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Abstract In this letter a new Lagrangian variational prin-
ciple is proved to hold for the Einstein field equations, in
which the independent variational tensor field is identified
with the Ricci curvature tensor Rμν rather than the metric
tensor gμν . The corresponding Lagrangian function, denoted
as LR , is realized by a polynomial expression of the Ricci
4-scalar R ≡ gμνRμν and of the quadratic curvature 4-
scalar ρ ≡ RμνRμν . The Lagrangian variational principle
applies both to vacuum and non-vacuum cases and for its
validity it demands a non-vanishing, and actually also posi-
tive, cosmological constant � > 0. Then, by implementing
the deDonder–Weyl formalism, the physical conditions for
the existence of a manifestly-covariant Hamiltonian structure
associated with such a Lagrangian formulation are investi-
gated. As a consequence, it is proved that the Ricci tensor
can obey a Hamiltonian dynamics which is consistent with
the solutions predicted by the Einstein field equations.

A requisite that characterizes the mathematical formula-
tion of physical laws concerns the possibility of deriving
the fundamental dynamical equations of physical systems
from least-action variational principles. This criterion applies
to classical, quantum and relativistic mechanics as well as
continuum field theories, where the existence of variational
formulations is regarded “per se” as a property of consis-
tency and correctness of the same physical laws. In fact, the
Lagrangian and Hamiltonian formalisms established for their
representations are crucial to understand the physical prop-
erties of classical and quantum fields, including for example
their degrees of freedom and gauge properties, the role of
constraints, the unveiling of symmetries and conservation
laws.

The letter deals with the variational theory of the gravita-
tional field in the framework of classical General Relativity
(GR). The target addressed is twofold. First, it is proved that
a manifestly-covariant variational Lagrangian theory can be
constructed for the Ricci curvature tensor Rμν , to be treated

a e-mail: claudiocremaschini@gmail.com (corresponding author)

as an independent variational tensor field but still yielding
the Einstein field equations (EFE) as extremal equations. The
present theory therefore does not produce f (R)-type mod-
ifications of standard fundamental GR equations, although
– as we intend to show – it suggests also a way to produce
them. These are generated: (a) by the inclusion of additional
variational terms in the Lagrangian function depending on
the Ricci tensor (e.g., Ref. [1]) or in the framework of so-
called f (R) gravity theories (e.g., Refs. [2,3]); (b) by the
adoption of a new Hamiltonian action principle for the same
fundamental equations of GR. Second, it is shown that the
same Lagrangian theory admits a corresponding manifestly-
covariant Hamiltonian theory of deDonder–Weyl type [4]
which, under suitable conditions, is equivalent to the GR
equations. This permits unveiling the existence of a Hamil-
tonian structure for EFE associated with the Ricci tensor
dynamics and a symmetry existing between the variational
treatments of the metric and Ricci tensors.

In order to introduce the subject, it is useful to briefly recall
the main variational approaches to EFE available in the liter-
ature. We start with the original variational theory formulated
by Hilbert, soon after confirmed by Einstein himself [5]. This
is based on the adoption of the so-called Hilbert–Einstein
(HE) asynchronous action functional

SHE (g(r)) ≡
∫
M4

d�LHE (g), (1)

where SHE (g(r)) is considered a functional dependent only
on the variational metric tensor g(r) ≡ {

gμν

}
. In HE theory,

the latter belongs by assumption to a suitably-constrained
functional setting {g(r)}C , referred to as asynchronous func-
tional setting [6]. In the same setting, the invariant 4-volume
element of the Riemann space-time

{
M4, g(r)

}
, namely

d� ≡ d4rδ
√− |g(r)| (with d4r ≡ ∏

i=0,3 dr
i being the

canonical measure of the space-time manifold M4), depends
explicitly on the determinant of g(r), i.e., |g(r)| . In addi-
tion, here LHE (g) denotes a suitable Lagrangian 4-scalar
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function, while the quantity
√− |g|LHE (g) identifies the

corresponding variational Lagrangian. Hence, the variational
Lagrangian characterizing HE theory is not a 4-scalar, but
identifies a so-called 4-scalar density. In the same frame-
work the generalized Lagrangian coordinates can be identi-
fied (in any GR-frame) with the independent 4-tensor com-
ponents of the symmetric variational metric tensor itself, i.e.,
g(r) ≡ {

gμν

}
. At the same time, however, any 4-tensor

g(r) ∈ {g(r)}C realizes also a metric tensor, so that its
countervariant and covariant components respectively raise
and lower tensor indices and thus necessarily must satisfy
by construction the orthogonality condition gμνgμk = δkν .
The latter implies in turn the “normalization” condition
gμν(r)gμν(r) = 4. As a further consequence, in the same
functional setting, g(r) must determine also the Christoffel
symbols �(g(r)) and the Ricci tensor Rμν(g). Consequently
this means that g(r) must satisfy the well-known metric com-
patibility condition, so that its covariant derivatives vanish
identically. The HE 4-scalar Lagrangian LHE (g) is defined
as

LHE (g) = VHE (g) + VF , (2)

where

VHE (g) = − c3

16πG

(
gμνRμν(g) − 2�

)
(3)

denotes the gravitational contribution, with � > 0 being the
cosmological constant and where G is the Newton constant
of gravitation and c is the speed of light in vacuum. Instead,
VF ≡ VF (g, r) is the non-vacuum contribution due to pos-
sible external fields to be prescribed in terms of the field
Lagrangian LF as VF = 1

c LF . The HE variational princi-
ple is then obtained by requiring that for arbitrary variations
δg(r) it must be

δSHE (g(r))|g=ĝ(r)

= d

dθ
SHE (ĝ(r) + θδg(r))

∣∣∣∣
θ=0

= 0, (4)

with the symbol δ denoting the Frechet derivative and ĝ(r)
being the extremal classical metric tensor, to be ultimately
identified with the solution of EFE. A characteristic fea-
ture of the HE variational theory is that d� yields non-
vanishing variational contributions to δSHE (g(r)), since
δd� = d4rδ

√− |g|, where δ
√− |g| = − 1

2

√− |g|gμνδgμν .
As a consequence, the variation of the functional SHE (g(r))
does not preserve the space-time volume element, and for
this reason is referred to as asynchronous [7]. Straightfor-
ward algebra [6] then delivers

δSHE (g(r))|g=ĝ(r) = δSHE (g)|expl + δSHE (g)|impl , (5)

where the implicit contribution is

δSHE (g)|impl =
∫
M4

d�

[
− c3

16πG
ĝαβ δRαβ

δgμν

]
δgμν, (6)

while the explicit contributions can be written as

δSHE (g)|expl =
∫
M4

d4r
[
Aμν + Bμν + Cμν

]
δgμν, (7)

where Aμν , Bμν and Cμν are tensor densities, respectively
defined as

Aμν ≡ LHE
δ
√− |g|
δgμν

, (8)

Bμν ≡ − c3

16πG

√− |g|Rαβ

δgαβ

δgμν
, (9)

Cμν ≡ 1

c

√− |g| δLF

δgμν
. (10)

As shown in Ref. [6], in order to recover the correct form of
EFE, the constraint condition (δSHE (g))impl = 0 must hold.
This requires in turn an appropriate treatment of the implicit
contributions carried by the Ricci tensor, which depends
on the second-order partial derivatives of the metric tensor.
Then, the requirement that δSHE (g)|expl = 0 holds for arbi-
trary variations δgμν(r) yields the Einstein equations

R̂μν −
(

1

2
R̂ − �

)
ĝμν = κ T̂μν, (11)

where R̂μν = Rμν(ĝ(r)) and R̂ = ĝμν(r)R̂μν ≡ R(ĝ(r))
denote respectively the background Ricci 4-tensor and Ricci
4-scalar, T̂μν = Tμν(ĝ(r)) is the background stress–energy
tensor associated with the external source fields described by
the external-field Lagrangian density LF (g) and κ denotes
the universal constant κ = 8πG/c4.

The asynchronous HE approach is characterized by a num-
ber of conceptual deficiencies, which pertain primarily the
validity of the principle of manifest covariance and of funda-
mental gauge invariance properties to be satisfied by the HE
Lagrangian function [6,7]. An alternative approach which
overcomes these problems is provided by the synchronous
variational principle, which realizes for the gravitational field
a deDonder–Weyl manifestly-covariant variational theory
[8,9]. The synchronous variational approach is characterized
by the use of a 4-scalar Lagrangian function expressed in
terms of superabundant variables gμν and ĝμν . In this set-
ting, the variational tensor g ≡ {

gμν

}
is distinguished from

a suitably-defined “prescribed” (i.e., non-variational) back-
ground metric tensor ĝ ≡ {

ĝμν

}
, which defines uniquely

the covariance properties of the theory and, as such, is ulti-
mately assumed to be determined by the extremal Euler-
Lagrange equations (i.e., EFE). Hence, ĝ expresses the geo-
metric character of the metric tensor, namely it satisfies the
orthogonality condition ĝμν ĝμk = δkν , so that it raises/lowers
tensor indices, as well the metric compatibility condition
∇̂α ĝμν = 0, so that it defines the standard Christoffel con-
nections and curvature tensors of space-time. On the con-
trary, in this framework the variational tensor g is such that
gμνgμk �= δkν . The distinction between g and ĝ holds only at
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the variational level, since in the (extremal) EFE the identity
g = ĝ is restored. In the synchronous setting, hatted quanti-
ties depend on the background metric tensor ĝ and do not con-
tribute to the variational calculus. Thus, denoting in partic-
ular the synchronous volume element as d�̂ = d4r

√− |̂g|,
its variation vanishes by construction so that δd�̂ = 0. This
volume-preserving property under the action of the operator
δ justifies the name given to this approach as the synchronous
variational principle, in contrast to the asynchronous theory.

The corresponding synchronous Lagrangian action func-
tional is thus defined as

Ss(g(r), ĝ(r)) =
∫
M4

d�̂Ls(g, ĝ), (12)

where Ss(g(r), ĝ(r)) is considered a functional depen-
dent only on the variational tensor (not a metric tensor)
g(r) ≡ {

gμν

}
, with ĝ(r) being instead identified with a pre-

scribed background metric field tensor, i.e., the solution of
EFE. Here, Ls(g, ĝ) ≡ Ls(g (r) , ĝ (r)) is the variational
Lagrangian and, in contrast to the asynchronous action func-
tional (1), the volume element takes the form d�̂. The vari-
ational Lagrangian can be prescribed so that

Ls(g, ĝ) ≡ h(g, ĝ)L(g, ĝ), (13)

where

h(g, ĝ) = 2 − 1

4
gηβ(r)gμν(r)ĝημ(r)ĝβν(r) (14)

identifies a 4-scalar, i.e., the variational weight-factor, which
is defined so that h(ĝ, ĝ) = 1. Instead, the 4-scalar
Lagrangian L(g, ĝ) can be identified with a form analo-
gous to the HE 4-scalar Lagrangian LHE (g) given above
by Eq. (2), namely of the form

L(g, ĝ) = VG(g, ĝ) + VF (g, ĝ), (15)

where now

VG(g, ĝ) ≡ − c3

16πG

(
gμν R̂μν − 2�

)
, (16)

R̂μν ≡ Rμν(ĝ), (17)

and VF (g, ĝ) = 1
c LF (g, ĝ). Then, the synchronous

Lagrangian action principle follows by prescribing

δSs(g(r), ĝ(r))|g=ĝ = 0, (18)

for arbitrary variations δg(r), while noting that δĝ(r) ≡ 0.
Here, the symbol δ denotes the variation operator, i.e., the
Frechet derivative

δSs(g(r), ĝ(r))|g=ĝ ≡ d

dθ
SL(ĝ(r) + θδg(r), ĝ(r))

∣∣∣∣
θ=0

.(19)

By noting that δh(g, ĝ) = − 1
2 ĝ

μν(r)δgμν , the evaluation
of δSs(g(r), ĝ(r))|g=ĝ(r) is straightforward. In fact, in the
synchronous setting only explicit dependences on g give a
contribution, while the implicit ones carried by the Ricci

tensor are now excluded. Hence, from Eq. (18) one recovers
EFE in the correct form (11).

In the synchronous setting, gμν is not a metric tensor, so
that ∇̂αgμν �= 0. Hence, it is possible to determine a more
general form of the synchronous Lagrangian function which
includes also terms proportional to the covariant derivatives
∇̂αgμν , to be interpreted as “generalized field velocities”.
Under the requisite of preserving the correct form of EFE,
by implementing a deDonder–Weyl approach this leads to the
formulation of a classical manifestly-covariant Hamiltonian
theory of GR (see Refs. [8–10]). We notice that a general-
ization of this type can only be achieved for the synchronous
variational principle, while this possibility remains forbid-
den for the asynchronous formulation in which the deriva-
tives of the corresponding variational metric tensor g(r) are
identically vanishing. More precisely, the target is met by
introducing the effective kinetic energy T defined as

T = − c3

16πG

(
1

2
∇̂ηgμν∇̂ηg

μν

)
, (20)

which has the same dimensions of Ls , and the corre-
sponding 4-scalar Lagrangian function LT (g, ∇̂g, ĝ) =
LT (g(r), ∇̂g(r), ĝ(r)) as

LT (g, ∇̂g, ĝ) = T + Ls(g, ĝ). (21)

Then, upon identifying the 4-tensor conjugate canonical
momentum of gμν with

�η
μν(r) = ∂LT (g, ∇̂g, ĝ)

∂∇̂ηgμν
, (22)

the change of Lagrangian variables into canonical vari-
ables can be made. The Legendre transform then relates the
Lagrangian and the Hamiltonian function as

LT (g,�, ĝ) ≡ �η
μν∇̂ηg

μν − HT (g,�, ĝ), (23)

where, omitting for simplicity dimensional constants,
HT (g,�, ĝ) is the 4-scalar variational Hamiltonian defined
by

HT (g,�, ĝ) = 1

2
�η

μν(r)�
μν
η (r) + Ls(g, ĝ). (24)

Then, by introducing the Hamilton functional

SH (g(r),�(r), ĝ(r)) =
∫
M4

d�̂LT (g,�, ĝ) (25)

and the Hamiltonian variational principle (in terms again of
the Frechet derivative)

δSH (g(r),�(r), ĝ(r))|g=ĝ(r) = 0, (26)

a set of Hamilton equations is obtained⎧⎨
⎩

∇̂ηgμν = ∂HT (g,�,̂g)
∂�

η
μν

∇̂η�
η
μν = − ∂HT (g,�,̂g)

∂gμν

. (27)
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These equations are equivalent to the Lagrangian equa-
tions and include the additional contribution due to non-
vanishing canonical momenta. Upon evaluating them for
(g(r),�(r)) = (

ĝ(r), �̂(r) ≡ 0
)

one recovers EFE (the
detailed proof can be found in Ref. [8]). The result shows
that in the framework of the synchronous variational princi-
ple, EFE admit a classical Hamiltonian structure which obeys
manifestly-covariant Lagrangian and Hamiltonian equations.

Both cases discussed above display the peculiarity of the
variational calculation of Rμν with respect to the tensor
gμν , suggesting the conjecture that a deeper inspection of
its meaning might disclose the existence of novel theoretical
features concerning the variational formulation of EFE. Start-
ing from these considerations, the purpose in the following is
to prove the existence of an alternative route, which preserves
the consistency with the principle of manifest covariance (as
the synchronous approach) but is built on the identification of
Rμν as the independent variational tensor for the variational
theory of EFE, rather than gμν . This approach is shown to be
consistent with both Lagrangian and deDonder–Weyl Hamil-
tonian variational formulations of GR equations. This in turn
yields a novel point of view for the theoretical interpretation
of the physical meaning of EFE and the underlying Hamil-
tonian structure.

The proof of the statement is based on the introduction of
a Ricci-functional of the form

SR (ĝ (r) , R (r)) ≡
∫
M4

d�̂LR (ĝ, R) , (28)

which is considered dependent on the variational tensor field
R (r) ≡ {

Rμν (r)
}
, with R (r) belonging to a suitable syn-

chronous variational setting. This means, more precisely that,
as in all synchronous variational principles, the 4-tensor field
ĝ (r) identifies the prescribed metric field tensor solution
of EFE. Thus, in particular, the 4-scalar variational Ricci–
Lagrangian function LR (ĝ, R) is taken here of the form

LR (ĝ, R) ≡ − c3

16πG

(
1

2�
ρ + R − 1

4�
R2

)

+ 1

2c

1

�
Rμν T̂μν, (29)

with ρ ≡ RμνRμν , and R ≡ Rμν ĝμν denoting the corre-
sponding variational Ricci 4-scalar. A number of remarks
must be pointed out concerning the mathematical properties
of LR (ĝ, R):

1. The first one is that in SR the two tensor fields Rμν

and ĝμν are independent. The variational tensor is iden-
tified with Rμν , so that the hatted tensor ĝμν is effec-
tively considered as extremal in such a framework, and
therefore it is a metric tensor. Accordingly, RμνRμν ≡
RμνRαβ ĝαμĝβν , while the stress–energy tensor T̂μν is

regarded as a function of extremal fields in such a repre-
sentation.

2. The dimensional units have been included so to make the
Lagrangian LR (ĝ, R) homogeneous with LHE and Ls ,
so that LR (ĝ, R) is an action. Accordingly, the stress–
energy tensor T̂μν has the same dimension of the external-
field Lagrangian LF introduced above.

3. The Lagrangian LR (ĝ, R) is a polynomial function that
contains a linear and a quadratic contributions in the Ricci
4-scalar R, a quadratic term in the Ricci tensor Rμν which
enters through the curvature 4-scalar ρ ≡ RμνRμν and a
linear term in the Ricci tensor Rμν that carries the cou-
pling with external sources.

However, from the conceptual point of view the most strik-
ing feature that emerges from Eq. (29) is that the Lagrangian
LR (ĝ, R) depends on the cosmological constant �. Its inclu-
sion is necessary in order for LR (ĝ, R) to have the correct
dimension of an action, since [�] = L−2, and at the same
time to warrant recovering the correct form of EFE as the
extremal equations derived from it (see below). In addition,
we notice that necessarily the constraint � �= 0 is demanded
(which permits, in turn, the choice � > 0). These features
therefore suggest the interesting role taken by the cosmologi-
cal constant in this approach to the derivation of the classical
EFE based on the variational theory for the Ricci tensor,
implying that � must be a foundational element of GR the-
ory. In fact, the role of � > 0 can be of high relevance in
astrophysics, as summarized in Ref. [11]. Remarkably, the
choice of a positive cosmological constant in the variational
principle for EFE is a condition in agreement with the result
pointed out in Ref. [12] where it was shown that � > 0 can
be associated with the validity of the orthogonality condition
ĝμν ĝμk = δkν for the extremal metric tensor. Finally, the cru-
cial role of � pointed out here is also consistent with its mean-
ing which arises in the manifestly-covariant quantum gravity
theory and the relationship between quantum-modified and
classical GR equations [12,13].

The Ricci–Lagrangian variational principle associated
with the action integral SR (ĝ (r) , R (r)) can then be obtained
by requiring that for arbitrary variations δR(r) ≡ δRμν (r)
it occurs, for arbitrary variations δR(r), that

δSR (ĝ (r) , R (r))|R=R̂(r)

= d

dθ
SR(R̂(r) + θδR(r))

∣∣∣∣
θ=0

= 0, (30)

with the symbol δ denoting the Frechet derivative and the
variation being performed with respect to the independent
tensor field Rμν (r). Notice that here the extremal field R̂(r),
in difference with respect to Eq. (17), may be considered for
greater generality independent of the background metric ten-
sor field ĝ(r). Equation (30) is thus equivalent to the tensorial
equation
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δLR (ĝ, R)

δRμν (r)
= 0, (31)

with LR (ĝ, R) being given by Eq. (29). It is then imme-
diate to verify that the explicit algebraic calculation of the
previous equation yields the correct form of EFE, namely
Eq. (11). The following remarkable interpretation follows:
the realization of EFE can be reached by extremizing two
classes of Lagrangian functions, respectively LHE or Ls

in terms of the tensor field gμν (r) and LR for the curva-
ture Ricci tensor Rμν (r). In addition, we stress that for
the Ricci–Lagrangian variational action principle the dis-
tinction between synchronous/asynchronous approaches is
irrelevant. This is because in both cases all variations of the
metric tensor do not occur. So that the validity of the new
action principle appears of general validity in this respect.

We notice that the Lagrangian variational principle (30)
can apply both to vacuum and non-vacuum cases. The con-
tribution in LR (ĝ, R) describing the coupling term between
the curvature and external source fields is the 4-scalar
1
�
Rμν T̂μν . This kind of coupling is different from that occur-

ring in the action principles SHE (g(r)) and Ss(g(r), ĝ(r)),
where the relationship is between the variational tensor
gμν (r) and the Lagrangian LF of source fields. In the
case of SR (ĝ (r) , R (r)) instead the coupling occurs directly
between the stress–energy tensor T̂μν and the Ricci varia-
tional tensor Rμν . Remarkably, however, this form of inter-
action is not unconventional. In fact, this term exhibits a struc-
ture analogous to that occurring in classical electrodynamics
between the electromagnetic 4-potential Aμ and the 4-current
Jμ, namely proportional to the 4-scalar Aμ Jμ, where Aμ is
the variational field and Jμ is considered as prescribed [14].
We point out that this type of coupling could be an advantage
for the variational description of continuum fields in those
cases in which one knows the form of the stress–energy ten-
sor (e.g., through symmetry or conservation-law criteria) but
not the details of the underlying Lagrangian description. An
example of this type is represented by continuum fluids, pos-
sibly in the presence of non-ideal phenomena like viscous or
dissipation effects, torsion, diffusion, boundary-layer inter-
actions.

We now pose the question of establishing whether the
Lagrangian solution LR (ĝ, R) admits the existence of a cor-
responding Hamiltonian theory, again to be established in
terms of a manifestly-covariant deDonder–Weyl approach,
and if this yields Hamiltonian equations which are equiva-
lent to EFE. The program is analogous to that carried out
for the tensor gμν in the synchronous variational principle.
In order to proceed, for the convenience of calculations, we
first write the Lagrangian (29) in the compact form

LR (ĝ, R) ≡−
(

1

2�
ρ+R− 1

4�
R2

)
+ κ

2�
Rμν T̂μν, (32)

where all universal constants are included into the symbol κ .
Then, we introduce the “generalized velocity field” associ-
ated with the covariant derivative of Rμν , namely the quantity
∇̂ηRμν . For the variational Ricci tensor Rμν one generally
has that ∇̂ηRμν �= 0. Therefore, we can define the effective
Ricci-kinetic energy TR ≡ TR(ĝ, ∇̂R) as

TR = − 1

2�2 ∇̂ηRμν∇̂ηR
μν, (33)

which has the same dimensions of LR (ĝ, R). The corre-
sponding 4-scalar Lagrangian function LTR (ĝ, R, ∇̂R) =
LTR (ĝ(r), R(r), ∇̂R(r)) which includes this contribution
becomes

LTR (ĝ, R, ∇̂R) = TR(ĝ, ∇̂R) + LR (ĝ, R) . (34)

Then, the 4-tensor conjugate canonical momenta of Rμν are
defined accordingly as

πη
μν(r) = ∂LTR (ĝ, R, ∇̂R)

∂∇̂ηRμν
, (35)

which have one tensorial index more than the conjugate coor-
dinate field (i.e., Rμν), as it is characteristic of the deDonder–
Weyl solution. One obtains explicitly

πη
μν(r) = 1

�2 ∇̂ηRμν. (36)

With this definition we can now proceed introducing the
Ricci–Hamiltonian function HTR (ĝ, R, π) related to the
Lagrangian function by means of the customary Legendre
transform as

LTR (ĝ, R, π) ≡ πη
μν∇̂ηR

μν − HTR (ĝ, R, π), (37)

where HTR (ĝ, R, π) is the 4-scalar variational Hamiltonian
function defined by

HTR (ĝ, R, π) = 1

2
�2πη

μν(r)π
μν
η (r) + LTR (ĝ, R, π). (38)

The Hamiltonian structure is therefore defined by the set{
M4, xR

}
, where the Ricci canonical state xR is formed by

the couple of conjugate variables xR ≡ (
Rμν, π

η
μν

)
. In terms

of this expression we can introduce the Ricci–Hamilton func-
tional

SHR (ĝ (r) , R (r) , π (r)) =
∫
M4

d�̂LTR (ĝ, R, π)

and the Hamilton variational principle

δSHR (ĝ (r) , R (r) , π (r))
∣∣ = 0, (39)

where δ denotes again the Frechet derivative. As a conse-
quence, this provides the equivalent set of Hamilton equa-
tions in tensorial form⎧⎨
⎩

∇̂ηRμν = ∂HTR (ĝ,R,π)

∂π
η
μν

∇̂ηπ
η
μν = − ∂HTR (ĝ,R,π)

∂Rμν

. (40)

123



1030 Page 6 of 7 Eur. Phys. J. C (2021) 81 :1030

An explicit calculation then yields
{

∇̂ηRμν = �2π
μν
η (r)

∇̂ηπ
η
μν = − ∂LTR (ĝ,R,π)

∂Rμν

, (41)

where the first equation recovers as usual the definition of the
canonical momentum in terms of the generalized velocity,
i.e., Eq. (36). The second equation instead is a generaliza-
tion of EFE with the additional contribution associated with
the canonical momentum π

η
μν . In fact, evaluating it for the

extremal fields and using the first equation of (41) gives

1

�
�R̂μν + R̂μν −

(
1

2
R̂ − �

)
ĝμν = κ T̂μν, (42)

where � is the D’Alembertian differential operator � ≡
∇̂η∇̂η.

Equation (42) can differ from EFE, since in general
�R̂μν �= 0. The equivalence is reached necessarily iff
�R̂μν = 0, which is realized for example when separately
∇̂η R̂μν = 0. Incidentally, the same type of mathematical
condition arises also in the manifestly-covariant Hamilto-
nian theory of GR based on the synchronous action integral
(25) (see Eq. (27) and subsequent discussion). This condition
on R̂μν is satisfied trivially in vacuum when T̂μν = 0, since
in such a case the general solution of EFE is the Einstein
space R̂μν = �ĝμν [15], for which ∇̂η R̂μν = �∇̂η ĝμν = 0
thanks to the metric compatibility condition holding for the
metric tensor. More generally, a wider class of admissible
Hamiltonian solutions is obtained also in non-vacuum cases
for a suitable choice of stress–energy tensor which must be
of the functional type T̂μν = T̂μν

(
ĝμν

)
. The latter condi-

tion includes for example the screening effect of the cosmo-
logical constant due to quantum-gravity corrections to EFE
predicted in the framework of the manifestly-covariant quan-
tum gravity theory (see Ref. [16]). Hence, even though the
validity of the Ricci Hamiltonian theory is subject to pre-
cise restrictions, these are general enough to be effectively
realized concretely in physical systems of cosmological and
astrophysical interests where the Ricci tensor obeys a Hamil-
tonian dynamics which is consistent with the tensorial form
of the space-time solutions predicted by EFE.

In summary, in this letter we have proved the validity of a
novel variational principle for the Einstein field equations
in which the independent variational tensor field is iden-
tified with the Ricci curvature tensor Rμν rather than the
metric tensor gμν . The corresponding Lagrangian function,
denoted here as LR , is shown to depend both on the Ricci
4-scalar R ≡ gμνRμν through a polynomial of 2nd degree
and on the curvature 4-scalar ρ ≡ RμνRμν , together with
the simultaneous necessary condition of existence of a pos-
itive cosmological constant � > 0. Remarkably, the new
Lagrangian variational principle can apply both to vacuum
and non-vacuum cases. This result permits to conjecture the

physical interpretation according to which the Einstein field
equations can also be understood as (extremal) Lagrangian
equations for the Ricci tensor dynamics that satisfy the least-
action principle expressed in terms of LR . As a further result,
starting from LR and implementing the deDonder–Weyl for-
malism, the possibility of obtaining a manifestly-covariant
Hamiltonian structure associated with the novel Lagrangian
formulation has been investigated. It is proved that this con-
clusion can be satisfied for a class of GR space-times includ-
ing the vacuum case generating the Einstein space solution
as well for suitable prescription of the functional form of the
stress–energy tensor associated with external source fields.
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