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Abstract Following the recent theory of f (Q) gravity, we
continue to investigate the possible existence of wormhole
geometries, where Q is the non-metricity scalar. Recently,
the non-metricity scalar and the corresponding field equa-
tions have been studied for some spherically symmetric con-
figurations in Mustafa (Phys Lett B 821:136612, 2021) and
Lin and Zhai (Phys Rev D 103:124001, 2021). One can note
that field equations are different in these two studies. Follow-
ing Lin and Zhai (2021), we systematically study the field
equations for wormhole solutions and found the violation
of null energy conditions in the throat neighborhood. More
specifically, considering specific choices for the f (Q) form
and for constant redshift with different shape functions, we
present a class of solutions for static and spherically symmet-
ric wormholes. Our survey indicates that wormhole solutions
could not exist for specific form function f (Q) = Q+αQ2.
To summarize, exact wormhole models can be constructed
with violation of the null energy condition throughout the
spacetime while being ρ ≥ 0 and vice versa.

1 Introduction

The idea of wormholes act as tunnel-like structures that con-
nect two parallel universes or distant parts of the same uni-
verse. It was Wheeler [1] who first introduce the term worm-
hole as objects of the spacetime quantum foam connecting
different regions of spacetime at the Planck scale. Although
these solutions were not traversable and collapsed instantly
upon formation, as insightfully reviewed in [2]. Modern inter-
est in wormhole physics was stimulated after the seminal
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work of Morris and Thorne in 1988 [3]. They considered
static and spherically symmetric line elements and discussed
the mechanism for traversable wormholes. The traversabil-
ity assumes that matter and radiation can travel freely in both
directions and in a reasonable time through the wormhole.
Subsequently, Morris, Thorne and Yurtsever [4] came up with
an idea that wormhole can be converted into a time machine
with which causality might be violated. For more informa-
tion we refer the reader to the vast literature on wormholes,
see Refs. [5,6].

However, it is well known in general relativity that worm-
hole spacetimes are supported by exotic matter whose stress–
energy tensor violates the null energy condition (NEC) [3,5],
according to the needs of the geometrical structure. In fact,
traversable wormholes violate all of the pointwise energy
conditions and averaged energy conditions [6]. However,
in [7] authors have found solutions describing asymmet-
ric asymptotically flat traversable wormholes supported by
ordinary Dirac and Maxwell fields. Since, the exotic matter
is a problematic issue and thus many arguments have been
given in favor of the violation of the energy conditions such
as invoke quantum fields in curved spacetime, scalar-tensor
theories and so on. So many attempts have been made to
minimize the use of exotic matter. Among them “volume
integral quantifier” is one of the most popular approaches
which quantifies the total amount of energy condition violat-
ing matter [8,9]. This formulation was further improved by
Nandi et al. [10] to know the exact quantity of exotic matter
present in a given spacetime. Further, there have been pro-
posals regarding confinement of exotic matter at the throat of
the wormhole, namely, the cut and paste procedure see Refs.
[11–13] for more. According to this process, interior solution
is being matched with an exterior vacuum solution at a junc-
tion interface, where the wormhole throat is located. During
the past decades, there have been a lot of research exploring
the possible existence of wormhole geometries supported by
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the exotic equation of state (EoS) [14,15], and further devel-
oped in [16–20]).

It is an accepted fact that constructing a wormhole with
ordinary matter (i.e., satisfy the energy conditions) has been a
big challenge in gravitation physics. It was shown that higher-
dimensional cosmological wormholes [21] and wormholes
in modified theories of gravity [22–25] can be constructed
without exotic matter, at least in the neighbourhood of the
throat. In fact, in the context of f (R) theories of gravity, the
solution of wormholes have attracted much attention where
wormholes can be theoretically constructed with the presence
of normal matter [26,27]. This type of solutions were also
found in f (T ) gravity [28,29], hybrid metric-Palatini theory
[30], multimetric gravity [31], Rastall gravity [32], confor-
mal Weyl gravity [33,34], modified gravity [35], Horndeski
theory of gravity [36] and other theories.

In this article our main interest is to explore the possi-
ble existence of wormhole solutions in a recently developed
symmetric teleparallel (ST) gravity or f (Q) gravity theory,
where Q is the non-metricity scalar [37]. The key difference
between ST and GR is the role played by the affine connec-
tion, �α

μν rather than the physical manifold. Most remark-
ably, f (Q) gravity is equivalent to GR in flat space [37]. It
is important to keep in mind that similar to the f (T ) gravity,
f (Q) gravity also features in second order field equations,
while gravitational field equations of f (R) gravity are of the
fourth-order [38]. Thus, f (Q) gravity provides a different
geometric description of gravity, which is nevertheless equiv-
alent to GR. In [39], authors have systematically derived and
studied symmetry reduced field equations for f (Q) gravity.
Along with the increasing interest on f (Q) gravity, several
solutions have been widely studied in the cosmological set-
ting, see e.g., Refs. [40–47].

However, in such a theory only few solutions have been
found in static and spherical symmetric spacetime. Spheri-
cally symmetric configuration in f (Q) gravity was consid-
ered in [48], and explored the application of this theory con-
sidering stellar structure with polytropic equation of state
(EoS). In a recent study, wormhole solutions from the Kar-
markar condition have been obtained and studied in f (Q)

gravity extensively [49]. In the present manuscript our inter-
est is to find exact and correct field equations in f (Q) gravity
for static and spherical symmetric configuration. We further
extend this analysis and find an exact wormhole solution,
where we showed the violation of the NEC of normal matter
at the throat of the wormhole.

The present paper is organized as follows: in Sect. 2 we
give an overview about the f (Q) gravity, and then we find
the corresponding field equations for static and spherically
symmetric spacetime in Sect. 3. In the same section, we find
exact solutions of wormhole geometries in f (Q) gravity,
paying close attention to the energy conditions and outlining

different approaches in finding specific solutions. Finally we
give our conclusions in Sect. 4.

2 Setting the stage: f (Q) gravity

In the present work, we consider the action for f (Q) gravity
[37] is given by

S =
∫ [

f (Q)

16π
+ Lm

] √−g d4x, (1)

where f (Q) is an arbitrary function of the non-metricity Q, g
is the determinant of the metric gμν andLm is the Lagrangian
density corresponding to matter. We define the non-metricity
tensor by

Qαμν = ∇αgμν = −Lρ
αμgρν − Lρ

ανgρμ, (2)

where the term disformation is given by

Lα
μν = 1

2
Qα

μν − Q α
(μν), (3)

and the two independent traces of the non-metricity tensor
are as follows:

Qα = Qα
μ

μ , Q̃α = Qμ
αμ . (4)

In this case the non-metricity scalar is defined as a contraction
of Qαβγ which is given by

Q = − gμν
(
Lα

βνL
β
μα − Lβ

αβL
α
μν

)

= − PαμνQαμν.
(5)

where Pαβγ is the non-metricity conjugate and the corre-
sponding tensor is written as

4Pα
μν = −Qα

μν + 2Q α
(μ ν) − Qαgμν

−Q̃αgμν − δα
(μQν) . (6)

Now, the variation of (1) with respect to gμν gives the field
equations

2√−g
∇α

(√−g fQ Pα
μν

) + 1

2
gμν f

+ fQ
(
PμαβQν

αβ − 2QαβμP
αβ

ν

) = −8πTμν , (7)

where for notational simplicity, we write fQ = f ′(Q) and
the energy–momentum tensor Tμν is given by

Tμν = − 2√−g

δ
√−gLm

δgμν
. (8)

and varying (1) with respect to the connection, one obtains

∇μ∇ν

(√−g fQ Pμν
α

) = 0 . (9)
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With the formalism of f (Q) gravity specified, the conser-
vation of the energy momentum tensor is ensured by the field
equations. In this discussion our main interest is to formulate
the gravitational field equations governing static and spheri-
cally symmetric spacetimes of (7) to the study of wormhole
geometries.

3 The wormhole geometry and the field equations

Consider the static spherically symmetric line element rep-
resenting a wormhole geometry is given by [3]

ds2 = e
(r)dt2 − dr2

1 − b(r)
r

− r2(dθ2 + sin2 θdφ2), (10)

where 
(r) and b(r) are defined as the redshift and the
shape functions, respectively. The radial coordinate r is non-
monotonic in the sense that it decreases from infinity to a
minimum value b(r0) = r0 and then it increases from r0 back
to infinity. The minimum value of the surface area is called
the throat of the wormhole with 4πr2. Moreover, flaring out
condition is one of the most fundamental property of the
wormhole throat, which satisfy the condition b(r)−rb′(r)

b2(r)
> 0

[3], and at the throat b′(r0) < 1 is also imposed. Another
condition that needs to be satisfied is 1−b(r)/r > 0. Beside
the above conditions, wormhole geometries have no horizons
to maintain the criteria for traversability, which implies that

(r) must be finite everywhere.

The stress tensor for an anisotropic fluid compatible with
spherical symmetry is

Tμν = (ρ + P)uμuν − P⊥gμν + (P − P⊥)χμχν, (11)

which is mostly used for wormhole matter for considera-
tion. Here, ρ is the energy density, P the radial pressure and
P⊥ the tangential pressure, respectively. In the above equa-
tion uμ represents the 4-velocity of the fluid, while χμ is a
spacelike vector along the direction of anisotropy. In Einstein
gravity, the wormhole solutions are sustained by exotic mat-
ter sources involving a stress–energy tensor that violates the
null energy condition (NEC) (in fact, it violates all the energy
conditions [5]). Note that the NEC asserts Tμνkμkν ≥ 0 for
any null vector kμ. In the case of a stress–energy tensor of
the form (11), we have ρ + Pi ≥ 0.

Following the discussion in Ref. [48] (see Eq. (36)) the
non-metricity scalar Q for spherically symmetric configura-
tion (10) is given by

Q = − b

r2

[
rb′ − b

r(r − b)
+ 
′

]
. (12)

In summary, inserting the metric (10) and the anisotropic
matter distribution (11), into the equations of motion (7), we
extract the nonzero components of the field equations [48]

8πρ(r) = 1

2r2

(
1 − b

r

)[
2r fQQQ

′ b

r − b

+ fQ

(
b

r − b
(2 + r
′)

+ (2r − b)(b′r − b)

(r − b)2

)
+ f

r3

r − b

]
, (13)

8π P(r) = − 1

2r2

(
1 − b

r

) [
2r fQQQ

′ b

r − b

+ fQ

(
b

r − b

(
2 + rb′ − b

r − b
+ r
′

)
− 2r
′

)

+ f
r3

r − b

]
, (14)

8π P⊥(r) = − 1

4r

(
1 − b

r

)[
− 2r
′ fQQQ

′

+ fQ

(
2
′ 2b − r

r − b
− r(
′)2

+ rb′ − b

r(r − b)

(
2r

r − b
+ r
′

)
− 2r
′′

)

+2 f
r2

r − b

]
, (15)

where f ≡ f (Q), fQQ = d2 f (Q)

dQ2 and fQ = d f (Q)
dQ .

Finally, we have three independent equations (13)–(15) for
our six unknown quantities, i.e., ρ(r), P(r), P⊥(r), 
(r),
b(r) and f (Q). Thus the above system of equations is under-
determined, and it is possible to adopt different strategies to
construct wormhole solutions. Here, we will focus on a par-
ticularly interesting case that follows a constant redshift func-
tion, 
′ = 0. With this assumption one can simplify the calcu-
lations considerably and provide interesting exact wormhole
solutions.

3.1 Specific case: f (Q) = Q + αQ2

Here, we consider a power-law form of function f (Q) given
by f (Q) = Q+αQ2, where α is a constant. This model has
been used for stellar structure with polytropic EoS [48].

3.1.1 Form function: b(r) = r2
0 /r

Considering the specific choice for the form function b(r) =
r2

0 /r [33], the field equations, Eqs. (13)–(15), reduce to

ρ(r) = r2
0

8πr8

(
2αr4

0

(
9r2

0 − 14r2
)

(
r2 − r2

0

)2 − r4

)
, (16)
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P(r) = − r2
0

8πr8

(
10αr4

0

(
r2
0 − 2r2

)
(
r2 − r2

0

)2 + r4

)
, (17)

P⊥(r) = r2
0

8πr8

(
r4 − 2αr4

0

(
r2
0 − 2r2

)
(
r2 − r2

0

)2

)
. (18)

The above components help us to determine the null energy
condition (NEC) along the radial and tangential direction,
which are

ρ + P = −r6r2
0 − r4r4

0 + 4αr6
0

4π(r10 − r8r2
0)

, (19)

ρ + P⊥ = 2αr8
0 − 3αr2r6

0

πr8
(
r2 − r2

0

)2 . (20)

For this specific case, we see that at the throat of the worm-
hole i.e., at r = r0 the NEC along the radial and tangen-
tial directions become undefined. This shows that wormhole
solution could not exists with this form function. Moreover,
we have tried with other form functions like b(r) = r0,
b(r) = r0 +γ r0

(
1 − r0

r

)
and b(r) = rer0−r , but all attempts

go into vain. Thus, we conclude that postulating a power-law
form f (Q) = Q + αQ2 is not suitable for wormhole solu-
tion. In next two sections, alternately, we suppose an inverse
power-law model for f (Q) gravity. We now proceed to the
investigation of the physical implications of a non-trivial
f (Q)-ansatz, studying the possible existence of wormhole
geometries supported by f (Q) gravity theory. Such choices
have widely been considered in f (T ) gravity, see Refs. [50–
52] for a discussion. But, other choices of form function are
also possible, which we leave for further study.

3.2 Specific solutions: f (Q) = Q + α
Q

3.2.1 Form function: b(r) = r2
0 /r

Considering the specific case of f (Q) gravity i.e., f (Q) =
Q+ α

Q . The stress–energy tensor profile for this specific case
is given by

ρ(r) = αr8
(
20r2r2

0 − 11r4 − 9r4
0

) − 4r8
0

32πr4r6
0

, (21)

P(r) = αr8
(−24r2r2

0 + 13r4 + 11r4
0

) − 4r8
0

32πr4r6
0

, (22)

P⊥(r) = αr8
(
r4
0 − r4

) + 4r8
0

32πr4r6
0

. (23)

For the case of the NEC along the radial and tangential direc-
tion is provided by

ρ + P = αr8
(
r2 − r2

0

)2 − 4r8
0

16πr4r6
0

, (24)

ρ + P⊥ = −αr4
(−5r2r2

0 + 3r4 + 2r4
0

)
8π r6

0

. (25)

For concreteness, we plot graphs for energy density (ρ),
ρ+P and ρ+P⊥ which are interpreted as the NEC along the
radial and tangential direction, respectively. In Fig. 1, we take
into account the specific values for r0 = 1 and considered
both cases of α = ±1. It is interesting to observe that for
α = 1, the energy density is positive whereas the NEC is
violated throughout the spacetime. But, these situations are
reversed when we consider α = −1, see right panel of Fig. 1.

Moreover, one immediately finds from Eqs. (24) and (25)
that (ρ + P)|r0 = − 1

4π r2
0

< 0 and (ρ + P⊥)|r0 = 0 at

the throat or at its neighbourhood. This implies the violation
of NEC for the normal matter threading the throat of the
wormhole.

3.2.2 Form function: b(r) = rer0−r

Here, we turn our attention to the model with b(r) = rer0−r

[53], where 0 < r0 < 1 is particularly interesting to have
wormhole solutions that satisfy the condition b′(r0) < 1.
With this shape function the stress–energy tensor profile is
given by

ρ(r) = e−r−3r0

8πr2

[
− 3αe4r (r + 1)r2 − α(2r + 3)r2e2(r+r0)

+α(5r + 6)r2e3r+r0 − (r − 1)e4r0
]
, (26)

P(r) = e−r−3r0

8πr2

[
αe4r (4r + 3)r2 + 3α(r + 1)r2e2(r+r0)

−α(7r + 6)r2e3r+r0 − e4r0
]
, (27)

P⊥(r) = 1

16πr

[
αr2er−r0 − αr2e3r−3r0 + er0−r ] . (28)

The NEC along the radial and tangential direction direc-
tion is given by

ρ + P = e−r−3r0

8πr

[
αe4r r2 + αr2e2(r+r0) − 2αr2e3r+r0

−e4r0
]
, (29)

ρ + P⊥ = e−r−3r0

16πr2

[
− αe4r (7r + 6)r2 − 3α(r + 2)r2e2(r+r0)

+2α(5r + 6)r2e3r+r0 − (r − 2)e4r0
]
. (30)

For this particular wormhole model we consider the throat
at r0 = 0.5 and b′(r0) = 0.5 < 1. The graphical behavior
of the ρ, ρ + P and ρ + P⊥ are presented on the left and
right side of Fig. 2 for α = ±1. This situation is same as of
Fig. 1, where the NEC is violated for α = 1 and satisfied for
α = −1.

We can also see from Eqs. (29) and (30) that (ρ + P)|r0 =
− 1

8π r0
< 0 and (ρ+P⊥)|r0 = − r0−2

16π r2
0

> 0 at the throat. This

123



Eur. Phys. J. C (2021) 81 :1031 Page 5 of 7 1031

Fig. 1 The figure represents the energy density and the null energy
condition (NEC) for radial and tangential directions for the specific
case of f (Q) = Q + α

Q , 
′(r) = 0 and b(r) = r2
0 /r . We present the

graphical behavior for r0 = 1 and α = ±1. The NEC given in Eqs. (24)
and (25) is violated at the throat r = r0 irrespective of α

Fig. 2 The graphical behavior of NEC in terms of ρ, P and P⊥ for the specific case of f (Q) = Q + α
Q , 
′(r) = 0 and b(r) = rer0−r . The throat

of the wormhole occurs at r0 = 0.5. For this case the standard NEC is always violated at the throat of the wormhole, see Eqs. (29) and (30)

choice indicates that NEC is always violated at the wormhole
throat.

3.3 Specific solutions: f (Q) = Q exp
(

α
Q

)

3.3.1 Form function: b(r) = r2
0 /r

Using the form function b(r) = r2
0 /r , we find the following

stress energy tensor components

ρ(r) = e

αr4(r2−r20)

2r40

[(
α2r8

(
5r2r2

0 − 3r4 − 2r4
0

) + αr6r4
0 − 2r8

0

)
16πr4r6

0

]
, (31)

P(r) = e

αr4(r2−r20)

2r40

[(
α2r8

(−5r2r2
0 + 3r4 + 2r4

0

) + αr4r4
0

(
r2 − 2r2

0

) − 2r8
0

)
16πr4r6

0

]
, (32)

P⊥(r) = −e

αr4(r2−r20)

2r40

[(
αr6 − 2r4

0

)
16πr4r2

0

]
. (33)

The NEC along the radial and tangential direction are given
by

ρ + P = e

αr4(r2−r20)

2r40

[(
αr6 − αr4r2

0 − 2r4
0

)
8πr4r2

0

]
, (34)

ρ + P⊥ = e

αr4(r2−r20)

2r40

[
α2r4

(
5r2r2

0 − 3r4 − 2r4
0

)
16π r6

0

]
. (35)
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Fig. 3 With r0 = 1 and α = ±1, we plot ρ, ρ + P and ρ + P⊥ for the specific case of f (Q) = Q exp
(

α
Q

)
, 
′(r) = 0 and b(r) = r2

0 /r . The

NEC is violated where the throat is located, see Eqs. (34) and (35)

From the graphical behavior of the NEC in terms of ρ+ P
and ρ + P⊥, presented in Fig. 3, we see that NEC is always
violated for α = ±1.

Also, we can also see from Eqs. (34) and (35) that (ρ +
P)|r0 = − 1

4π r2
0

< 0 and (ρ + P⊥)|r0 = 0, and thus the

standard NEC becomes violated at the close vicinity of the
wormhole throat.

4 Concluding remarks

Wormholes are hypothetical objects connecting two asymp-
totic regions or infinities, possibly through which observers
may freely traverse. But the main challenge in wormhole
physics is to find a matter source without violating the
energy conditions. Recently, in [48], authors have investi-
gated the external and internal solutions of spherically sym-
metric objects in f (Q) gravity. Interesting the vacuum solu-
tion obtained in [48] for f (Q) is exactly same as reported
in [39]. Following this approach, we have explored worm-
hole geometries in the framework of f (Q) gravity for static
and spherically symmetric spacetime. More accurately, we
focused the analysis based on the specific choices for the
f (Q) form and shape functions. We simplify our calcula-
tions by assuming constant redshift function i.e., 
′ = 0 and
to avoid the presence of event horizons.

The first attempt is a phenomenological power law
f (Q) = Q+αQ2, where we found that wormhole solutions
could not exist because the energy density and two pressure
components are in indeterminate forms at the throat. The next
two attempts base on the inverse power law of f (Q) = Q+ α

Q

and f (Q) = Q exp
(

α
Q

)
, respectively. By carefully consid-

ering a specific shape function, we solved the field equations
for f (Q) gravity and obtained energy density and pressure
profiles that needed to support the wormhole geometries. In
every case we have found a similar situation for α = 1, where
the energy density is positive with violation of NEC through-

out the spacetime. For α = −1, we found negative energy
density but obeying the NEC extending outward from the
throat. However, in any case of α = ±1, one verifies that the
NEC is violated at the throat of the wormhole.

Our findings are completely different with the solution
reported in [49]. In [49], authors have shown the possibility of
obtaining traversable wormholes satisfying the energy con-
ditions using Karmarkar conditions with embedded class-1
spacetime. In our case we have studied a wide variety of exact
solutions of asymptotically flat spacetimes, but all solutions
violate the NEC at the throat of the wormhole.
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