.

Now let us look at the contribution from the zero mode in
the pass-integral part in (18), which we can write as

∫
Dφ̃1Dφ̃2 exp

[

−M2
R

2
(φ̃2

1 + φ̃2
2)

]VI

, (19)

where the configurations generated by
∫ Dφ̃′

1Dφ̃′
2 are only

the constant configurations irrelevant to the coordinates, and
VI means

∫∞
0 dρ

∫∞
−∞ d2x⊥

∫ βR
0 dτ γR . Then we can see that

(20) can converge when M2
R is positive, and diverge when M2

R
is negative or zero. Therefore, we can write

Z in (18)

{
converges for M2

R > 0,

diverges for M2
R ≤ 0.

(20)

From (20), we can see that there is an upper bound for the
value that the chemical potential can take as

μc
R = m/

√
gηη = m/a. (21)

Here, we explain how the BEC is formed in our system.
When decreasing the Unruh temperature from some high
temperature (therefore, α is 0), keeping the e.v. of the par-
ticle density constant, it turns out that the chemical poten-
tial should rise (see (58)). However, as in (21), there is an
upper limit for the value that the chemical potential can take.
Therefore, finally, α should start to have some finite value
to keep the e.v. of the particle density constant. Similarly, at
some lower Unruh temperature, α becomes finite and BEC is
formed. (For further description of this issue, see Appendix
B.)

2.4 Effective potential (1)

We can diagonalize the shoulder in Z in (18) as

Z = exp

[
−α2βRV⊥

∫ ∞

0
dργRM

2
R

] ∫
Dφ̃′

1Dφ̃′
2 exp

×
[

− 1

4

∫ ∞

0
dρ

∫ ∞

−∞
d2x⊥

∫ βR

0
dτ γR

× ( ϕ̃′∗ ϕ̃′ )
(
Ĝ R+ + M2

R 0
0 Ĝ R− + M2

R

)(
ϕ̃′
ϕ̃′∗
)]

,

(22)

where Ĝ R± ≡ Ĝ R±2gηημR and 1√
2

(
ϕ̃′
ϕ̃′∗
)

≡ U−1
(

φ̃1

φ̃2

)
.

U is given as 1√
2

(
i −i
1 1

)
. The difference that arises in the

path-integral measure by the transformation U is just some
constant, which we can ignore.

We express φα (α = 1, 2) by the plane-wave expansion
for the x⊥-directions, keeping the ρ-direction as

φ̃α(ρ, η, x⊥) = 1

(2π)2βR

∞∑

n=−∞

×
∫

dk2⊥ϕ̃α,n(ρ, k⊥)e−i(ωnη + k⊥x⊥). (23)
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Then Ĝ0 ≡ 1
2 (Ĝ R+ + Ĝ R− +2M2

R) in Z in (22) is given as1

Ĝ0 → G0 = gττω2
n + γ −1

R gρρ∂ρ(γR∂ρ) + g⊥⊥k2⊥ + M2
R

≡ GR + M2
R (25)

with (∂η, ∂⊥) → −i(ωn, k⊥); γ −1
R gρρ∂ρ(γR∂ρ) is still the

operator. As a result, Z in (22) can be given as

Z = exp

[
−α2βRV⊥

∫ ∞

0
dργRM

2
R

] ∫
Dφ̃′

1,nDφ̃′
2,n exp

×
[

− 1

2βR

∞∑

n=−∞

∫ ∞

0
dρ

∫ ∞

−∞
d2k⊥ γR(GR + M2

R)

× ((φ̃′
1,n(ρ, k⊥))2 + (φ̃′

2,n(ρ, k⊥))2)

]
, (26)

where the formulaβ−1
∫ β

0 dτei(ωm−ωn) = δmn has been used.
Then, performing the functional integral for φ̃′

α,n , we can
obtain the following Z :

Z = exp

[
−α2βRV⊥

∫
dργRM

2
R

] ∞∏

n=−∞

∏

ρ

Det

×
(

π�ρ γR

2βR
(GR + M2

R)

)−1

, (27)

where from (26) to (27) we have rewritten the integral
∫

dρ

as
∑

ρ �ρ (ρ takes all the real numbers from 0 to ∞), and
Det is the one with regard to the k⊥-space for each ρ, where
we have written the reason for why we separate by each ρ in
Sect. 2.1.

Defining the free energy FR as Z = exp(−βRFR),

FR = α2V⊥
∫ ∞

0
dργRM

2
R + 1

βR

∞∑

n=−∞

∑

ρ

Tr Log

× (GR + M2
R), (28)

where we have ignored N Log(
π�ρ γR

2βR
) (where N =

Dim(n) × Dim(ρ) × Dim(k⊥)), as it is irrelevant to μR .
We can express FR in (28) as

FR = α2V⊥
∫ ∞

0
dργRM

2
R + V⊥

βR

∞∑

n=−∞

∑

ρ

γR

1 Ĝ0 appears in (22) as follows:

(
ϕ̃′∗ ϕ̃′ )

(
Ĝ R+ + M2

R 0
0 Ĝ R− + M2

R

)(
ϕ̃′
ϕ̃′∗
)

= (Ĝ R+Ĝ R− + 2M2
R)

× |ϕ̃′|2. (24)

×
∫

dk2⊥
(2π)2

∫ M2
R

0
d�2 D̃�2(ρ, n, k⊥), (29)

where

D̃�2(ρ, kη, k⊥) ≡
(
GR + �2

)−1

=
(
gττω2

n + γ −1
R gρρ∂ρ(γR∂ρ) + g⊥⊥k2⊥

+ �2
)−1

. (30)

In (29), we have ignored LogGR , as it is irrelevant to μR
2.

Further, D̃�2(ρ, kη, k⊥) in (29) includes some operator, but
for now we suppose that it is some numbers.

We consider expressing FR/V⊥ for each ρ as �
(ρ)
R as

�
(ρ)
R = α2γRM

2
R + 1

βR

∞∑

n=−∞
γR

∫ ∞

−∞
dk2

(2π)2

×
∫ M2

R

0
d�2 D̃�2(ωn, ρ, k). (32)

2.5 D̃�2(ωn, ρ, k)

D̃±,�2(ρ, ωn, k⊥) in (30) is given as some operator. In this
section, we obtain its expression as numbers. For this pur-
pose, we define D̃±,�2(ρ, ωn, k⊥) as

D�2(x − x ′) =
∫

d3k

(2π)3 D̃�2(ρ − ρ′, kη, k⊥)

× ei (ωn (η−η′)−k⊥(x⊥−x ′⊥)). (33)

D�2(x − x ′) should satisfy the following identity:

(gττω2
n + γ −1

R gρρ∂ρ(γR∂ρ)

+ g⊥⊥k2⊥ + �2)D�2(x − x ′) = γ −1
R δ4(x − x ′), (34)

where the operator in l.h.s. in (34) is taken from (29). From
(34), we can obtain the relation that D̃±,�2 should satisfy as

( F̂−ω2
n

)
D̃±,�2(ρ − ρ′, kη, k⊥) = −ρ δ(ρ − ρ′),

F̂ ≡ ρ2∂2
ρ + ρ ∂ρ − ρ2κ2, κ2 ≡ (k2⊥ + �2). (35)

2 LogGR appears in (29) as follows:

Log(GR + M2
R) =

∫ M2
R

0
d�2

(
GR + �2

)−1 + LogGR . (31)
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Based on (35), we obtain D̃�2(ρ − ρ′, kη, k⊥) in what fol-
lows.

To obtain D̃�2(ρ − ρ′, kη, k⊥), we focus on the fact that
F̂ is the operator of the following eigenvalue equation with
eigenvalue (iλ)2:

F̂ �λ(ρκ) = (iλ)2 �λ(ρκ),

�λ(ρκ) ≡ CλKiλ(ρκ), Cλ ≡ 1

π

√
2λ sinh(πλ), (36)

where Kα(x) is the modified Bessel function of the second
kind, and �λ(ρ, k) satisfies the following normalized orthog-
onal relation3:

∫ ∞

0

dρ

ρ
�λ′(ρκ)�λ(ρκ) = δ(λ′ − λ). (37)

λ is a real number; therefore, �λ(ρκ) can form a set of
an infinite-dimensional orthogonal system. Then, by taking
�λ(ρκ) as a set of the orthogonal bases, let us formally write
D̃±,�2(ρ − ρ′, kη, k⊥) in the expanded form as

D̃�2(ρ − ρ′, kη, k⊥) =
∫ ∞

0
dλ fλ �λ(ρκ), (38)

where fλ,± are the coefficients of each independent direction,
�λ(ρκ), specified by λ, which are to be obtained in what
follows.

To obtain fλ(ω, ρ′), we consider two quantities, 〈D̃�2 |F̂ |
�λ(ρκ)〉 and 〈�λ(ρκ)|F̂ |D̃�2〉, which should be equivalent
to each other; however, each of these expressions can be given
as

∫ ∞

0

dρ

ρ
D̃�2 F̂ �λ(ρκ) = −λ2

∫ ∞

0

dρ

ρ
D̃�2 �λ(ρκ),

(39a)
∫ ∞

0

dρ

ρ
�λ(ρκ) F̂ D̃�2 = ω2

n

∫ ∞

0

dρ

ρ
�λ(ρκ)D̃�2

− �λ(ρ
′κ), (39b)

3 It is written in [33,34] as
∫∞

0
dx
x Kα(x) Kβ(x) = π2δ(α−β)

2β sinh πβ
, which

we derive in Appendix A. Writing x with ay, l.h.s. can be changed to∫∞
0

dy
y Kα(ay) Kβ(ay) without changing the r.h.s.

where we have used (36) and (35). From the condition (39a)–
(39b) = 0 where4

(39a) − (39b) = (− λ2−ω2
n

)
fλ + �λ(ρ

′κ), (41)

fλ,±(ρ − ρ′, kη, k⊥) can be determined as

fλ = �λ(ρ
′κ)

λ2+ω2
n

. (42)

Using (42) in (38), we can write D̃�2 as

D̃�2(ρ − ρ′, kη, k⊥) =
∫ ∞

0
dλ

�λ(ρ
′κ)�λ(ρκ)

λ2+ω2
n

=
∫ ∞

0
dλ

C2
λKiλ(ρ

′κ)Kiλ(ρκ)

λ2+ω2
n

. (43)

This expression does not include operators, which in princi-
ple is some numbers.

2.6 Effective potential (2)

In the previous section we obtained some concrete expression
of D̃�2(ρ −ρ′, kη, k⊥) as in (43). Using it, we can write �

(ρ)
R

in (32) as5,

�
(ρ)
R = α2γRM

2
R + γR

2π3

∫ ∞

0
dλ cosh(πλ)

∫ ∞

0
dkk �,

(44)

where

� ≡
∫ M2

R

0
d�2 K 2

iλ(κρ),

(κ2 ≡ k2⊥ + �2, M2
R ≡ m2 − gηημ2

R). (45a)

4 (41) is calculated as follows:

(39a) − (39b) = (− λ2 + ω2
n

) ∫ dρ

ρ
D̃�2 �λ(ρκ) + �λ(ρ

′κ)

= (− λ2 + ω2
n

) ∫ dρ

ρ
·
∫

dλ′ fλ′�λ′ (ρκ) · �λ(ρκ)

+ �λ(ρ
′κ)

= (− λ2 + ω2
n

) ∫
dλ′ ·

∫
dρ

ρ
�λ′ (ρκ)�λ(ρκ) · fλ′

+ �λ(ρ
′, k)

= (− λ2 + ω2
n

) ∫
dλ′ · δ(λ′ − λ) · fλ′ + �λ(ρ

′κ)

= (− λ2 + ω2
n

)
fλ + �λ(ρ

′κ). (40)

5 We have used
∑∞

n=−∞ 1
λ2+n2 = π

λ
coth(πλ) and

1

βR

(√
2λ

π

)2 ∫ ∞

−∞
dk2

(2π)2 = λ

2π4

∫ ∞

0
dkk.
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To perform the derivative with regard to μR , we pick up the
μR-dependent parts in � by expanding it around μR = 06

as

� = �

∣
∣
∣
μR=0

+ ∂�

∂μR

∣
∣
∣
μR=0

μR + 1

2

∂2�

∂μ2
R

∣
∣
∣
μR=0

μ2
R + O(μ4

R)

= �0 − a2K 2
iλ(κρ)

∣
∣
∣
�2=M2

μ2
R + O(μ4

R) (47)

where7,

�0 ≡
∫ m2

0
d�2 K 2

iλ(κρ), (49a)

∂�

∂μR

∣∣∣
∣
μR=0

= ∂M2
R

∂μR

∂�

∂M2
R

∣∣∣
∣
μR=0

= 0, (49b)

1

2

∂2�

∂μ2
R

∣∣∣∣
μR=0

= 1

2

∂

∂μR

(
∂M2

R

∂μR

∂�

∂M2
R

)∣∣∣∣
μR=0

= −a2K 2
iλ(κρ)

∣∣
∣
�2=m2

. (49c)

With (47), we can write �
(ρ)
R in (44) as

�
(ρ)
R = α2γRM

2
R + γR

2π3

∫ ∞

0
dλ cosh(πλ)

∫ ∞

0
dkk

×
(
�0 − a2μ2

R K 2
iλ(κρ)

∣∣∣
�2=m2

)
. (50)

We are going to finally assign the critical value μc
R =

m/ac in (20) to μR in (47), then take the leading order in the
expansion of μc

R . For this, we now use two symbols, μR and
μ′
R :

• μR : chemical potential on which the derivative with
respect to μR can act; finally the value m/ac is assigned,

• μ′
R : just a symbol for the value m/acR , on which the

derivative with respect to μR does not act.

6 In this section we have performed the expansion around μR = 0 as
in (47). However, if we expand around μR = μc

R , we can obtain the
following effective potential:

�
(ρ)
R = α2a−1

c M2 + ac
π3

∫ ∞
0

dλ cosh πλ

∫ ∞
0

dkkK 2
iλ

(
m

a
μR − m2

a2

)

.

(46)

Therefore, there is no difference in the e.v. of the particle density we
can finally obtain.
7 We have calculated (49b) and (49c) using the following formula:

∂

∂β

∫ β

α

dx f (x) = lim
�β→0

1

�β
(

∫ β+�β

α

dx f (x) −
∫ β

α

dx f (x))

= lim
�β→0

1

�β
( f (β + �β)�β + O(�β2)). (48)

Then, �0 and a2μ2
R K 2

iλ(κρ)

∣
∣∣
�2=m2

can be expanded with

regard to μ′
R as

�0 = a2
c K

2
iλ(k/ac) μ′

R
2 + O(μ′

R
4),

(51a)

a2
cμ

2
R K 2

iλ(κρ)

∣∣∣
�2=m2

= a2
cμ

2
R (K 2

iλ(k/ac) + O(μ′
R

2)).

(51b)

Using (51), we can obtain �
(ρ)
R at the critical moment given

by (47) as

�
(ρ)
R = α2a−1

c M2
R + a3

c

4π2 (μ′
R

2 − μ2
R)

∫ ∞

0
dλλ coth(πλ),

(52)

where we have used
∫ ∞

0
dkkK 2

iλ(k/ac) is given as a2
cπλ

2 sinh πλ
.

Let us evaluate the λ-integral in (52).

∫ ∞

0
dλλ coth(πλ). (53)

First, we can see that (53) is divergent if it is evaluated as it
is. Therefore, we consider doing some regularization toward
(53)8. For this purpose, we consider pulling out some con-
stant in coth(πλ). Therefore, expressing coth(πλ) as

coth(πλ) = 1 + 2

e2πλ − 1
, (54)

we exclude “1”. Then, once putting the upper limit of the
integral as �, we perform the integral, and we obtain as

8 The divergences also appear in other works for the critical accelera-
tion for the spontaneous symmetry breaking [35–37] and the D = 1+3
Euclidean space at finite temperature [31]. In these, the divergences
are ignored supposing that some regularizations, e.g. a mass renormal-
ization, the UV-cutoff and so on, could work, though it is not shown
explicitly.
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∫ �

0
dλλ(coth(πλ) − 1)

= − 1

12
− �2 + � log(1 − e2π�)

π
+ Li2(e2π�)

2π2 , (55)

where � → ∞ finally. Then, excluding “− 1
12 ” in (55), we

take the � to ∞. As a result we obtain as

lim
�→∞

(
−�2 + � log(1 − e2π�)

π
+ Li2(e2π�)

2π2

)
= 1

6
.

(56)

Then, using this result, we can give the effective potential
�

(ρ)
R as

�
(ρ)
R = α2a−1

c M2
R + a3

c

24π2 (μ′
R

2 − μ2
R). (57)

2.7 Critical Unruh temperature for BEC

We can obtain the e.v. of the particle density according to
dR = −∂�

(ρ)
R /∂μR as

dR = 2α3acμR + a3
c

12π2 μR, (58)

From (58), we can see that if we decrease the Unruh tem-
perature from some high temperature, fixing the e.v. of the
particle density to some constant, the value of the chemical
potential should increase.

Let us consider reaching the critical Unruh temperature by
decreasing the acceleration gradually from some high accel-
erations where BEC is not formed. Then, from the explana-
tion under (21), we can obtain the critical acceleration from
(58) as9

ac = 2 π
√

3dR/m, (59)

where α = 0 and μc = m/ac are assigned in (58). Using
the relation between the Unruh temperature and acceleration,
a = 2πTU , we can obtain the critical Unruh temperature as
TU = √

3dR/m. This result is consistent with the critical
temperature for BEC obtained from the different analytical
method in the D = 1 + 3 flat Euclidean space at finite tem-
perature [31].

9 (59) can be written in the MKS units as ac = 2 π
√
c3h̄ 3dR/m ≈

16.763
√

2π
√
dR/m [cm/s2], where m is the mass of the particle com-

prising the gas and dR is its density.

3 Critical Unruh temperature of BEC in flat Euclidean
space at finite temperature

In this section, we obtain the critical temperature in the
D = 1 + 3 flat Euclidean space at finite temperature from
our analysis in the previous section just by exchanging the
space-time for the D = 1 + 3 flat Euclidean space at finite
temperature.

Therefore, as the calculation method in this section is basi-
cally the same as that in the previous section, in this section
we describe only the points in the case of the D = 1 + 3 flat
Euclidean space at finite temperature.

3.1 Exchanging the background space for Euclidean space

First, we exchange the Rindler space (1) for the flat D = 1+3
Euclidean space at finite temperature, which can be done by
(1) putting ρ to 1, then (2) Euclideanizing the η-direction as
(12), then periodizing it by the arbitrary period βE . The (1) in
which these two manipulations are performed can be written
as

ds2
E = −ρ2dτ 2 − dρ2 − dx2⊥, (60)

where the τ -direction is periodic with the arbitrary period
βE .

3.2 Effective potential

Employing (60), we proceed with the analysis in the previous
section. Then, the following �E can be obtained instead of
(32):

�E = α2M2
E + 2

π2βE

∫ ∞

−∞
dk2⊥

(2π)2

×
∫ ∞

0
dλ λ sinh(πλ)

∞∑

n=−∞

1

λ2 − ω2
n
�E , (61)

where

ωn ≡ 2π

βE
n, �E ≡

∫ M2
E

0
d�2 K 2

iλ(κ),

(κ2 ≡ k2⊥ + �2, M2
E ≡ m2 − μ2

E ), (62)

and Kα(x) represent the Bessel function of the second kind,
and as for ωn , we use the same notation as that in the previous
section.

From M2
E above, we can see that the upper bound of the

value of the chemical potential in the case of the flat D = 1+3
Euclidean space at finite temperature is given as

μc
E = m. (63)
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Expanding (61) to the second order of the value of the critical
chemical potential in the same way we did in Sect. 2.6, we
can obtain the following �E :

�E = α2M2
E + 1

4π2

∫ ∞

0
dλ λ coth

(
βEλ

2

)
(μ′2

E − μ2
E ),

(64)

where μ′
E has the same meaning as that in Sect. 2.6, but in

the current case, μ′
E is given by m corresponding to (63).

Now, we evaluate
∫ ∞

0
dλ λ coth(βEλ/2) in (64). If

we performed the integration as it is, it would be diver-
gent. Hence, we perform some regularization. As coth x
can be rewritten as 1 + 2/(e2x − 1), we subtract the
constant “1” as some regularization, then evaluate it as∫ ∞

0
dλ λ (coth(βEλ/2) − 1) = 2π2/3β2

E . Using this, we

can obtain the following �E :

�E = α2M2
E + 1

6β2
E

(μ′2
E − μ2

E ). (65)

3.3 Critical temperature

From (65), calculating the density according to dE = − ∂�E
∂μE

,
then putting α = 0 and μc

E = m corresponding to the critical
moment, we can obtain the relation between the temperature
and density at the critical moment as

T c
E = √3dE/m. (66)

This agrees with the critical temperature for BEC in the
D = 1 + 3 flat Euclidean space at finite temperature in [31];
however, our method of obtaining this result is different from
[31].

4 BEC in the traversable wormhole space-time

4.1 Traversable wormhole space-time

In this section, we consider the traversable wormhole given
by considering two of the following space-times,

ds2 = dt2 − dr2

1 − v2/r2 − r2(dθ2 + sin2 θdφ2), (67)

then attaching the parts of r = v of these [39]. Therefore,
the position of the throat is located at r = v and the range of
r on one side of the wormhole space-time is

v ≤ r ≤ ∞, (the throat is located at r = v). (68)

In order for the wormhole (67) to be a solution of the
Einstein equation, the exotic matter violating the null energy

condition is needed [39]; however, we do not consider it in
this study.

4.2 On the fact that matter with negative energy density is
needed

(67) leads to the following Einstein tensor:

Rμν − gμν

2
R =

⎛

⎜⎜⎜⎜
⎝

− v2

r4 0 0 0

0 v2

r2(v2−r2)
0 0

0 0 v2

r2 0

0 0 0 v2 sin2 θ
r2

⎞

⎟⎟⎟⎟
⎠

. (69)

From the result above, we can see that the energy density
of our scalar field should be negative, which means that our
scalar field is tachyonic. However, since such tachyonic mat-
ter cannot exist, (67) cannot be a solution. Therefore, (67)
will not be realized. This study treats (67) with this knowl-
edge.

Indeed, this problem is general in the context of the
traversable wormhole space-time. For recent studies on this,
see Sect. 1.

4.3 Probability amplitude and its Euclideanization

In the case that the wormhole (67) is taken as our space-time,
the probability amplitude corresponding to (7) is given as

Z = CwDφ1Dφ2 exp

×
[
i

2

∫
d4x γw ( j t t (∂tφ1 + μw φ2)

2 + (∂iφ1)
2

+ j t t (∂tφ2 + μw φ1)
2

+ (∂iφ2)
2 − m2(φ1

2 + φ2
2))

]
, (70)

where i = r, θ, φ and jμν refer to the metrics in (67) and
γw ≡ √− det jμν . Cw is ignorable as well as Sect. 2.2.

We perform the Euclideanization,

t → −iτ. (71)

At this time,

(πα, π̄α) → i(πα, π̄α), (72a)

dt2 → −dτ 2, (72b)

jt t → jττ ( jt t = jττ ), (72c)

Therefore, the momenta in the τ -direction can be written as

2πn/βw ≡ ωn . (73)
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We write φα (α = 1, 2) as

φα(τ, r, θ, φ) = 1

βw

∞∑

n=−∞
ϕα,n(r, θ, φ)e−iωnτ , (α = 1, 2)

(74)

As a result, Z in (70) can be written as

Z =
∫

Dφ1Dφ2 exp

[
− 1

2

∫
d3x

∫ β

0
dτ γw

× (φ1 φ2
)
(

Ĝw + M2
w −2igττμw ∂τ

2i jττμw ∂τ Ĝw + M2
w

)(
φ1

φ2

)]
,

(75)

where Ĝw ≡ − jττ ∂τ ∂τ + γ −1
w j i j∂i (γw∂ j ) and M2

w ≡
m2 − gττμ2

0. From the M2
w above, we can see that the upper

bound of the value of the chemical potential in the case of
the traversable wormhole at finite temperature is

μc
w = m. (76)

4.4 Effective potential in the near-throat geometry

In the same way as (16), putting φα (α = 1, 2) as

φα ≡ √
2 α cos � + φ̃α, (77a)

φα ≡ √
2 α sin � + φ̃α, (77b)

then proceeding with the calculation from (75) in the same
way as in Sect. 2.4, we can obtain the following Z :

Z = exp[−α2βwV3M
2
w]
∫

Dφ̃′
1,nDφ̃′

2,n exp

[
− 1

2βw

×
∞∑

n=−∞

∫ ∞

0
dr
∫ ∞

−∞
d2k⊥ γwĜw(φ̃2

1,n + φ̃2
2,n)

]
, (78)

where V3 ≡ ∫ dx3γw.

We switch our viewpoint from the entire region from r = 0
to ∞ to only the vicinity of the throat. Therefore, replacing
the r in γwĜw in (78) with v + r , we take γwĜw in (78) up
to r0-order as

γwĜw = v5/2 sin θ√
2r

(−∂2
τ + M2

w)

−
√

v sin θ√
2r

(v∂r − L̂2) + O(r0), (79)

then expand it to r0 order, and where L̂2 is the squared
angular-momentum operator:

L̂2 ≡ −
(

∂θ (sin θ∂θ )

sin θ
+ ∂2

φ

sin θ2

)

. (80)

Also, V3 is given as

V3 = v5/2 sin θ√
2r

+ O(r0). (81)

In what follows, we proceed with our analysis by focusing on
this near-throat geometry, where the r in what follows refers
to from 0 to ∞, but where the points are in the near-throat
geometry.

We perform the expansion for the (θ, φ)-directions of φα

(α = 1, 2) with the spherical harmonics as

φ̃α,n(r, θ, φ) = 1

β

∞∑

n=−∞

∑

l,m

e−iωnτ ϕ̃α,n,l,m(r)Y l
m(θ, φ).

(82)

Then, proceeding with the calculation from (78) the same
way as in Sect. 2.4, we can obtain the free energy, Z =
exp(−βwFw), as

Fw = α2M2
w

4πv5/2

√
2

∫
dr√
r

+ 1

βw

∞∑

n=−∞

∑

r

∑

l,m

∫ M2
w

0

× d�2H�2(r, n, l), (83)

where r in the summation takes all the real numbers from 0
to ∞, and

H�2(r, n, l) ≡ 1

ω2
n − v∂r + l(l + 1) + �2 . (84)

We finally obtain the critical temperature at some points
where r is near 0, so we take the contribution at each r in
(83) as

�w = α2M2
w

4πv5/2

√
2r

+ 1

β

∞∑

n=−∞

∑

l,m

∫ M2
w

0
d�2H�2(r, n, l),

(85)

where r in (85) takes some values near 0.
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4.5 H�2(r, n, l)

H�2(r, n, l) in (84) can be defined as the one satisfying the
following equation:

(ω2
n − v∂r + l(l + 1) + v2�2)H�2(r, n, l) = γ −1

w δ(r)
(86)

where γ −1
w =

√
2r

v5/2 sin θ
+O(r). Performing the Fourier expan-

sion for the r -direction in D̃�2(r, n, l) and δ(r) as

H�2(r, n, l) = 1

2π

∫ ∞

−∞
dk J̃�2(k)e−ikr ,

δ(r) = 1

2π

∫ ∞

−∞
dke−ikr , (87)

it can be seen that J̃ (k) is given as

J̃�2(k) = γ −1
w |r=r0

iv(k − ik0)
(r0 is taken to 0 from the positive),

k0 ≡ 1

v
(l(l + 1) + v2�2 + v2ω2

n), (88)

where r0 is taken to some values near 0, and ik0 is located in
the upper half-plane in the complex plane (see Fig. 2).

Now that we have obtained J̃�2(k) as in (88), we evaluate
H̃�2(r, n, l) in (87). We use the residue theorem for this, and
then we can see that

• when r > 0, the contribution from the path of
{

the upper semi circle, C+, is ∞,

the lower semi circle, C−, is 0,

• when r < 0, the contribution from the path of
{

the upper semi circle, C+, is 0,

the lower semi circle, C−, is ∞,

• when r = 0, the contribution from the paths of

C± are ∞,

where C± and the position of k0 are sketched in Fig. 2.
Finally, we can obtain as

H̃�2(r, n, l) = e
r
v
(�2+l(l+1)+ω2

n) −
√

2r0

v7/2 sin θ
�(−r)

= e
r
v
(�2+l(l+1)+ω2

n), (89)

where �(−r) is the step function (it is 1 or 0 for negative or
positive r ), and our r0 is some positive values near 0.

Now we have obtained D̃�2(r, n, l) as in (89). Then, in
(85), performing the integration with regard to �2 , we can

Fig. 2 This figure represents the paths of C± and the position of the
pole ik0 to calculate H�2 (r, n, l) in (87) using the residue theorem

obtain the following �w:

�w = α2M2
w

4πv5/2

√
2r

+ v

βwr

×
∞∑

n=−∞

∑

l,m

(
−e

r
v
(l(l+1)+ω2

n) + e
r
v
(l(l+1)+M2+ω2

n)
)

.

(90)

4.6 Particle density and critical temperature in the vicinity
of the throat

From (90), according to dw = −d�w/dμw, we can obtain
the e.v. of the particle density as

dw = 2μw

βw

∞∑

n=−∞

∑

l,m

e
r
v
(l(l+1)+m2−μ2

w+ω2
n) (91)

where considering that we close from some high tempera-
tures to the critical temperature, we have put α to 0 as well
as Sect. 2.7 and 3.3.

Now, we obtain the critical temperature in the vicinity of
the throat. For this purpose, we first expand dw in (91) around
r = 0. Then, we apply μc

w = m. At this time, the temperature
is at the critical temperature, so we can write βw as βc

w. Then,
we can write (91) as

dw = 2m

βc
w

∞∑

n=−∞

∑

l,m

(
1 + 2m

v
(l(l + 1) + ω2

n)r

)
+ O(r2).

(92)

Then, after treating the summations
∑∞

n=−∞
∑

l,m in (92)

as
∑N0

n=−N0

∑L0
l=0(2l + 1) (N0 and L0 are taken to infinity

finally), we evaluate these summations. Then, we can obtain
the critical temperature as
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Fig. 3 Sketch of the phase structure for the critical temperature with
respect to the BEC in the gas on one side of the wormhole space-time.
Left and right red solid lines represent the critical temperatures in
the vicinity of the throat and the far region that we have analytically
obtained, respectively. The red dotted line is the interpolation between
these. From this sketch, we can see that a state analogous to the Joseph-
son junction can be formed in the vicinity of the throat at some low
temperature

T c
w = dw

2(L0 + 1)2(2mN0 + m)
− (2π2d2N0(N0 + 1) + 3L0(L0 + 2)(L0 + 1)4(2mN0 + m)2

12v(L0 + 1)6(2mN0 + m)3 dw r + O(r2). (93)

We can see that this T c
w goes to 0 when N0 and L0 are sent

to ∞.

5 Phase structure of the normal/BEC states in the
traversable wormhole space-time and Josephson
junction formed in the vicinity of its throat

5.1 Phase structure

In the previous section, we found that the critical temperature
for BEC in the gas filling the whole space-time is always zero
in the vicinity of the throat, as in (93). On the other hand, the
far region of our wormhole (67) is asymptotically flat, and we
found that the critical temperature for the BEC in D = 3 + 1
Euclidean flat space-time at finite temperature is finite, as in
(66). Therefore, summing up these results:

• T c
w = 0 at r ∼ v (vicinity of the throat),

• T c
w = (66) at r = ∞ (far flat region).

By extrapolating between these two results, we can sketch a
phase structure as shown in Fig. 3.

From Fig. 3, we can see that a state analogous to the
Josephson junction is always formed at any temperature
except zero in the vicinity of the throat.

Then, the question of whether or not the Josephson current
is flowing in the vicinity of the throat would arise, which we
discuss in the next section.

5.2 On the Josephson current flowing in the vicinity of the
throat

The typical scales for the largeness of the Josephson junction
and Josephson current in laboratories would be roughly

1[nm] − [μm] and 1[μA] − [mA]. (94)

Then, since the Josephson current is a kind of tunneling, it is
considered that the Josephson current would be more damped
by the exponential as the width of the vicinity of the throat
increases10. Therefore, if the width of the normal state in
the vicinity of the throat were larger than the scale in (94),
the Josephson current could not occur in practice. Contrarily,
if it were in the scale of (94), the Josephson current in the

magnitude in (94) might appear (though it depends on the
property of the space-time playing the role of the normal
state through which the Josephson current flows).

To address this problem, we have to analyze the width of
the normal state in the vicinity of the throat and how much
the wave function is damped when it tunnels. Currently, we
cannot make any explicit claims about this from the analysis
in this paper. Normally, since the wormhole is the astronom-
ical object, the width of the normal state is much larger than
(94). Therefore, the wave function of the Josephson current
might be damped when it goes through the normal state in
the vicinity of the throat and would be effectively zero.

However, we cannot exclude the possibility that it is not
damped much for some effect of the curved space. Actually,

10 The ratio of the transmitted wave to the incident wave in the one-
dimensional space with the potential barrier written in every textbook
for the quantum mechanics is given as

(
Transmitted wave

Incident wave

)2

= 1

1 + V 2
0 sinh2 αL
4ε(V0−ε)

∼ e−2αL , (95)

where ε ≤ V0 and α =
√

2m(V0 − ε)/h̄2, and V0 and L represent the
height and width of the potential barrier. ε and m represent the energy
and the mass of the particles given as the wave function.

Here, we would just comment that generally the wave function of
the incident particle passing through the potential barrier is real numbers
inside the potential barrier. Therefore, there is no current in there. For
the question of how the particles exist and are found inside the potential
barrier, we would like to avoid commenting for lack of knowledge.
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there is a thought that the Hawking radiation is a kind of
tunneling [57]. If the Hawking radiation exists, the Josephson
current might also exist as the same tunneling phenomenon.

One approach to this issue is to analyze the thermal de
Broglie wavelength in the curved space-time. Giving the final
answer to this problem is one of our future works.

6 BEC in ER bridge

6.1 Phase structure

As such, the traversable wormhole cannot be the solution,
although our result obtained in Sect. 5 would be interesting.
Therefore, in this section, we consider the phase structure for
the BEC/normal state transition in another wormhole, the ER
bridge.

Since the ER bridge can be obtained by attaching two
Schwarzschild black hole space-times, it can be a solution,
and its near-horizon geometry is given by the vicinity of the
horizon of the Schwarzschild black hole. Then, it is known
that the near-horizon geometry of the Schwarzschild black
hole is mathematically equivalent to the Rindler space, and
we can numerically identify the Unruh temperature by the
Hawking temperature.

Therefore, since the critical acceleration is given as (59),
we can see the that critical Hawking temperature will be given
as

T c
H = √3dR/m. (96)

On the other hand, since the far region of the ER bridges
is the flat space-time, and the critical temperature in the flat
space-time was obtained as in (66), un the discussion in this
section, dR and dE can be taken to mean the same.

Then, we can obtain the phase structure as in Fig. 3. How-
ever, since (66) and (96) are equivalent to each other, the
phase structure is trivial (in which just a horizontal line is
drawn), and we can know this without seeing it. Therefore,
we will skip showing it.

6.2 On the finitely obtained critical Hawking temperature

That the critical Hawking temperature can be finitely obtained
as in (96) may appear strange, if we consider two facts, that
(1) in the type of model (9), it is known that BEC is never
formed in D = 3 or less11 and (2) the vicinity of the throat
would effectively become one-dimensional, as only the rr-
component of the metric increases there.

11 Author does not know good references in which it is written explic-
itly, however it is mentioned in [58]. One can find some discriptions
on this in unofficial documents in internet, or confirm it by taking the
model in [31] with D = 3 or less than that.

However, this is wrong, since the vicinity of the throat
of the ER bridge never becomes one-dimensional. We can
understand this from the fact that we can write the squared
line element in the vicinity of the throat of the ER bridge for
the (t , r )-part like

ds2
BH = eζ/rH(dt2 − dζ 2), (97)

where we have applied r = rH(1 + eζ/rH) (r is the quantity
a little bit larger than rH) to ds2

BH = (1 − rH/r)dt2 − (1 −
rH/r)−1dr2 . From this, we can see that the squared line
element in the vicinity of the throat of the ER bridge will be
still four dimensional and never become one dimensional.

On the other hand, in the case of the traversable worm-
hole, the vicinity of its throat effectively becomes one-
dimensional. Therefore, we can understand our result in (93).

7 Summary

In this study, we have investigated the phase structure for the
BEC/normal state transition in the ER bridge and traversable
wormhole space-time filled by some gas to form BEC up to
a certain temperature.

The first idea to start this work is something like the con-
sideration we mentioned in Sect. 6.2, and we discuss the
points in the mechanism for the formation of the BEC in this
study in Appendix B.

As a result, in the case of the traversable wormhole, we
have found that the critical temperature of the gas for BEC
is zero in the vicinity of its throat. Then, based on that result,
we have pointed out that a state analogous to the Josephson
junction is always formed in the vicinity of its throat. This
is a theoretically expected gravitational phenomenon and the
result obtained in this study.

However, the traversable wormhole space-time has neg-
ative energy density and cannot be a solution as long as we
do not modify the gravitational theory or do not devise any
special ways as shown in Sect. 4.2. This is a critical prob-
lem from the standpoint of the realizability of the Josephson
junction in this study. To solve this problem, we have to make
the traversable wormhole space-time into a solution.

As for this attempt, we have referred to some works in
the last part of Sect. 1. Of course, this problem would be
basically very difficult, as can be known from the uniqueness
theorem, and it seems that any clear solutions have not yet
been obtained. Although the current situation is as such, the
author has his own idea for this problem. It is not to use the
exotic matter, and its fundamental idea would be different
from any ideas of the studies conducted to date. The author
is going to give it a try in the near future.

If we could make this into a solution, we could reach the
stage to discuss the realizability of the Josephson junction in
this study, at which we should care about the following two
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practical problems: (1) the effect of the strong tidal force on
the existence of our Josephson junction formed at the vicinity
of the throat (here, there is no very strong gravitational force,
as there is no event horizon in the traversable wormhole),
and (2) how to actually create the situation where the space
is filled by the gas (this would be no problem if we could
assume the existence of the gas from the beginning).

If we could finally resolve these problems, we might con-
sider our Josephson junction realistically. At this time, we
also discuss examples in which phenomenology analogous
to our Josephson junction is formed in other systems. We
discuss these below.

Normally, in that case (namely, when there is a gravita-
tional phenomenology and one considers whether there is
some phenomenology analogous to it in other systems), one
would turn to the condensed matter physics and AdS/CFT,
so let us discuss these one by one. (In addition, we finally
also discuss “an example where our Josephson junction can
be used as an effective model for the inflation cosmology”.)

Then, first remember that this study is a gravitational phe-
nomenology arising in some gas on a strongly curved space-
time. Therefore, the key effect in the phenomenology in this
study is the strong gravitational effect making it difficult for
the system to form a BEC. Therefore, when a S-N-S state is
formed in some material, we could consider it as the analo-
gous phenomenology, if any effect analogous to the strong
gravitational effect or the effect itself works in its formation.

Here, we refer to [27,28] in Sect. 1. However, honestly,
the author cannot understand these works, so the author will
write the following discussion in the range the author can
say.

Basically, it seems that they use the same technology as
that used in [59] (see Fig. 1 in this), so let us suppose that
there is no technical problems in these. Then, looking at their
fundamental issues in the work, the author cannot read off the
following two points: (1) their superconductor is supposed to
always exist from the beginning or it is the one to be formed
up to some parameters, and (2) the system formed in these
is S-N-S or not (if the wormhole part is superconducting, it
would be probably be S or N-S-N and not S-N-S).

Therefore, the author can say that if their system were S-N-
S and it was formed by some effect analogous to the strong
gravitational effect or the effect itself, their S-N-S would
be “an example of the formation of a Josephson junction
analogous to our Josephson junction”. This is all that the
author can currently say with regard to the phenomenology
analogous to our Josephson junction in condensed matter
physics. Next, let us consider how the AdS/CFT would be

if the gravity side is given by the four- or five-dimensional
asymptotically AdS traversable wormhole space-times.

However, since there are technically various unclear points
in the AdS/CFT, the author cannot say anything definite
about this in this study (where we have given some refer-
ences for the AdS/CFT between AdS2 wormholes and SYK
models in Sect. 1). Also, the author has no clear thought
about how its gauge/gravity would be at present. However,
since the AdS/CFT by the traversable wormhole space-time
would be intriguing, it would be meaningful to investigate
its correspondence relation. If any correspondences can be
confirmed, we should investigate the correspondence of the
S-N-S state. If it could be confirmed, it would be considered
as “an example where our Josephson junction is formed in
another system”, since it can be considered that our Joseph-
son junction is formed in the CFT side.

By the way, let us mention that it seems that it would
be possible to obtain the traversable wormhole space-time
regardless of the values of the cosmological constant if it
comes to the five dimension (c.f. [60]). This is because the
uniqueness theorem is a theorem in four dimension.

In the two cases mentioned above, it seems that any mean-
ingful things are not stated, so let us discuss “an example
where our Josephson junction can be used as an effective
model”. If it can be finally confirmed that it can work well,
we may consider it “an example in which phenomenology
analogous to our Josephson junction is formed in other sys-
tems”.

As one of the interesting examples in which our Joseph-
son junction would play a very intriguing role, the author
considers some scalar-gravity system (the scalar field is sup-
posed to form BSE up to a temperature, c.f. [61]) on the
following Euclidean five-dimensional traversable wormhole
space-time (ds4

2 part is represented in Fig. 4):

ds2
5 = dt2

E + ds2
4 , where ds2

4 ≡ dr2

1 − v2/r2 + r2d	2
3,

(98)

as an effective model for the expanding early universe
including the previous universe collapsing to the beginning
of the current universe; the space-time given by (98) corre-
sponds to the shape of the space time for the two universes
joined by the throat part corresponding to the beginning of
the current universe. Postponing the explanation for the prac-
tical points in (98) to the next paragraph, we first say that it
seems we could get the five-dimensional traversable worm-
hole space-time as a solution (c.f. the text written in two
paragraphs above and [60]).

In (98), the S3-direction given by r2d	2
3 corresponds

to the three-dimensional spatial part we exist, and the r -
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Fig. 4 The image of the ds4 part of the traversable wormhole space-
time given by (98) to be used as the effective early cosmological model
in the idea written in the body text, which has been obtained based
on the program in “Trying to plot a wormhole; getting bad results”
in https://mathematica.stackexchange.com/. The curved surface in this
figure corresponds to the four-dimensional space-time we exist; blue
circle represents its S3 spatial space (	3-direction), and red direction
is r -direction and parametrizes the time development of that S3 spatial
space (therefore, r -direction shrinks and grows as time grows in the pre-
vious and current universes). Here, throat part is the S3 space at r = v,
which corresponds to the three-dimensional space at the beginning of
the current cosmology. We can see it is not singular, therefore it is con-
sidered that the space at the beginning of the cosmology is regularized,
which is the point in our idea using the traversable wormhole space time
given by (98). In this figure, tE -direction is not included; it is originally
the time-direction, which is now being S1 compactified into the imag-
inary direction and prescribes the temperature of the four-dimensional
space depicted in this figure. Therefore, the four-dimensional space
depicted in this figure is supposed to be at some temperature. It would
be interesting if the boundary between the superconductor and normal
phases in our study can relate to Big Bang (at this time, the supercon-
ductor region corresponds to the inflation era). Here, note that the large
r -region corresponds to the space times for the far future and past (in
the previous universe), which are given by the flat space time, not being
in the form of Big Crunch, in our model

direction parametrizes the time development of that S3 space
(therefore, r -direction shrinks and grows as time grows in the
previous and current universes). The tE -direction is the orig-
inal time-direction, which is now being S1 compacted into
the imaginary direction and prescribes the temperature of the
four-dimensional part of ds2

4 (c.f. [62]).
Therefore, the space given by the ds2

4 part corresponds to
the four-dimensional space-time we exist which is applied
to the curved surface in Fig. 4, and is at some temperature
determined by the period of the tE -direction. The scalar field
to form the BEC up to the temperature also exists on the
curved surface in Fig. 4.

The three-dimensional space at the beginning of the cur-
rent universe corresponds to the throat part at r = v in (98),
which is not singular, therefore it is considered that the space-
time at the beginning of the cosmology is regularized in this
model. This point is one of the points in this model as the
effective model for cosmology.

Our Josephson junction is supposed to be formed in the
vicinity of the beginning of the cosmology, where we have
discussed how the Josephson current will be in the range the
author can say at present at present as in Sect. 5.2. It would be

interesting if the boundary between the superconductor and
normal phases in our study can relate to Big Bang, which is
another point in this model (at this time, the superconductor
region corresponds to the inflation era).

Note that the space times of the far future and past (in
the previous universe) given by the large r -region are the flat
space time, which are not in the form of Big Crunch, in our
model by (98).

In conclusion, supposing we could get the five-dimensional
traversable wormhole space-time as a solution and clear the
practical problems mentioned above, it would be interesting
to examine whether or not the effective model above could
reproduce the picture of the early cosmology described by the
standard cosmology and give the solutions for the unsettled
problems in our current cosmology (c.f. [63]).

The result in this study means that the state of the gas is
changed from the normal state to the superconductor state at
some point in the space. Investigating where it is and how it
is are a future problem. In addition, it is a future problem to
study whether or not the Josephson junction in this study can
be formed even if we consider the very strong tidal force in
the vicinity of the throat of the wormhole.

An interesting problem obtained from this study is how
the curvature of the space-time affects the thermal phase tran-
sition. One approach to this issue is to analyze the thermal
de Broglie wavelength [64] in the curved space-time.

DataAvailability Statement This manuscript has no associated data or
the data will not be deposited. [Authors’ comment: This is a theoretical
study and no experimental data.]

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adaptation,
distribution and reproduction in any medium or format, as long as you
give appropriate credit to the original author(s) and the source, pro-
vide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indi-
cated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permit-
ted use, you will need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.
Funded by SCOAP3.

A Derivation of (37)

The modified Bessel function of the second kind can be writ-
ten using the modified Bessel function of the first kind Jα(x)
as

Kα(x) = π

2

iα J−α(i x) − i−α Jα(i x)

sin(απ)
. (99)
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Using this, it can be written as
∫ ∞

0

1

x
Kα(x)Kβ(x)dx

= i (π/2)2

sin(απ) sin(βπ)

∫ ∞

0

dy

y
(A1 + A2),

A1 = iα+β J−α(y)J−β(y) + i−α−β Jα(y)Jβ(y),

A2 = −iα−β J−α(y)Jβ(y) − i−α+β Jα(y)J−β(y). (100)

We can check A1 +A2 = 0 for α �= β; therefore, (100) is 0
for α �= β.

Next, for α = β, performing the Wick rotation as α → iα,
the part of A1 can be calculated as

− i (π/2)2

sin2(iαπ)

∫ ∞

0

dy

y
A1 = − (π/2)2

α sinh(απ)
. (101)

Putting β as β → α + �α where �α is taken to 0 finally,
the part of A2 can be calculated as

−2i(π/2)2

sin(απ)2

∫ ∞

0

dy

y
A2 = iπ2

2α + �α

1

sin(απ)

1

�α
, (102)

where we have used the formula
∫∞

0
dz
z Jα(z)Jβ(z) =

2
π

sin( π
2 (α−β))

α2−β2 [38]. Putting α → iα and �α → i�α,

(102) = π2

2α sinh(απ)

1

π�α
. (103)

Summarizing the results above,

(100) =
⎧
⎨

⎩

0 for α �= β,

π2

2α sinh(απ)

1

π�α
− (π/2)2

α sinh(απ)
for α = β.

(104)

When �α → 0, the results of each case in (104) can be
written at once as
∫ ∞

0

1

x
Kα(x)Kβ(x)dx = π2δ(α − β)

2α sinh(απ)
, (105)

where we have regarded π�α in (104) as dx , then regarded
it as δ(α − β) (generally, the delta function δ(x)|x=0 is
equivalent to dx−1, where dx is the one in

∫
dxδ(x) =

dxδ(x)|x=0).

B Mechanism for the formation of BEC in this study

In this appendix, we mention the technical points in the mech-
anism of the formation of BEC in this study.

First, the fundamental thought in our model could be con-
sidered as that in the usual fundamental model of BEC like
the one given in [31], and what we have done is to apply it
to curved space-times. Therefore, the fundamental form of

our Hamiltonians is given by the one in the grand canonical
ensemble, H − μN .

Then, looking at (58), we can see that when the temper-
ature is decreased, keeping the chemical potential constant,
the number of the particles is decreased. This is the natural
result, because decreasing the temperature means decreas-
ing the energy of the system, and the particles are the excited
modes.

Then, since the chemical potential and the number of the
participles are entered in our Hamiltonian as H − μN , if
naively considering “μN” as a quantity, it appears that if
we decrease μ, we can keep N constant when we decrease
the temperature. However, this is wrong. The structure in
the microscopic states in the ground canonical ensemble is
very complex, and the number of particles is also decreased
and vice versa when the chemical potential is decreased, as
can be seen from the Bose distribution function (meaning of
variables are mentioned in the following),

〈nr 〉 = 1

eβ(er−μ) − 1
(106)

Therefore, in this appendix, we would like to start from
the derivation of (106) as confirmation. Then, based on this,
we mention the technical points in the mechanism of the
formation of BEC in this study. We intend to write the point
in each section in its subject.

B.1 Bose distribution function: Relation that the number of
particles increased when the chemical potential increased

First, in order to obtain the form of the Hamiltonian in the
ground canonical ensemble, let us suppose that there are M
copied systems, and then suppose MN ,i as the number of the
systems having the energy value specified by N and i , EN ,i ,
and containing N particles. These MN ,i , EN ,i and N obtain
the following constraints:

∑

N ,i

MN ,i = M,
∑

N ,i

EN ,i MN ,i = E0,
∑

N ,i

NMN ,i = N0,

(107)

where
∑

N ,i means
∑N0

N=0

∑
i , and M , E0 and N0 are con-

stants.
Now, consider the � space (the space that has canonical

variables of each of N0 particles in the whole of M copied
systems as its coordinates). Then, each infinitesimal region
in the � space corresponds to a set of MN ,i , and if we check
each infinitesimal region of some region, we would find that
there are a number of the same sets MN ,i (for the meaning
of “the same”, read it out from the W in (108)). Here, let
us suppose the Ergodic hypothesis (probability that each M
copied system takes some one of MN ,i states is always the
same in the region determined by N0 and E0) is held in the
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� space. As a result, the most appearing “same” set of MN ,i

is considered to be the set for the thermal equilibrium state.
Therefore, let us obtain the most appearing set of MN ,i in
the region determined by N0 and E0 in the � space. This
problem is to obtain the set of MN ,i which maximizes the
following W :

W = M !
�N ,i MN ,i ! . (108)

Then, using the method of Lagrange multiplier and Stirling’s
approximation, we can finally express all such MN ,i at once
as

MN ,i

M
= 1

�
exp[−β(EN ,i − Nμ)], (109)

� =
∑

N ,i

exp[−β(EN ,i − Nμ)], (110)

where M , E0 and N0 are supposed to be very large positive
integers to use Stirling’s approximation, and β and μ mean
the inverse temperature and chemical potential. (109) means
the probability that the system with N particles and the energy
EN ,i appears.

From here, let us suppose that the particles in the system
follow the Bose statistics. As a result, the energy values are
discretized and the number of particles to take each energy
value is not limited. Then we can rewrite and replace as

N =
highest∑

r=lowest

nr and
∑

N ,i

→
N0∑

N=0

∑

{nr }
,

EN ,r →
highest∑

r=lowest

ernr . (111)

where “lowest” and “highest” mean those of the discretized
energy levels, “

∑
{nr }” means to produce all the sets of nr

satisfying N =∑r nr , and er mean the values of the energy
labeled by r that each particles takes. Therefore, finally, � in
(110) can be given as

� =
N0∑

N=0

∑

{nr }
exp[−β

∑

r

εr nr ] =
N0∑

N=0

∑

{nr }

∏

r

exp[−βεr nr ],

(112)

where εr ≡ er − μ and
∑

r mean
∑highest

r=lowest. Then, it is

known that
∑N0

N=0

∑
{nr } can be treated as

∏
r
∑

nr ; namely,
we can independently perform the summation for each nr
in the range

∑
r nr ≤ N0. At this time, if N0 is infinity,

∑N0
N=0

∑
{nr } can be treated as

∏
r
∑∞

nr=0. Therefore, sup-
posing that N0 is infinity,

� =
∏

r

∞∑

nr=0

exp[−βεr nr ]. (113)

At this time, if exp[−βεr ] < 1, namely if εr > 0, for all r ,

� =
∏

r

(1 − exp[−βεr ])−1. (114)

On the other hand, if any one of εr ≤ 0, � is diverged.
Now, we obtain the e.v. of nr , which can be written as

〈nr 〉 =
∑

nr exp[−β
∑

r εr nr ]∑
exp[−β

∑
r εr nr ] , (115)

where
∑

above mean
∑N0

N=0

∑
{nr }
∏

r . Since 〈nr 〉 =
− 1

β
∂ ln �
∂εr

, using (114), we can obtain 〈nr 〉 given in (106),
and we can obtain a key fact in the formation of BEC in this
study, that the number of the particles is increased when the
chemical potential is increased.

B.2 Keeping the density of gas constant in decreasing
temperature, and for this purpose, increasing the chemical
potential, then finally forming BEC described by the
constants

Now let us look at (58). We can see that when the temperature
is decreased, keeping the chemical potential constant, the
number of the particles is decreased. It is a physically natural
result as we mentioned in the beginning in this appendix.

As the fundamental thought in our model, we want to keep
the number of particles of the gas as it is when we change
the temperature. Therefore, based on what we have obtained
in the previous section, we increase the chemical potential to
compensate for the decreased particles.

However, as can be seen from the text under (113), there is
an upper limit for the value the chemical potential can take.
Actually, (21), (63) and (76) would be that.

Therefore, we need to take some way other than increasing
the chemical potential when the chemical potential reaches
the upper limit, which is to have the field have some finite
expectation value as in (16).

Like this, the field finally has the condensate when we
decrease the temperature and the chemical potential reaches
the upper limit, which corresponds to BEC. We discuss this
in the next section.

B.3 Why we can describe BEC by the constants

The Fourier transformation of 1 gives the delta function,
where the Fourier transformation we consider is f̂ (k) =∫∞
−∞ dx f (x)e−ikx ( f (x) and f̂ (k) are some input and output

functions, respectively).
Therefore, we can see that when the field given in the

coordinate space has a finite expectation value, the field in
the momentum space is effective only at k = 0.
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Therefore, we can describe the BEC phase by having the
field have the finite expectation value as in (16).

Next, we consider the situation where the expectation
value of the field is zero. However, since performing the
Fourier transformation of 0 is 0 and meaningless for the dis-
cussion here, we consider that the values of the field are dis-
tributed according to e−αx2

as an example for the situation
〈φ〉 = 0, where α is some positive real number.

Then, the Fourier transformation of this is given as√
π
α
e−k2/4α . Therefore, when the expectation value of the

field is zero, various modes around 0 are effective in the
momentum space, which is the normal phase.

Therefore, we can describe the normal phase by taking the
expectation value of the field to zero.
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