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Abstract We apply the gravity-thermodynamics conjec-
ture, namely the first law of thermodynamics on the Uni-
verse horizon, but using the generalized Kaniadakis entropy
instead of the standard Bekenstein–Hawking one. The former
is a one-parameter generalization of the classical Boltzmann–
Gibbs–Shannon entropy, arising from a coherent and self-
consistent relativistic statistical theory. We obtain new mod-
ified cosmological scenarios, namely modified Friedmann
equations, which contain new extra terms that constitute an
effective dark energy sector depending on the single model
Kaniadakis parameter K . We investigate the cosmological
evolution, by extracting analytical expressions for the dark
energy density and equation-of-state parameters and we show
that the Universe exhibits the usual thermal history, with a
transition redshift from deceleration to acceleration at around
0.6. Furthermore, depending on the value of K , the dark
energy equation-of-state parameter deviates from �CDM
cosmology at small redshifts, while lying always in the phan-
tom regime, and at asymptotically large times the Universe
always results in a dark-energy dominated, de Sitter phase.
Finally, even in the case where we do not consider an explicit
cosmological constant the resulting cosmology is very inter-
esting and in agreement with the observed behavior.

1 Introduction

Observational data of the last two decades, reveal that the
Universe has experienced early-time and late-time accelera-
tion stages. In this context and in order to explain this behav-
ior, one can follow two main directions. The first direction is
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by constructing new modified and extended theories of grav-
ity i.e. modify the left-hand-side of Einstein field equations
by adding correction terms to the standard Einstein–Hilbert
action (see for instance [1–3] and references therein). This
leads to modified classes of gravity such as f (R) gravity [4–
7], f (G) gravity [8,9], Lovelock gravity [10,11], Weyl grav-
ity [12,13] and Galileon theory [14–16]. An alternate way
is to start from the torsional formulation of gravity which
leads to new modified extensions of gravity such as f (T )

gravity [17–19], f (T, TG) gravity [20,21], non-metricity
[22,23], Finsler corrections [24] and other classes of geo-
metrical modifications. The other direction is to modify the
right-hand-side of Einstein field equations i.e. to introduce
new matter fields such as the inflaton or the concept of dark
energy [25–29], providing new scenarios with extra degrees
of freedom.

Beyond the aforementioned directions in constructing new
modified theories, there is a well-known conjecture that grav-
ity can be expressed within laws of thermodynamics [30–32].
In particular, considering the Universe as a thermodynam-
ical system, filled with matter and dark-energy fluids and
bounded by the apparent horizon [33–36], the Friedmann
equations can be expressed as the first law of thermodynam-
ics. On the other hand, one can perform the reverse proce-
dure, by applying the first law of thermodynamics on the
Universe horizon and extract the Friedmann equations. The
crucial point in applying the aforementioned conjecture in the
context of modified theories, is that one should use the cor-
responding modified entropy relation which is valid in each
modified theory [36–51]. Lastly, let us mention that new mod-
ified scenarios cannot be provided through the above proce-
dure, due to the fact that since the modified entropy relation
is needed, the modified theory needs to be known a priori.

On the other hand, several generalizations of the standard
Boltzmann-Gibbs entropy and their cosmological implica-
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tions have been considered in the literature, such as Sharma–
Mittal entropy [52], Rényi entropy [53], Shannon entropy
[54], non-additive Tsallis entropy [55,56], Barrow entropy
[57], etc, all of which possess the standard entropy as a par-
ticular limit.

One interesting such case of generalized entropy is Kani-
adakis entropy [58,59]. This is a one-parameter general-
ization of the classical Boltzmann–Gibbs–Shannon entropy,
arising from a coherent and self-consistent relativistic sta-
tistical theory, which preserves the basic features of stan-
dard statistical theory, and recovers it in a particular limit.
In such a framework the corresponding distribution function
is a one-parameter continuous deformation of the standard
Maxwell-Boltzmann one.

In the present work we are interested in adopting the afore-
mentioned reverse procedure, using Kaniadakis entropy. In
particular, we will apply the first law of thermodynamics in
the Universe horizon, but using Kaniadakis entropy for the
horizon entropy. In this way we obtain modified Friedmann
equations, in which the new extra terms will constitute the
pillar for our investigation of the cosmological implications.

The plan of the manuscript is the following: In Sect. 2 we
briefly review the application of the aforementioned conjec-
ture in cosmology, and we present the new constructed modi-
fied scenario arising from the generalized Kaniadakis entropy
instead of the usual Bekenstein–Hawking one. In Sect. 3 we
investigate the cosmological implications of the extra terms
that appear in the modified Friedmann equations, focusing on
the behavior of the dark energy density and equation-of-state
parameters. Finally, in Sect. 4 we discuss our results.

2 Modified cosmological scenario through Kaniadakis
horizon entropy

We start our analysis by briefly reviewing the basic appli-
cation of the first law of thermodynamics in the case of
General Relativity, and we extend our analysis by using
the generalized Kaniadakis entropy instead of the standard
one. Throughout the work we consider an expanding Uni-
verse filled with a matter perfect fluid, with energy density
ρm and pressure pm , which is described by a homogeneous
and isotropic Friedmann–Robertson–Walker (FRW) geome-
try with metric

ds2 = −dt2 + a2(t)

(
dr2

1 − kr2 + r2d�2
)

, (1)

where a(t) is the scale factor, and with k = 0,+1,−1 cor-
responding to flat, close and open spatial geometry respec-
tively.

In order to apply the gravitational thermodynamics con-
jecture in cosmology, the first law is interpreted in terms of

the heat, considered as the energy that flows through local
Rindler horizons, applied on the horizon itself [30–32], and
in particular on the apparent horizon [33,34,60,61]:

ra = 1√
H2 + k

a2

, (2)

where H = ȧ
a the Hubble parameter and dots denoting

derivatives with respect to t . One then attributes to the Uni-
verse horizon an entropy and a temperature that arise from the
corresponding relations of black hole thermodynamics. In the
case of General Relativity one applies the usual Bekenstein–
Hawking entropy on the horizon, namely

SBH = 1

4G
A, (3)

where A = 4πr2
a is the area and G is the gravitational con-

stant (we use the natural units h̄ = kB = c = 1) [32]. On
the other hand, for the horizon temperature we apply the
standard relation which does not depend on the underlying
gravitational theory [62]:

T = 1

2πra
. (4)

For a dynamical Universe, the heat flow through the hori-
zon during a time interval dt can be calculated to be [34]
δQ = −dE = A(ρm + pm)Hradt. Thus, the first law
of thermodynamics reads −dE = TdS. Differentiation of
(3) immediately gives dS = 2πraṙadt/G, where ṙa can be
obtained from (2). Substituting everything in the first law we
obtain

−4πG(ρm + pm) = Ḣ − k

a2 . (5)

Furthermore, imposing the conservation equation for the
matter fluid ρ̇m +3H(ρm + pm) = 0, into (5) and integrating
we obtain

8πG

3
ρm = H2 + k

a2 − �

3
, (6)

where� is the cosmological constant, obtained as the integra-
tion constant. Hence, by applying the gravity-thermodynamics
conjecture, we were able to obtain the Friedmann equations
starting from the first law of thermodynamics. We mention
here that we imposed the assumption that after equilibrium
establishes, the Universe fluid acquires the same temperature
with the horizon one, which is true for the late-time Universe
[32–35,43,63].

As we mentioned in the Introduction, the above procedure
can be extended to modified gravity theories too, if one uses
the corresponding modified entropy of each theory [36–43,
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46,47] instead of the general-relativistic entropy relation (3).
Hence, one deduces that if we use the Kaniadakis entropy we
will obtain novel modifications in the Friedmann equations.
This will be done in the following, after a brief introduction
to this extended entropy.

2.1 Kaniadakis entropy

Kaniadakis entropy or K-entropy is a one-parameter general-
ization of the classical Boltzmann–Gibbs–Shannon entropy,
which arises from a coherent and self-consistent relativis-
tic statistical theory, which preserves the basic features of
standard statistical theory, and recovers it in a particular
limit [58,59]. In the case of Kaniadakis generalized statis-
tical theory the corresponding distribution function is a one-
parameter continuous deformation of the standard Maxwell-
Boltzmann one. In particular, Kaniadakis entropy is given
by

SK = −kB
∑
i

ni ln{K }ni , (7)

with kB the Boltzmann constant, where ln{K }x = (xK −
x−K )/2K , and −1 < K < 1 is the dimensionless Kani-
adakis parameter that quantifies the deviation from standard
statistical mechanics, with the latter being recovered in the
limit K → 0. Within this generalized theory the distribution
function becomes [58,59]

ni = α exp{K } [−β(Ei − μ)], (8)

with exp{K }(x) =
(√

1 + K 2x2 + Kx
)1/K

, α = [(1 −
K )/(1 + K )]1/2K , 1/β = √

1 − K 2 kBT , and where the
chemical potential μ can be fixed through normalization.
Equivalently, Kaniadakis entropy can be expressed as [64–
71]

SK = −kB

W∑
i=1

P1+K
i − P1−K

i

2K
, (9)

with Pi the probability of a system to be in a specific
microstate and W the total configuration number.

Applying the above in the case of black holes (which
will be the basis for the cosmological application), consid-
ering that Pi = 1/W , and using the fact that Boltzmann-
Gibbs entropy is S ∝ ln(W ), while the Bekenstein–Hawking
entropy is given by (3), we obtain W = exp(A/4G), where
from now on we use the natural units in which the Boltzmann
constant kB is 1 [72]. Hence, for the black hole application
of Kaniadakis entropy we obtain [72]

SK = 1

K
sinh (K SBH ), (10)

which for K → 0 recovers the standard Bekenstein–
Hawking entropy, namely SK→0 = SBH . We mention here
that since the above expression is an even function, SK =
S−K and thus in the following we focus on the K ≥ 0 region.

For completeness we give the relation of Kaniadakis
entropy with other generalized entropies, such as the Tsal-
lis one. In particular, the non-extensive Tsallis entropy STq ,
where q is the parameter that quantifies the deviation from
Bekenstein–Hawking entropy [55,74], is related to Kani-
adakis entropy through [66,72,73]

SK = ST1+K + ST1−K

2
. (11)

We mention here that there are two Tsallis entropies (equa-
tions (6) and (20) of [74]). The first one is the Tsallis entropy
used in (11), while the second one leads to ST = γ Aδ , with A
the area and γ and δ the two parameters. This second entropy
does not satisfy (11). Nevertheless, there is another simi-
lar entropy, namely Barrow entropy SB


, which arises from
quantum-gravitational effects that impose intricate, fractal
structure on the surface of the black hole, where 
 is the
parameter that quantifies the deviation from Bekenstein–
Hawking entropy [57]. Barrow entropy is similar to the sec-
ond Tsallis entropy and does not satisfy (11). In general, the
free parameters in generalized entropies should be estimated
by observations and experiments. Such entropies are proper
entropy measures for complex systems, long-range interact-
ing systems, and fractal systems. Barrow’s pioneering work
shows that Tsallis non-extensive second entropy may also be
explained in the quantum-gravitational framework, and thus
that gravity and its quantum features can provide a more
enlightening picture of the non-extensivity [76–80]. Hence,
based on the bounds of the 
 parameter of Barrow entropy
[81] we may acquire a better understanding of Tsallis second
entropy and its free parameters.

2.2 Modified Friedmann equations through Kaniadakis
entropy

We can now proceed in applying the gravity-thermodynamics
approach described above, but instead of the standard
Bekenstein–Hawking entropy relation we will use the gen-
eralized Kaniadakis entropy, namely Eq. (10). In particular,
differentiating (10) we acquire

dSK = 8π

4G
cosh

(
K

πr2
a

G

)
raṙadt. (12)

123



1037 Page 4 of 10 Eur. Phys. J. C (2021) 81 :1037

Inserting Eqs. (3), (4), and (12) into the first law of thermo-
dynamics, and substituting ṙa using (2), we obtain

−4πG(ρm + pm) = cosh

[
K

π

G(H2 + k
a2 )

](
Ḣ − k

a2

)
.

(13)

Finally, inserting the matter conservation equation into (13)
and integrating, we obtain

8πG

3
ρm = cosh

[
K

π

G(H2 + k
a2 )

] (
H2 + k

a2

)

−Kπ

G
shi

[
K

π

G(H2 + k
a2 )

]
− �

3
, (14)

where � is the integration constant and shi(x)1 an entire
mathematical odd function of x with no branch discontinu-
ities.

Equations (13) and (14) are the modified Friedmann equa-
tions, obtained by the use of generalized Kaniadakis entropy
in the first law of thermodynamics, which contain extra terms
comparing to the standard cosmological equations of Gen-
eral Relativity. As expected, for K = 0 the modified equa-
tions (13) and (14) reduce to the standard ones.

Moreover, focusing on the flat case, namely k = 0, we
can rewrite the above equations as

H2 = 8πG

3
(ρm + ρDE ) (15)

Ḣ = −4πG(ρm + pm + ρDE + pDE ), (16)

where the dark energy sector is defined as

ρDE = 3

8πG

{
�

3
+ H2

[
1 − cosh

(
K

π

GH2

)]

+Kπ

G
shi

(
K

π

GH2

)}
, (17)

pDE = − 1

8πG

{
� + (3H2 + 2Ḣ)

[
1 − cosh

(
K

π

GH2

)]

+3Kπ

G
shi

(
K

π

GH2

)}
. (18)

Hence, with the effective dark energy density and pressure at
hand, we can define the equation-of-state parameter for the
effective dark energy sector as

wDE ≡ pDE

ρDE
= −1 − 2Ḣ

[
1 − cosh

(
K

π

GH2

)]

·
{

� + 3H2
[
1 − cosh

(
K

π

GH2

)]

+3Kπ

G
shi

(
K

π

GH2

)}−1

. (19)

1 The function shi(x) is defined in general as shi(x) = ∫ x
0

sinh(x ′)
x ′ dx ′.

It is clear that in the case where K = 0, the generalized Fried-
mann equations (15), (16) reduce to the standard �CDM
cosmology. Equations (15) and (16) are the modified cosmo-
logical equations of the scenario at hand, and can determine
the evolution of the Universe which is being examined in the
next section.

3 Cosmic evolution

The constructed modified scenario of the previous section,
namely cosmological equations (15) and (16), will constitute
the pillar in our investigation of the cosmological evolution of
the Universe. Since we are interested in providing analytical
solutions too, we focus on the case of dust matter, namely
we impose pm = 0. In this case the matter conservation
equation leads to ρm = ρm0

a3 , where ρm0 is the value of the
matter energy density at the current scale factor which is set
to a0 = 1 (in what follows the subscript “0” will denote the
present value of a quantity).

At this point, it proves convenient to introduce the dimen-
sionless parameters

�m = 8πG

3H2 ρm (20)

�DE = 8πG

3H2 ρDE , (21)

for the matter and dark energy density sector respec-
tively. Furthermore, Eq. (20) gives immediately �m =
�m0H2

0 /a3H2 and recalling the fact that �m + �DE = 1
we can obtain an expression for the Hubble parameter which
reads as

H =
√

�m0H0√
a3(1 − �DE )

. (22)

In what follows we will use the redshift z as the independent
variable (1 + z = 1/a for a0 = 1). Thus, differentiating (22)
we obtain

Ḣ = − H2

2(1 − �DE )
[3(1 − �DE ) + (1 + z)�′

DE ], (23)

where prime denotes derivative with respect to z. This rela-
tion will be used to eliminate Ḣ from the above equations.

In order to provide analytical solutions, it proves conve-
nient to perform Taylor expansions of cosh(x) and shi(x) for
small K , which is indeed the case since modified Kaniadakis
entropy is expected to be close to the standard Bekenstein–
Hawking one. Hence, using that cosh (x) = 1+ x2

2 + x4

24 +· · ·
and shi(x) = x + x3

18 + x5

600 + · · · , expanding the first Fried-
mann equation and using (22), we obtain
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[
�

3H2
0 �m0(1 + z)3

+ 1

]
[1 − �DE (z)]

+ π2K 2

2G2H4
0 �2

m0(1 + z)6
[1 − �DE (z)]2

+ π4K 4

18G4H8
0 �4

m0(1 + z)12
[1 − �DE (z)]4 ≈ 1. (24)

Moreover, applying (24) at present time, namely z = 0, pro-
vides the modified scenario with a relation between the two
free parameters K and �, which reads as

� = 3H2
0 (1 − �m0) − π2K 2

2G2H2
0

(
3 + π2K 2

3G2H4
0

)
, (25)

leaving the scenario with one free parameter, as one can elim-
inate one of the two parameters in terms of the observation-
ally determined quantities �m0 and H0. Note that for K → 0,
all the above obtained equations reduce to the ones of �CDM
cosmology.

Substituting (25) into (24) we obtain the solutions for
�DE (z), which read as

�DE (z)

= 1 + ε1

2

[
3

A2 C− 6

A− 5

C
]1/2

+ε2

2

⎡
⎢⎣12

A − 5

C + 3

A2 C− 36B
A2

[
3
A2 C− 6

A− 5
C
]1/2

⎤
⎥⎦

1/2

,

(26)

with

A = K 2π2

G2H4
0 �2

m0(1 + z)6
,

B = 1 + 1 − �m0

�m0(1 + z)3

−1

2
A�m0(1 + z)3(1 + 1

9
A�2

m0(1 + z)6),

C =
⎡
⎣9A3+6B2A2+A2

√
125

27
A2+36

(
3

2
A+B2

)2
⎤
⎦

1
3

.

and where ε1, ε2 = ±1. Finally, differentiating (26) and
inserting into (22), (23) and then into (19) we can obtain the
analytical expression for the dark energy equation-of-state
parameter wDE (z). Lastly, the other physically interesting
quantity, namely the deceleration parameter q ≡ −1 − Ḣ

H2

can be similarly calculated using (22), (23) and the solution
(26).

In conclusion, we were able to extract analytical solu-
tions for the observable quantities of the dark energy sector,

namely for �DE , wDE and q, of the constructed cosmolog-
ical scenarios through Kaniadakis entropy. In the following
subsections we investigate in more detail their cosmological
implications.

3.1 � = 0 case

We start our analysis from the case where an explicit cos-
mological constant is absent. We mention that in this case
the scenario at hand does not have �CDM cosmology as a
limit, i.e. it corresponds to a radical modification of standard
cosmology with extra terms depending on the Kaniadakis
exponent K .

In the absence of �, the dark-energy sector relations (17),
(18) and (19) respectively become

ρDE = 3

8πG

{
H2

[
1 − cosh

(
K

π

GH2

)]

+Kπ

G
shi

(
K

π

GH2

)}
, (27)

pDE = − 1

8πG

{
(3H2 + 2Ḣ)

[
1 − cosh

(
K

π

GH2

)]

+3Kπ

G
shi

(
K

π

GH2

)}
. (28)

and

wDE ≡ pDE

ρDE
= −1 − 2Ḣ

[
1 − cosh

(
K

π

GH2

)]

·
{

3H2
[
1 − cosh

(
K

π

GH2

)]

+3Kπ

G
shi

(
K

π

GH2

)}−1

. (29)

However, when we apply (24) at present time, instead of (25)
in the case of � = 0 we acquire

3H2
0 (1 − �m0) = π2K 2

2G2H2
0

(
3 + π2K 2

3G2H4
0

)
. (30)

Hence, in the absence of � the parameter K is not completely
free but it should vary in a range consistent with the obser-
vational range of �m0, and of course the case K = 0 is now
excluded since it corresponds to dark-energy absence (as we
mentioned above the scenario at hand does not have �CDM
cosmology as a limit, and in the case K = 0 it gives just
CDM scenario).

The solution for the dark energy density parameter from
(24) is still given by (26) but with

A = K 2π2

G2H2
0 �2

m0(1 + z)6
,

B = 1,

C =
⎡
⎣9A3+6A2+A2

√
125

27
A2+36

(
3

2
A+1

)2
⎤
⎦

1
3

.
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Fig. 1 Upper graph: The evolution of the effective dark energy den-
sity parameter �DE (blue-solid) and the matter density parameter �m
(red-dashed) respectively, as a function of the redshift z, for the modi-
fied scenario through Kaniadakis entropy, in the case of � = 0. Mid-
dle graph: The evolution of the effective dark energy equation-of-state
parameter wDE . Lower graph: Evolution of the deceleration parameter
q. In all graphs the Kaniadakis entropic parameter is K = 0.35 in units
of kB , and according to (30) �m0 ≈ 0.3

In the upper graph of Fig. 1 we present the evolution of
the physically accepted energy densities �DE and �m in the
case where K = 0.35 (in units of kB), which according to
(30) corresponds to �m(z = 0) = �m0 ≈ 0.30. As we
can see, we acquire the usual thermal history of the Uni-
verse, with the sequence of matter and dark-energy epochs,
while in the asymptotic future the Universe results in a dark-
energy dominated, de Sitter phase. However, the dark-energy
equation-of-state parameter wDE , although being close to −1
at present, and in the future, at large redshifts it goes to −2.
This behavior is inside the observational bounds [75], nev-
ertheless it is less attractive. Finally, from the deceleration

Fig. 2 The evolution of the effective dark energy equation-of-state
parameter wDE , for different values of the Kaniadakis entropic param-
eter K in units of kB , in the case of � = 0. In all cases we have obtained
density parameters evolution similar to the graphs of Fig. 1, and �m0
lies inside the 2σ region according to Planck Collaboration, namely
�m0 ≈ 0.31 ± 0.014 [75]

parameter we can see that the transition from deceleration to
acceleration takes place at a redshift ztr ≈ 0.6, in agreement
with observations.

Let us now study in more detail the effect of the entropic
parameter K on the cosmic evolution and in particular focus-
ing on the dark energy equation-of-state parameter. In Fig. 2
we depict wDE for different values of K . The behavior is
similar to the one described above, namely wDE starts from
−2, and it becomes around −1 at present and future, while
lying always in the phantom regime. Note that the transition
redshift has a slight dependence on K . Finally, note that in
order to have �m0 ≈ 0.31 ± 0.014, which is the 2σ region
according to Planck Collaboration [75], K is varied in the
range 0.3 � K � 0.45. Lastly, at asymptotically large times
the Universe results always in a dark-energy dominated, de-
Sitter phase.

3.2 � 	= 0 case

In the previous subsection we examined the case where an
explicit cosmological constant is absent, and as we saw the
obtained results although in agreement with observation were
not completely attractive since the limit K → 0 could not
be obtained and moreover the early-time behavior of wDE

was around -2. Hence, in this subsection we consider the case
where an explicit cosmological constant is present, namely
we consider � 	= 0. In this case, for K = 0 the scenario
does give back �CDM cosmology, nevertheless for K 	= 0
the extra terms due to Kaniadakis entropy trigger deviations
from �CDM scenario, which is exactly the focus of interest
of the present work.

In the upper graph of Fig. 3 we depict the evolution of
the energy densities �DE and �m , as given by the analytical
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Fig. 3 Upper graph: The evolution of the effective dark energy den-
sity parameter �DE (blue-solid) and the matter density parameter �m
(red-dashed) respectively, as a function of the redshift z, for the modi-
fied scenario through Kaniadakis entropy. Middle graph: The evolution
of the effective dark energy equation-of-state parameter wDE . Lower
graph: Evolution of the deceleration parameter q. In all graphs the Kani-
adakis entropic parameter is K = 0.2 in units of kB , while � is given
by (25), and we have fixed �m(z = 0) = �m0 ≈ 0.3

solution (26)2 and by �m(z) = 1 − �DE (z) respectively, in
the case where K = 0.2. Note that we impose �m(z = 0) =
�m0 ≈ 0.3 in agreement with the Planck results [75]. As
we observe, from the resulting evolution of �DE and �m we
obtain the usual thermal history of the Universe in agreement
with observations, while in the asymptotic future (z → −1)
the Universe results in a dark-energy dominated, de Sitter
phase.

2 From the four solutions of �DE we keep only the solution with sign
(+,+), while we discard the other three, since they lead either to early-
time dark energy, or to negative �DE , or to the wrong sequence of
matter and dark energy epochs.

Fig. 4 The evolution of the effective dark energy equation-of-state
parameter wDE , for different values of the Kaniadakis entropic param-
eter K . We have imposed �m0 ≈ 0.3 at present time in units of kB , and
in all cases we have obtained density parameters evolution similar to
the graphs of Fig. 3

Additionally, in the middle graph of Fig. 3 we present
the evolution of the dark-energy equation-of-state parameter
wDE . As can be seen it slightly lies in the phantom regime
throughout the Universe evolution, nevertheless still inside
the observational bounds [75], while in the asymptotic future
it goes to de Sitter phase as mentioned above. Lastly, in the
lower graph we depict the corresponding deceleration param-
eter q(z). From this plot we can see the transition from decel-
eration to acceleration at a redshift ztr ≈ 0.6, in agreement
with the observed behavior.

We proceed by examining the effect of the entropic param-
eter K on the dark energy equation-of-state parameter. In Fig.
4 we present wDE for different values of Kaniadakis param-
eter K . As we stated above, for K → 0 we re-obtain the
�CDM scenario, i.e. wDE = −1 = const. As the Kani-
adakis parameter increases, the dark energy shows a dynam-
ical behaviour, with wDE at larger redshifts lying slightly in
the phantom regime, but at small redshifts and current time it
deviates more significantly from �CDM cosmology. Finally,
at asymptotically large times, it will always stabilize at the
cosmological constant value −1, and the Universe always
results in the de-Sitter solution, independently of the Kani-
adakis parameter K . Note that wDE is always in the phan-
tom regime, which is an advantage of the scenario, since it is
known that the phantom regime cannot be easily obtained.

We close this subsection with the calculation of the Uni-
verse age according to the scenario at hand. Starting from

the expression t (z) = ∫ ∞
z

dz
′

(1+z′ )H(z′ ) and inserting a typical

H(z) evolution obtained above we find t (z) = 0.966279
H0

, and
thus with the Planck value H0 = (67.27 ± 0.60) km/s/Mpc
we finally obtain

tage = 13.936+0.017
−0.017 Gyrs. (31)

This value coincides within 1σ with the value corresponding
to �CDM scenario, namely 13.787+0.020

−0.020 Gyrs [75].
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3.3 Relation with new Tsallis entropy

For completeness, in this subsection we examine the relation
of Kaniadakis entropy with New Tsallis entropy. The latter
can be written as

ST =
2 exp

(
δSBH

2

)
δ

sinh

(
δSBH

2

)
, (32)

and as it can be seen at small δ it is quite similar with Kani-
adakis entropy (10). Repeating the steps of Sect. 2.2, but
using the above entropy instead of Kaniadakis entropy we
obtain the following modified Friedmann equations:

−4πG(ρm + pm) = e

δπ

G(H2+ k
a2 )

(
Ḣ − k

a2

)

·
{

sinh

[
δπ

G(H2 + k
a2 )

]
+ cosh

[
δπ

G(H2 + k
a2 )

}]
.

(33)

8πG

3
ρm = e

δπ

G(H2+ k
a2 )

(
H2 + k

a2

)

−δπ

G
Ei

[
δπ

G(H2 + k
a2 )

]
− �

3
, (34)

where Ei(x) is defined as Ei(x) = − ∫ ∞
−x

e−x ′
x ′ dx ′. Addition-

ally, the effective dark energy density and pressure become

ρDE = 3

8πG

[
�

3
+ H2

(
1−e

δπ

GH2

)
+ δπ

G
Ei

(
δπ

GH2

)]
,

(35)

pDE = − 1

8πG

[
� + (3H2 + 2Ḣ)

(
1 − e

δπ

GH2

)

+3δπ

G
Ei

(
δπ

GH2

)]
. (36)

Expanding the Ei(x) function for small δ as Ei(x) = γ +
log(x)+x+ x2

4 +· · · , where γ is Euler’s constant, we finally
obtain

�DE = 1 − −D − EF +
√

4E (1 + E) + (D + EF)2

2E (1 + E)
,

(37)

with

D = �

3H2
0 �m0(1 + z)3

+ 1,

E = δπ

GH2
0 �m0(1 + z)3

,

F = γ + log(E) − 2.

Fig. 5 The evolution of the effective dark energy equation-of-state
parameter wDE , for different values of the new Tsallis entropy param-
eter δ in (32), in the case of � 	= 0

Lastly, applying the first Friedmann equation at present we
extract the relation between the two free parameters δ and �,
namely

� = 3H2
0 (1 − �m0) − δ2π2

G2H2
0

−3δπ

G

[
γ + log

(
δπ

G�m0H2
0

)
�m0 − 2

]
, (38)

leaving the scenario with one free parameter. Note that for
δ → 0, all the above obtained equations reduce to the ones
of �CDM cosmology.

Elaborating the above equations numerically, we find that
the model can indeed describe the thermal history of the
Universe, with dark-energy density parameter, deceleration
parameter, and dark-energy equation-of-state parameter evo-
lution similarly to Fig. 3. Additionally, in Fig. 5 we display
wDE for different values of the Tsallis parameter δ. As we
observe, although for δ = 0 we recover �CDM scenario,
for δ deviating from zero we obtain a dark-energy sector
lying in the quintessence regime, with the deviations from
�CDM cosmology being larger at small redshifts. Moreover,
at asymptotically large times the dark-energy equation-of-
state parameter stabilizes at the cosmological constant value
−1, and the Universe always results in the de-Sitter solution
independently of the Tsallis parameter. Lastly, we mention
that, similarly to Kaniadakis case, an explicit cosmological
constant is required in order to have efficient phenomenol-
ogy.

4 Conclusions

In this work we have constructed new cosmological scenarios
by considering the widely-known conjecture that thermody-
namics is related to gravity. In particular, it is known that
one can start from the first law of thermodynamics, applied
in the Universe horizon, and result in the Friedmann equa-
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tions. In this procedure one uses the entropy relation, namely
the Bekenstein–Hawking one in the case of General Relativ-
ity or the modified entropy expression in the case of mod-
ified gravity. Nevertheless, following the above procedure
in the reverse way, and applying the generalized Kaniadakis
hyperbolic entropy, we extracted modified Friedmann equa-
tions, which contain extra terms that appear for the first
time. These new terms are quantified by the single, new,
Kaniadakis entropy parameter K and effectively give rise
to a dark energy sector. In the case K = 0, where Kani-
adakis entropy becomes the standard Bekenstein–Hawking
one, the above effective dark energy becomes a constant
and �CDM concordance model is re-obtained. However, in
the case where deviations of Kaniadakis from Bekenstein–
Hawking one are switched on, we acquire very interesting
cosmological behavior.

In order to study this behavior in a more thorough way,
we assumed the matter sector to be dust, which allowed us to
find analytical solutions for the dark energy density param-
eter, as well as for the dark-energy equation of state and for
the deceleration parameter. As we saw, the Universe real-
izes the sequence of matter and dark-energy epochs, while
it transits from deceleration to acceleration at ztr ≈ 0.6 in
agreement with the observed behavior. Furthermore, when
we consider an explicit cosmological constant, according to
the value of K the equation-of-state parameter of dark energy
deviates from the cosmological constant value at small red-
shifts, while lying always in the phantom regime. Addition-
ally, at asymptotic late times it stabilizes in the cosmological
constant value −1, i.e. the Universe always results in a dark-
energy dominated, de Sitter phase.

For completeness, we investigated the sub-case where
there is not an explicit cosmological constant. In this case
the scenario at hand does not have �CDM cosmology as
a limit, and the evolution is determined solely by the extra
terms. We extracted analytical solutions for the dark energy
density and we showed that even without � the new terms
can trigger the sequence of matter and dark energy eras. Fur-
thermore, the dark energy equation-of-state parameter starts
from −2 at large redshifts, and it becomes around −1 at
present and future times, while lying always in the phantom
regime, while the transition redshift has a slight dependence
on K . Note that this wDE behavior is still inside the obser-
vational bounds of Planck Collaboration, since the deviation
from −1 takes place at quite early times, where the observa-
tional errors are huge [75].

In conclusion, the modified cosmology obtained from
the gravity-thermodynamics conjecture through Kaniadakis
entropy leads to very interesting Universe evolution. It would
be both interesting and necessary to perform a full observa-
tional analysis using data from Supernova type Ia (SNIa),
Baryon Acoustic Oscillation (BAO), Cosmic Microwave
Background (CMB), and Hubble parameter measurements,

in order to extract constraints on the model parameter K .
Such an investigation will be performed in a forthcoming
publication.
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