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Abstract In this paper, we investigate the thermodynamics
and phase transitions of a four-dimensional rotating Kaluza–
Klein black hole solution in the presence of Maxwell elec-
trodynamics. Calculating the conserved and thermodynamic
quantities shows that the first law of thermodynamics is sat-
isfied. To find the stable black hole’s criteria, we check the
stability in the canonical ensemble by analyzing the behavior
of the heat capacity. We also consider a massive scalar pertur-
bation minimally coupled to the background geometry of the
four-dimensional static Kaluza–Klein black hole and inves-
tigate the quasinormal modes by employing the Wentzel–
Kramers–Brillouin (WKB) approximation. The anomalous
decay rate of the quasinormal modes spectrum is investigated
by using the sixth-order WKB formula and quasi-resonance
modes of the black hole are studied with averaging of Padé
approximations as well.

1 Introduction

The Kaluza–Klein (KK) theory is one of the oldest theo-
ries of the last century which proposed the extension of gen-
eral relativity in higher dimensions and incorporated extra
fields such as electromagnetism. In the past few decades, the
KK theory has been extended into a more general class of
string theories, however, the KK theory is still relevant as
a low energy effective version of string theory [1–6]. The
simplest KK theory is obtained using general relativity in
five dimensions and then performing dimensional reduction
to four dimensions. This extended framework contains both
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gravity and electromagnetism. Although the original five-
dimensional theory is not a realistic theory of nature, it has
been interpreted in a quantum mechanical framework as well
as string theory. KK theory has also been attracted to non-
commutative differential geometry, which may be viewed as
a KK theory in which the extra fifth dimension is taken to be
a discrete set of points rather than a continuum [7]. However,
stationary and spherically symmetric black holes (BHs) were
derived in [8]. Rotating BH solutions in four and five dimen-
sions were found by Larsen [9]. These BHs typically have
four free parameters: mass, spin, and electric and magnetic
charges. Also, six- and higher-dimensional versions of KK
BHs have been constructed [10]. In this paper, we study a
four-dimensional rotating KK BH.

From thermodynamic considerations, we know that under
certain conditions, a thermodynamic system can experience
a phase transition. Davies found that a discontinuity of the
heat capacity represents the second-order phase transition
in BHs about 40 years ago [11–13] while the analysis of
phase structure was done by Hut [14]. This approach is in
the framework of the canonical ensemble. Note that at the
extremal limit, heat capacity vanishes because of zero tem-
perature. This is called a type 1 phase transition since the sign
of heat capacity is changed, hence the BH with negative heat
capacity is unstable, and therefore, the system is undergoing
a phase transition.

When the background spacetime of a BH undergoes
dynamical perturbations, the resultant behavior involves
some sort of oscillations in spacetime geometry called quasi-
normal modes (QNMs). The QNMs are independent of initial
perturbed configuration and they are the intrinsic fingerprint
of the BH response to the external perturbations. The QNMs
usually have an imaginary part giving the damping time of
perturbations, while a real part represents the actual oscil-
lations. Investigating vibrations in the background geometry
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of BHs is one of the most important and exciting topics in the
context of compact star physics. These oscillations describe
the evolution of fields on the background spacetime [15,16].
The QNM spectrum reflects the properties of the spacetime,
and we can probe the properties of the background by study-
ing these vibrations. Therefore, the perturbed BH encodes
its intrinsic properties, such as mass, charge and angular
momentum in the QNM spectrum. The QNMs of super-
massive BHs undergoing gravitational perturbations can be
observed by future space-based gravitational wave detec-
tors [17], and investigation of BH oscillations have attracted
much attention recently after the detection of the gravitational
waves produced by compact binary mergers [18].

Scalar fields have been widely studied in the area of cos-
mology as inflatons [19], and also considered as candidates
for dark energy [20] and dark matter [21]. They can play
a role in constructing a consistent theory of quantum grav-
ity [22,23] and modifying the background geometry of BHs
in the strong-field regime [24,25]. Scalar fields can produce
clouds through instabilities around BHs [26,27]. In different
models with non-minimal interaction of scalar fields with
the spacetime metric, we expect gravitational waves to be
supplemented with a scalar mode. In these models, the grav-
itational waves of the spacetime geometry will be a linear
combination of gravitational waves in the underlying gravi-
tational theory and the scalar field solutions [28]. The final
QNMs are included components oscillating with a combi-
nation of the background metric and scalar field that could
potentially be observed. Therefore, the fingerprint of scalar
fields on gravitational waves could be detected by employ-
ing future gravitational wave detectors. However, the inter-
actions of scalar and tensor waves generally depend on the
scalar propagation speed such that the interactions are negli-
gible whether the scalar waves are luminal or quasi-luminal
[29].

On the other hand, a minimally coupled scalar field
describes the QNMs in the area of scalar–tensor theories,
and observing quasi-resonance modes and anomalous decay
rate of QN modes motivates one to investigate these models
as well. Besides, more recently it has been shown that if the
primary supermassive BHs in the extreme mass ratio inspirals
do not carry a significant scalar charge, the non-minimal cou-
pling factor vanishes, which the Laser Interferometer Space
Antenna (LISA) will still be able to detect and further mea-
sure scalar charge [30].

The test scalar fields minimally coupled to the background
metric were investigated for a Schwarzschild BH [31–33],
Reissner–Nordström BH [34–36], magnetized Schwarzschild
BH [37], Kerr geometry [38], BHs in Einstein–Weyl grav-
ity [39], conformal Weyl BH solutions [40,41] and three-
dimensional BHs [42]. In this paper, we focus on perturba-
tions of minimal coupled massive scalar fields in the back-
ground of four-dimensional static KK BHs to investigate the

effects of the free parameters p and q on the scalar QNM
spectrum. Moreover, we shall explore the quasi-resonance
modes and anomalous decay rate of QN modes for our BH
case study.

The layout of the paper is as follows. The next section is
devoted to introducing the field equations and corresponding
rotating KK black holes in four dimensions. Thermodynamic
quantities such as entropy, temperature, and electric and mag-
netic potential, as well as the examination of the first law of
BH thermodynamics, are studied in Sect. 2.1. The thermal
stability of the BH in the canonical ensemble is investigated
in Sect. 3. Then, in Sect. 4, dynamical perturbations are con-
sidered and QNMs are extracted. We finish the paper with a
summary and closing remarks.

2 Field equations, solutions and thermodynamics

The solution of five-dimensional rotating KK BHs with elec-
tric charge (Q) and magnetic charge (P) in the presence of
Maxwell electrodynamics is obtained within the framework
of four-dimensional Einstein–Maxwell-dilaton gravity [4].
The complete action is described as

S = −
∫ (R

κ2 + 2

3κ2ϕ2 ∂μϕ∂μϕ + 1

4
ϕ2F2

)
ϕ
√−gd4x,

(1)

where R represents the Ricci scalar and κ2 = 16πG. Also,
the dilaton field is represented by ϕ and F2 = FμνFμν ,
where Fμν is the Maxwell field tensor. Field equations could
be found by variation of the action (1) with respect to the
metric, Maxwell and dilaton fields, respectively, resulting in

Gμν = κ2ϕ2

2
T EM

μν − 1

ϕ

(
∂μ∂ν − gμν�

)
ϕ, (2)

T EM
μν = FμρF

ρ
ν − 1

4
gμνF

2, (3)

∂μFμν = −3
∂μϕ

ϕ
Fμν, (4)

�ϕ = κ2ϕ3

3
FμνF

μν. (5)

By using a solution-generating technique, Larsen obtained
the following five-dimensional solution [9]

ds2
5 = H2

H1
(dy + A)2 − H3

H2
(dt + B)2

+H1

(
dr2

�
+ dθ2 + �

H3
sin2 θdφ2

)
. (6)

The extra coordinate y is assumed to be periodic with period
2πRKK , where RKK is its radius. Also, ∂/∂y is considered a
Killing component so that the five-dimensional metric com-
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ponents can be functions of {t, r, θ, φ} only [3]. Here we use
the following definitions

H1 = r2 + a2 cos2 θ + r(p − 2m)

+ p

p + q

(p − 2m)(q − 2m)

2

− p

2m(p + q)

√
(q2 − 4m2)(p2 − 4m2)a cos θ, (7)

H2 = r2 + a2 cos2 θ + r(q − 2m)

+ q

p + q

(p − 2m)(q − 2m)

2

− q

2m(p + q)

√
(q2 − 4m2)(p2 − 4m2)a cos θ, (8)

H3 = r2 + a2 cos2 θ − 2mr, � = r2 + a2 − 2mr, (9)

A = −
⎡
⎣2Q

(
r + p − 2m

2

)
+

√
q3(p2 − 4m2)

4m2(p + q)
a cos θ

⎤
⎦

× dt

H2
−

⎡
⎣2P(H2+a2 sin2 θ) cos θ+

√
p(q2 − 4m2)

4m2(p + q)3

×
[
(p + q)(pr − m(p − 2m)) + q(p2

−4m2)
]
a sin2 θ

⎤
⎦ dφ

H2
, (10)

B = √
pq

(pq+4m2)r−m(p − 2m)(q − 2m)

2m(p + q)H3
a sin2 θdφ.

(11)

The four free parameters m, p, q and a are related to the
physical parameters through

Mass: M = p + q

4
, (12)

magnetic charge: P2 = p(p2 − 4m2)

4(p + q)
, (13)

electric charge: Q2 = q(q2 − 4m2)

4(p + q)
, (14)

angular momentum: J =
√
pq(pq + 4m2)

4m(p + q)
a. (15)

It is notable that two charges q and p are not indepen-
dent parameters. They can change angular momentum and
the mass of the BH. Also, the definition of charges forces us
to select p and q larger than 2m. Furthermore, zero electric or
magnetic charge causes the angular momentum J to vanish.
In addition, it is clear that two horizons can be obtained by
solving � = 0, so r± = m±√

m2 − a2 which are impressed
by mass (M) and both charges (P, Q) based on their defini-
tions in Eqs. (12)–(15).

Setting a = m yields Kerr like extremal limit which
named “fast rotation” by J > QP . In addition if a → 0

and m → 0 but the ratio a/m < 1 we get the next extremal
limit for our solution which gets J < PQ or “slow rotation”
[5].

The corresponding four-dimensional BH metric after
dimensional reduction is the following [9]

ds2
4 = − H3√

H1H2
(dt + B)2 + √

H1H2

(
dr2

�
+ dθ2

+ �

H3
sin2 θdφ2

)
. (16)

It is interesting to introduce the dimensionless form of the
solution. In this regard, we use the following dimensionless
parameters [43]

p ≡ b m q ≡ c m

ε2 = Q2

M2 μ2 = P2

M2 (17)

α = a

M
x = r

M

so the free independent parameters are x, M, α, b, c and the
metric functions transform as

H1

M2 = 8(b − 2)(c − 2)b

(b + c)3 + 4(b − 2)

b + c
x + x2

−2b
√

(b2 − 4)(c2 − 4)α cos θ

(b + c)2 + α2 cos2 θ,

H2

M2 = 8(b − 2)(c − 2)c

(b + c)3 + 4(c − 2)

b + c
x + x2

−2c
√

(b2 − 4)(c2 − 4)α cos θ

(b + c)2 + α2 cos2 θ,

H3

M2 = x2 + α2 cos2 θ − 8x

b + c
,

�

M2 =x2 + α2− 8x

b + c
,

H4

M3 =
2
√
bc

[
(bc+4)(b+c)x − 4(b−2)(c−2)

]
α sin2 θ

(b + c)3 ,

m = 4M

b + c
, ε2 = 4c(c2 − 4)

(b + c)3 ,

μ2 = 4b(b2 − 4)

(b + c)3 , J =
√
bc(bc + 4)

(b + c)2 M2α. (18)

One of the advantages of this notation is a simple under-
standing of the physical properties of the solution. Indeed,
the physical properties of this spacetime can be more clearly
explained in terms of b, c and α parameters, and further
comparisons with the Kerr–Newman BH can be made pos-
sible. We should also note that some of the observational
constraints on free parameters and physical properties of
the mentioned KK BH solution (such as analysis of the
gyroscope precession frequency [43], X-ray reflection spec-
troscopy [44], and shadow, quasinormal modes and quasi-
periodic oscillations [45]) have been studied before.
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2.1 Thermodynamics

Now, we turn to consider thermodynamics of the four-
dimensional KK BH. We start with the calculation of horizon
area (A) using its definition [9]

A =
∫ π

0
dθ

∫ 2π

0

√
gθθ gφφ

∣∣
r=r+

dφ = − π
√
bc

(b+c)2

⎡
⎣2+ (bc + 4)

(b + c)

√
1 −

(
(b + c) α

2

)2
⎤
⎦ M2.

In [46], the author proved that the entropy of the KK BH
obeys the area formula which is given as [9]

S = A
4π

= πM2
√
bc

2 (b + c)

[
x6+ − α6(

x2+ + α2
)
x2+

− 2
(
x2+ + α2

)
x+

+α2 + 4 bc

(b + c)2

]
. (19)

Here x+ denotes the event horizon. If x+ is large, then

S
∣∣∣
x+→∞ = πM2

√
bc

(b + c)

[
x2+
2

− x+ + 2 bc

(b + c)2 − α2

x+

]

+O

(
1

x2+

)
, (20)

which confirms an expected result S ∝ r2+ for large values
of r+, since this BH behaves similarly to four-dimensional
static BH solutions.

The rotational velocity of the BH horizon ( = −gφt /gφφ )
reads

 = (b + c)2 α

2M
√
bc

⎡
⎣2 + (bc + 4)

(b + c)

√
1 −

(
(b + c) α

2

)2
⎤
⎦

−1

.

(21)

It is worthy to recall that � = 0 whenever we want to calcu-
late . One of the most important thermodynamic parameters
in BH physics is temperature. It is shown that [46] tempera-
ture can be calculated using the Euclidean method or surface
gravity method. However, in our paper, we shall use the later
one. The common Hawking temperature is related to surface
gravity of BHs (T = κ/2π ). In our case, we encounter a
stationary and axisymmetric solution, and corresponding to
the Killing vector field is χ = ∂/∂t + ∂/∂φ the surface
gravity reads

κ =
√

−1

2
(∂μχν)(∂μχν). (22)

It is easy to show that the Hawking temperature is given by

T = κ

4π
= x+

(
x4+ − α4

)
(b + c)

2Mπ
√
bc

[(
α2 + 4bc

(b + c)2

)

×x2+
(
x2+ − α2

)
+ x6+ − α6 + 2 x+

(
x2+ + α2

)2
]−1

,

(23)

which vanishes for r+ = 0 or r+ = a. We should note that
the vanishing temperature after the origin may be related to
the horizon of the extremal BH.

According to Fig. 1 one finds the minimum of the entropy
related with the vanishing T and it is consistent with the third
law of thermodynamics.

From Fig. 2, it is clear that the position of the root and local
maximum of T can change based on the metric parameters.
For instance, one finds that by increasing the spin parameter
a, temperature vanishes for larger x+. It is worth noting that
changing the magnetic (electric) parameter does not alter the
position of the root.

In addition, the expansion of temperature for a large radius
is observed as

T
∣∣∣
x+→∞ = (b + c)

Mπ
√
bc

(
1

2x+
− 1

x2+

)
+ O

(
1

x3+

)
. (24)

Interestingly enough, from (20) and (24) one can find that, for
x+ → ∞, the temperature vanishes but the entropy diverges!
This may suggest the existence of an infinite radius for KK
BHs [46].

The first law of BH thermodynamics can be verified as [9]

dM = T dS +UdQ + �dP + dJ, (25)

in whichU and � are electric and magnetic potential, respec-
tively, given by

U =
(

∂M

∂Q

)
S,P,J

, and � =
(

∂M

∂P

)
S,Q,J

. (26)

After some manipulations, one can find the following explicit
form of U and �

U = πT M

√(
c2 − 4

)
b

(b + c)3

(
b + 4√

4 − α2 (b + c)2

)
, (27)

� = πT M

√(
b2 − 4

)
c

(b + c)3

(
c + 4√

4 − α2 (b + c)2

)
. (28)

It is notable that for p = 2m (q = 2m) which is equal to
b = 2 (c = 2), the magnetic (electric) potential vanishes.
Also, both potentials vanish when x+ → ∞ since

�

∣∣∣
x+→∞ =

√
b2 − 4

(b + c) b

(
c + 4√

−α2 (b + c)2 + 4

)
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Fig. 1 Behavior of temperature with respect to entropy for q = 8 (left) and p = 8 (right)

(a) (b)

(c)

Fig. 2 Behavior of temperature with respect to r+

×
(

1

2x+
− 1

x2
+

)
+ O

(
1

x3
+

)

U
∣∣∣
x+→∞ =

√
c2 − 4

(b + c) c

(
b + 4√

−α2 (b + c)2 + 4

)

×
(

1

2x+
− 1

x2
+

)
+ O

(
1

x3
+

)
, (29)

which is expected for localized charged objects.

3 Thermal stability via canonical ensemble approach

We are in a position to study thermal stability and phase
transition of solutions. By looking at the behavior of the heat
capacity in the presence of positive temperature, we predict
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Table 1 Critical values of
rotation parameter a

p q acrit

8 4 0.95

9 4 1.00

10 4 1.05

20 4 1.39

10 10 1.72

4 8 0.95

4 9 1.00

4 10 1.05

4 20 1.39

5 5 0.86

criteria for thermally stable BHs. This approach is known
as stability in the canonical ensemble. When a system is
unstable, phase transitions usually take place. In other words,
unstable systems go under a phase transition to acquire sta-
bility. Discontinuity of heat capacity marks the second-order
phase transition in BHs [11,12].

The heat capacity for fixed values of extensive quantities
obeys

CP,Q,J = T
∂S

∂T

∣∣∣
P,QJ

. (30)

In our case, entropy is not an explicit function of tempera-
ture. Instead, they have common variables. Therefore, we use
the chain rule of derivatives to compute CP,Q,J . It is notable
that P, Q and J are constants, simultaneously, so we con-
sider dQ = dJ = dP = 0 to compute the heat capacity.
For the sake of complexity, we use some figures to analyze
the treatment of the heat capacity. It is important to note that
we use different scales for temperature to make it compara-
ble with the heat capacity. In order to find the critical point
of heat capacity, we should use the first and second deriva-
tive of temperature with respect to r+. Firstly, we solve the
first derivative of temperature ( ∂T

∂x+ = 0) to obtain the criti-
cal angular momentum. Then, by substitution in the second
derivative ( ∂2T

∂x2+
= 0), we may obtain the critical horizon.

These two functions are complicated, and it is not a trivial
task to solve them analytically. The practical solution is to
use the numerical method.

In Table 1, the critical values of spin parameter are pre-
sented. It is clear that by increasing p (q) when q (p) is
constant, the value of critical a increases. It is notable that
replacing p with q does not change the critical value of the
rotation parameter.

Regarding Eq. (30), one may find positive heat capacity for

negative T and ∂S
∂T

∣∣∣
P,QJ

< 0 which is not physical stability.

In order to remove such an ambiguity, we plot both tempera-
ture and heat capacity in Fig. 3. By adjusting the electric and

magnetic charge parameters, we can find the critical rotation
parameter acrit . Numerical calculations show that increas-
ing the magnetic (electric) charge makes the critical rotation
parameters larger. By exchanging the value of two parame-
ters, no change in acrit is observed.

Figure 3 shows two divergences and one zero value in
the heat capacity function in the presence of positive tem-
perature, and their positions change by increasing the mag-
netic (electric) parameter. As we mentioned before, the only
acceptable Cx (x means P, Q, J ) is positive, so the stable
BH is only allowed to have limited radii. Based on the fig-
ures, the heat capacity is negative after the final divergence.
Accordingly, large BHs are not thermodynamically stable.

Another interesting note is related to the position of two
divergences relative to each other. Increasing the metric
parameters makes them farther apart. However, it does not
have much effect on the allowable values of the radius. The
final point is that, as the divergences occur between positive
and negative values of Cx , the plots do not predict first- or
second-order phase transitions, but the Davis phase transition
is possible.

Finally, we plot heat capacity when the magnetic charge
parameter is fixed, but the curves do not contain additional
information.

4 Quasinormal modes

4.1 Setup

Here, we consider a massive scalar perturbation in the back-
ground geometry of four-dimensional static KK BHs and
obtain the QN frequencies by employing the WKB approx-
imation [47–50]. The line element of four-dimensional KK
BHs (16) for the static case a = 0 reduces to

ds2
4 = − f (r)dt2 + dr2

f (r)
+ g(r)

(
dθ2 + sin θdφ2

)
, (31)

with f (r) = H3/g(r) and g(r) = √
H1H2. The equation

of motion for a minimally coupled massive scalar field � is
given by the following Klein–Gordon equation

�� − μ2� = 0, (32)

in which μ is the mass of the scalar field � and � =
∇ν∇ν . It is notable that we cannot obtain a second-order
Schrödinger-like wave equation for the radial part of pertur-
bations by expanding the scalar field versus either spherical
or spheroidal harmonics. In order to find a Schrödinger-like
master equation, hence being able to use the WKB approx-
imation, we first define R = √

g(r) and rewrite the metric
(31) in the following form
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(a) (b)

(c)

Fig. 3 Behavior of CP,Q,J (green curve) and 105T (red curve) with respect to r+

ds2
4 = − f (R)dt2 + dR2

f (R)h2(R)
+ R2

(
dθ2 + sin θdφ2

)
,

(33)

where f (R) and h(R) can be obtained by converting r ver-
sus R through R = √

g(r). However, we should note that,
to calculate r(R), the equation R − √

g(r) = 0 has four
independent solutions. Here, we choose the solution which
maps the event horizon r+ of (31) to a positive definite event
horizon R+ for (33).

Now, by expanding the scalar field eigenfunction � in the
form

� (t, R, θ, ϕ) =
∑
l,m

1

R
ψl (R) Yl,m (θ, ϕ) e−iωt , (34)

in which Yl,m (θ, ϕ) denotes the spherical harmonics on S2,
we can find that the equation of motion (32) reduces to a
wavelike equation for the radial part ψl (R) as follows

[
∂2
R∗ + ω2 − Vl (R)

]
ψl (R∗) = 0. (35)

In this equation, R∗ is the tortoise coordinate

R∗ =
∫

dR

f (R)h(R)
, (36)

and the effective potential Vl (R) is given by

Vl (R) = f (R)

[
μ2 + l (l + 1)

R2 + h (R)

R
∂R [ f (R)h(R)]

]
,

(37)

where l is the multipole number.
By imposing some proper boundary conditions on the

master wave equation (35), we can find a discrete set of eigen-
values ω. The quasinormal boundary conditions imply that
the wave at the event horizon is purely incoming and the
modes are purely outgoing at spacial infinity.

ψl (R) ∼ e−iωR∗ as R∗ → −∞ (r → r+)

ψl (R) ∼ eiωR∗ as R∗ → ∞ (r → ∞)
, (38)

We should consider these boundary conditions to obtain the
QNMs spectrum.
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Fig. 4 Profiles of the effective potential versus the radial coordinate. The potential forms a barrier and vanishes at both infinities

4.2 WKB approximation

In this paper, we use the WKB approximation to calculate the
QN modes. This approximation is based on matching WKB
expansion of the modes ψl (r∗) at the event horizon and spa-
tial infinity with the Taylor expansion of the effective poten-
tial (37) near the peak of the potential barrier through two
turning points at ω2−Vl (R) = 0. Thus, we can use the WKB
approximation to calculate the QN frequencies for potentials
that form a potential barrier and take constant and/or zero
values at the event horizon and spatial infinity. The WKB
approximation was first applied to the problem of scatter-
ing around black holes [47], and subsequently extended to
the third order [48], sixth order [49] and 13th order [50].
The 13th order of the WKB approximation is given by the
following formula

ω2 = V0 +
6∑
j=1

2 j − i
√

−2V ′′
0

(
n + 1

2

)

×
⎛
⎝1 +

6∑
j=1

2 j+1

⎞
⎠ ; n = 0, 1, 2, . . . , (39)

where V0 is the maximum value of the effective potential,
 j ’s are the WKB correction terms of the j th order, and n is
the overtone number. It is worth mentioning that the WKB
formula does not give reliable frequencies for n ≥ l, whereas
it leads to quite accurate values for n < l and exact values in
the eikonal limit l → ∞. We use this formula up to the 13th
order to calculate the QN frequencies of perturbations.

However, at the first step, we should note that the relation
r(R) is generally quite complicated and leads to a cumber-
some form for the effective potential. Thus, obtaining the
QN frequencies even by using the third-order WKB formula
is time-consuming. But, fortunately, for an equal value of p
and q (p = Q = q), we receive a quite simple relation as
r(R) = m + R − Q/2 and the effective potential takes a
more simple form as follows

Vl (R) = f (R)

(
μ2 + l (l + 1)

R2 + f ′(R)

R

)
, (40)

with

f (R) = −m2

R2 + (Q − 2R)2

4R2 . (41)

We shall use this potential to calculate the QNMs. Fig-
ure 4 shows the behavior of this effective potential (40) ver-
sus radial coordinate for different values of charge Q and the
multipole number l. The potential forms a barrier and van-
ishes at the event horizon and spatial infinity, thus we can use
the WKB formula to calculate the QN frequencies.

As we have mentioned before, the WKB formula usually
gives the best accuracy for l > n and it provides an accurate
and economic way to compute the QN frequencies [49,51].
In this regard, we compare two sequential orders of the for-
mula (39) to estimate the error of the WKB approximation.
However, since each WKB correction term affects either the
real or imaginary part of the squared frequencies, we should
use the following quantity [51]

�k = |ωk+1 − ωk−1|
2

, (42)

to obtain the error estimation of ωk that is calculated with the
WKB formula of the order k, and �k gives the WKB order in
which the error is minimal. Therefore, we can use the error
estimation (42) to find the WKB order which gives the most
accurate approximation for the QN modes.

In Table 2, we show the QN frequencies and the error esti-
mation of the WKB formula for the fundamental QN modes.
From this table, we see that the best order of the WKB for-
mula for calculating the QN frequency for Q = 0.1 is the
seventh order, whereas the QN frequency for Q = 0.2 has
the best accuracy with the help of the fifth order. Thus, the
minimum error of the WKB formula depends on the charge
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Table 2 The fundamental
modes calculated by the WKB
formula of different orders for
m = 1, μ = 0, n = 0, l = 1 and
Q = 0.1 left (Q = 0.2 right).
The minimal error estimation is
given in bold form

k ωk �k × 10−3 k ωk �k × 10−3

2 0.7156 − 0.4043i 99.6 2 0.6725 − 0.4228i 99.3

3 0.6786 − 0.3344i 41.2 3 0.6328 − 0.3563i 40.7

4 0.7031 − 0.3228i 14.7 4 0.6577 − 0.3428i 15.6

5 0.7079 − 0.3331i 7.43 5 0.6639 − 0.3547i 9.11

6 0.6994 − 0.3372i 6.49 6 0.6532 − 0.3605i 9.52

7 0.6955 − 0.3291i 4.96 7 0.6462 − 0.3477i 11.4

8 0.6995 − 0.3273i 6.76 8 0.6618 − 0.3394i 12.8

9 0.6942 − 0.3157i 34.0 9 0.6705 − 0.3560i 9.95

10 0.7562 − 0.2898i 112 10 0.6646 − 0.3592i 32.9

11 0.8470 − 0.4792i 360 11 0.6971 − 0.4162i 205

12 0.4344 − 0.9342i 891 12 0.4209 − 0.6893i 767

value Q. The oscillations increase and the modes live longer
as the charge Q decreases.

4.3 Anomalous decay rate of QN modes

One of the motivations for considering the test massive fields
comes from the fact that, depending on the mass of the scalar
field, the QNMs either grow or decay with an increasing mul-
tipole number l. This novel behavior was first uncovered for
Schwarzschild BH [33], and then confirmed for the Reissner–
Nordström BH [36], Schwarzschild-dS spacetime and BH
solutions in conformal Weyl gravity [52]. This anomalous
behavior is due to the presence of a sub-leading μ2-term in
the eikonal expression of ωi [33]. In this scenario, there is
a critical scalar mass μ̃ such that ωi increases (decreases)
with an increase in l for μ > μ̃ (μ < μ̃). For low-l values,
the critical mass μ̃ decreases when l increases, but there is a
fixed critical mass for large-l values.

Here, we numerically investigate the possibility of this
anomalous behavior for our BH case study with the line
element (33). Note that since we are going to calculate the
fundamental QN frequencies for large-l values, the WKB
approximation will lead to accurate results. Thus, we have
used the sixth-order WKB formula to plot the Fig. 5. This
figure shows the imaginary part of the QN modes ωi as a
function of μ for different values of l and Q. From both pan-
els, we find that the curves cross over at a special mass μ̃,
and thus the QNM spectrum of KK BHs in asymptotically flat
spacetime contains this anomaly. It is worth noting that the
charge parameter Q affects the critical mass and μ̃ increases
with a decrease in Q.

4.4 Quasi-resonance modes

In addition to the anomalous decay rate of QNMs related
to massive test fields, observing arbitrarily long life (purely
real) modes is also one of the interesting motivations for

studying massive scalar fields [34]. These kinds of modes
with vanishing imaginary parts are called quasi-resonance
modes. The oscillations do not decay in the quasi-resonances
and the situation is similar to the standing waves on a
string. The quasi-resonance modes were investigated for
Schwarzschild BH [31,32], Reissner–Nordström BH [35],
magnetized Schwarzschild BH [37], Kerr geometry [38],
BHs in Einstein–Weyl gravity [39] and wormholes [53].
However, it is not possible to find these modes for asymptoti-
cally dS spacetimes [52,54]. The quasi-resonance modes can
be found for special values of the field mass whenever the
effective potential is non-zero at the event horizon or spatial
infinity (see Fig. 6 for the profile of the effective potential (40)
of our BH case study). In this scenario, the QNMs disappear,
and this happens just for lower overtones.

We recall that the WKB approximation provides quite a
simple, powerful and accurate tool for studying the dynam-
ical properties of BHs, such as the scattering problems and
QN modes for low overtones and high multipole numbers.
However, this method cannot be used for the calculation of
quasi-resonance modes in general and it just allows one to
calculate large-l QN frequencies of massive test fields close
to the quasi-resonance regime [51]. The reason is that the
effective potential does not have a local maximum for large
values of the field mass, thus the WKB expansion cannot be
performed. However, as long as the asymptotic value of the
effective potential is lower than its peak, μ2 < V0 (like the
green and red curves in Fig. 6), the ordinary WKB formula
(39) is accurate enough for l ≥ 1; hence the error is negligible
[51].

In order to calculate the quasi-resonances by employing
the WKB approximation, we use an approach based on aver-
aging of Padé approximations [50] which is developed for
quasi-resonances of the Schwarzschild BH [51] which can
considerably improve the accuracy of the quasi-resonance
modes for μ2 > V0 when the maximum of the potential
still exists (see the blue curves in Fig. 6). The fundamental
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Fig. 5 The imaginary part of the fundamental overtone versus μ calculated by using the sixth-order WKB formula for m = 1. The vertical black
line indicates the critical mass μ̃ where the curves cross each other for large-l values

Fig. 6 The effective potential for m = 1 and Q = 0.1. The potential takes a constant value at the spacial infinity and the dotted horizontal lines
show these asymptotic values

QN modes calculated by averaging results obtained by Padé
approximations of various orders and related standard devi-
ation (SD) formula are shown in Tables 3 and 4 for l = 1, 2
in order. As we observe from these tables, the minimal SD
changes based on the scalar mass so that the higher orders
lead to minimal SD for low-μvalues and the lower orders lead
to minimal SD for high-μ values, unlike the Schwarzschild
case in which the SD formula of averaging Padé approxi-
mates of 13th order is minimal for all values of field mass
(see table X I of Ref. [51]).

Figure 7 shows the behavior of QN frequencies with
increasing μ ranges from zero to 1.27 (2.1) for l = 1 (l = 2).
The red curves show the QNMs of the Reissner–Nordström
BH and have been plotted for comparison. As μ increases,
the real part of frequencies also increases, whereas the imagi-
nary part tends to zero; hence QNMs disappear and the quasi-
resonances dominate.

5 Closing remark

In conclusion, we investigated the critical behavior of a rotat-
ing KK BH solution in the presence of Maxwell electrody-
namics. Firstly, the conserved and thermodynamic quanti-
ties were introduced. The first law is established and limited
behavior of thermodynamic quantities was considered. The
interesting point was the non-vanishing values of entropy in
the presence of a large radius while the temperature was zero
in this condition. Electric and magnetic potential are constant
when x+ → ∞.

In order to study the critical behavior of the solution,
we considered the treatment of heat capacity. It is a famous
approach, as the stability in the canonical ensemble indicates
that stable BHs have positive heat capacity. In order to spec-
ify thermodynamically stable conditions of the solution, we
used the numerical method.

Based on the plots, we observed that the BH solution
should have a small event horizon radius, since large event
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Table 3 The fundamental
modes calculated by averaging
of Padé approximations for
m = 1, Q = 0.1 and l = 1. The
minimal standard deviation
formula is given in bold

k μ = 1 (SD ×10−5) μ = 1.2 (SD ×10−4) μ = 1.27 (SD ×10−4)

1 1.0665 − 0.1624i (2501%) 1.2054 − 0.0699i (40.6%) 1.2628 − 0.0138i (1.50%)

2 0.9867 − 0.1181i (1563%) 1.1397 − 0.0357i (414%) 1.1389 − 0.0036i (1235%)

3 0.9743 − 0.1308i (4.18%) 1.1117 − 0.0236i (49.3%) 1.2624 − 0.0228i (4.12%)

4 0.9693 − 0.1276i (302%) 1.1171 − 0.0311i (21.8%) 1.1552 − 0.0071i (1095%)

5 0.9679 − 0.1325i (132%) 1.1270 − 0.0168i (130%) 1.0459 − 0.1030i (3922%)

6 0.9633 − 0.1254i (159%) 1.1153 − 0.0273i (9.80%) 1.1734 − 0.0076i (892%)

7 0.9644 − 0.1262i (51.0%) 1.1095 − 0.0213i (86.2%) 1.2153 − 0.3088i (5496%)

8 0.9638 − 0.1265i (75.2%) 1.1105 − 0.0203i (16.2%) 3.5935 − 0.0637i (> 104%)

9 0.9636 − 0.1258i (15.4%) 1.1110 − 0.0190i (16.9%) 1.1962 − 0.2423i (3483%)

10 0.9631 − 0.1252i (87.3%) 1.1109 − 0.0185i (45.0%) 2.0596 − 0.0650i (> 104%)

11 0.9637 − 0.1257i (31.4%) 0.8534 − 1.5287i (> 104%) 1.0131 − 0.1821i (4401%)

12 0.9638 − 0.1258i (13.0%) 1.1087 − 0.0169i (39.8%) 1.7072 − 0.0701i (2356%)

13 0.9637 − 0.1258i (1.96%) 1.1080 − 0.0194i (24.5%) 5.4694 + 4.129i (> 104%)

Table 4 The fundamental
modes calculated by averaging
of Padé approximations for
m = 1, Q = 0.1 and l = 2. The
minimal standard deviation
formula is given in bold

k μ = 1.8 (SD ×10−6) μ = 1.9 (SD ×10−5) μ = 2.1 (SD ×10−5)

1 1.8480 − 0.0934i (4728%) 1.9240 − 0.0681i (241%) 2.0918 − 0.0085i (3.49%)

2 1.8038 − 0.0781i (> 104%) 1.8845 − 0.0538i (1240%) 2.0432 − 0.0037i (4808%)

3 1.7991 − 0.0814i (295%) 1.8781 − 0.0559i (52.6%) 2.0914 − 0.0145i (10.0%)

4 1.7973 − 0.0809i (496%) 1.8766 − 0.0555i (35.6%) 2.0572 − 0.0046i (3325%)

5 1.7974 − 0.0803i (31.3%) 1.8769 − 0.0547i (17.6%) 2.0358 − 0.1179i (> 104%)

6 1.7975 − 0.0805i (60.8%) 1.8769 − 0.0546i (5.04%) 2.0622 − 0.0052i (2714%)

7 1.7974 − 0.0804i (28.3%) 1.8769 − 0.0547i (14.1%) 2.0613 − 0.0931i (> 104%)

8 1.7974 − 0.0805i (16.1%) 1.8767 − 0.0550i (13.2%) 2.6307 − 0.0415i (> 104%)

9 1.7973 − 0.0805i (10.4%) 1.8768 − 0.0550i (1.10%) 2.0617 − 0.0650i (5125%)

10 1.7972 − 0.0804i (186%) 1.8767 − 0.0551i (15.3%) 1.8090 − 0.2306i (> 104%)

11 1.7974 − 0.0805i (7.97%) 1.8767 − 0.0549i (4.65%) 3.7053 + 1.6704i (> 104%)

12 1.7974 − 0.0805i (3.43%) 1.8767 − 0.0548i (17.7%) 1.8096 − 0.4064i (> 104%)

13 1.7974 − 0.0805i (5.74%) 1.8767 − 0.0549i (2.93%) 2.7043 + 0.8904i (> 104%)

Fig. 7 The QN modes for m = 1 and Q = 0.1. The red curves show the QNMs of Reissner–Nordström BH for qRN = 0.1. The imaginary part
tends to zero as the field mass increases; hence QNMs disappear and the quasi-resonances dominate
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horizon radii caused negative heat capacity even though the
temperature was positive. To understand the impact of the
charges on the heat capacity, we plotted three figures and
increased the value of the magnetic parameter when the
electric charge parameter was fixed. Two divergences were
observed such that the sign of heat capacity was changed
by them, and therefore, we could not call them first-order
phase transitions. These may be interpreted as Davis phase
transitions.

In addition, we considered a massive scalar perturbation
minimally coupled to the background geometry of four-
dimensional static KK BHs. First, we converted the KK back-
ground to a spherically symmetric line element to obtain a
second-order radial master wave equation, and then calcu-
lated the QN modes by employing the WKB approximation
of various orders. From the error estimation of the WKB for-
mula, we found that the minimum error of this approximation
depends on the charge value Q such that the best order of the
WKB formula for Q = 0.1 was the seventh order, whereas
the QN frequency had the best accuracy with the help of the
fifth order for Q = 0.2. The oscillations increased and the
modes lived longer as the charge Q decreased.

Moreover, the anomalous decay rate of the quasinormal
mode spectrum was investigated by using the sixth-order
WKB formula, and we observed that the curves crossed over
at a special critical mass μ̃. Thus, the KK BHs in asymp-
totically flat spacetime had the anomalous decay rate in its
QNM spectrum. We also found that the charge parameter Q
affects the critical mass and μ̃ increases with a decrease in
Q.

Moreover, the quasi-resonance modes of our BH case
study were investigated by employing the averaging of Padé
approximations. It was shown that, unlike the Schwarzschild
case, in which the SD formula of averaging Padé approx-
imates of 13th order is minimal for all values of the field
mass, the minimal SD changed based on the scalar mass for
the KK BHs so that the higher orders led to minimal SD for
low-μ values and the lower orders led to minimal SD for
high-μ values.
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Appendix A: Possible relation between thermal stability
and QNMs

In this appendix, we are going to investigate a possible rela-
tion between thermal stability and QNMs near the divergence
point of the heat capacity. Indeed, it is quite interesting to find
a relation between thermal stability and dynamical stability of
black holes, and such a connection was suggested in [55] for
the Reissner–Nordström black holes. In the aforementioned
paper, it is shown that the QNMs of the Reissner–Nordström
solutions start to take on a spiral-like shape in the complex
ω plane, and both the real and imaginary parts become the
oscillatory functions of the charge whenever the real part of
the QN frequencies arrives at its maximum at the divergence
point of the heat capacity. However, Berti and Cardoso have
shown that this relation is probably due to a numerical coinci-
dence, and the conjectured correspondence does not straight-
forwardly generalize to other black hole solutions [56]. In
addition, a similar relationship has been found between the
Van der Waals-like small–large black hole phase transition
and QNMs, but again for the Reissner–Nordström black holes
[57]. A spiral-like shape in the complex ω plane has also been
reported for the Schwarzschild black holes in the presence
of a quintessence field for the fundamental QNMs and high
multipole number when the QNMs meet the divergence of
the heat capacity [58]. However, we should note that these
solutions are very similar to the Reissner–Nordström black
holes as well, and therefore, observing such a relation was
expected.

Fig. 8 The heat capacity and temperature versus Q for the solutions
(41). The heat capacity has a divergence at Q = 6m, and this figure is
plotted for m = 1
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Fig. 9 The fundamental QN modes in the complexω plane for different
values of the multipole number. The charge Q starts from Q = 5 and
ends at Q = 7 in each curve along the arrows

Now, we search for a spiral-like shape in the complex ω

plane for the static black hole solutions given in (41) at the
divergence point of the heat capacity. It is straightforward to
show that the heat capacity of this solution has a divergence
at Q = 6m, as is shown in Fig. 8 for the special case m = 1.
Therefore, the QNMs for the fundamental mode around Q =
6 have been calculated and the results are illustrated through
Fig. 9 in the complex ω plane. As one can see from this
figure, there is no spiral-like shape around the divergence
point of the heat capacity located at Q = 6, and thus, we
cannot observe a connection between QNMs and thermal
stability for these black hole solutions. However, although
this connection is not observed in Fig. 9, it maybe appear
for other choices of overtone and multipole numbers, which
needs to be investigated in more detail via more powerful
numerical methods than WKB We shall address this point in
future work.
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