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Abstract In this manuscript, we present analytical exter-
nal spherical solutions of entangled relativity, which we
compare to numerical solutions obtained in a Tolman–
Oppenheimer–Volkoff framework. Analytical and numeri-
cal solutions match perfectly well outside spherical compact
objects, therefore validating both types of solutions at the
same time. The analytical external (hairy) solutions – which
depend on two parameters only – may be used in order to
easily compute observables – such as X-ray pulse profiles –
without having to rely on an unknown equation of state for
matter inside the compact object.

1 Introduction

Entangled relativity is a new general theory of relativity that
changes the way spacetime and matter interact with each
other [2,22,25].1 Instead of assuming that the spacetime and
matter parts of the action have to be glued together addi-
tively, it is assumed in entangled relativity that they are
glued together multiplicatively instead. This has the imme-
diate consequence that gravity and inertia cannot be defined
without defining matter at the same time, and vice-versa –
therefore satisfying Einstein’s main version of Mach’s Prin-
ciple [10]2 and [35].

While the pure multiplicative coupling in the action could
(naïvely) question the viability of the theory, it turns out
that the action can be written in a form of a scalar–tensor
theory that possesses an intrinsic decoupling of the scalar-
field degree of freedom [22,25]. This means that the theory
possesses the same degrees of freedom as a scalar–tensor
theory – therefore ensuring its theoretical viability – and

a e-mail: ominazzoli@gmail.com (corresponding author)
1 The name entangled relativity appears for the first time in Arruga
et al. [2].
2 A translation in English of the original paper in German is available
online at https://einsteinpapers.press.princeton.edu/vol7-trans/49.

that the scalar-field is not, or weakly, sourced in most sit-
uations, such that the phenomenology of entangled relativity
is very close to the one of general relativity in many cases
[2,24,26,28,29,31].

Recently, we studied numerical solutions of compact
objects in entangled relativity [2]. Here, we present analyt-
ical external solutions for spherical objects, which we then
compare to our numerical solutions. We find that the analyti-
cal and numerical solutions match with each other, providing
evidence of the validity of each of them. Since the analyti-
cal solutions depend on two parameters only, they may be
useful in order to easily compute observables related to neu-
tron stars – such as X-ray pulse profiles [6,23,36]; whereas
numerical solutions could then be used, in a second time, in
order to check what types of equation of state can produce
the fitted values of the parameters.

Along the way, we recovered an old analytical solution
for spherical objects with scalar hairs that does not seem to
be widely known by the community.

2 Field equations

The action of entangled relativity is defined by Minazzoli
[25] and Ludwig et al. [22]

S = −ξ

2

∫
d4x

√−g
L2
m

R
, (1)

where the coupling constant ξ has the dimension of κ ≡
8πG/c4 – where G is the Newtonian constant and c the
speed of light – but not its value. In fact, ξ does not appear in
the field equations that derive from the extremization of the
action (1), and therefore is purely related to the quantum field
sector of the theory. It is important to note that apart from
ξ , the theory does not have any coupling constant related to
the link between matter and geometry. Hence, at the classical
level, entangled relativity has one parameter less than gen-
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eral relativity in order to describe the link between matter and
geometry, in the sense that no parameter replaces the param-
eter κ of general relativity at the classical level in entangled
relativity [25]: the effective coupling that appears at the level
of the field equation is dynamical. For Lm �= 0, the metric
field equation reads3

Rμν − 1

2
gμνR = − R

Lm
Tμν + R2

L2
m

(∇μ∇ν − gμν�
) L2

m

R2 , (2)

with

Tμν ≡ − 2√−g

δ
(√−gLm

)
δgμν

. (3)

Also note that the stress–energy tensor is no longer conserved
in general, as one has

∇σ

(Lm

R
T ασ

)
= Lm∇α

(Lm

R

)
. (4)

Otherwise, note that the trace of Eq. (2) reads

3
R2

L2
m

�L2
m

R2 = − R

Lm
(T − Lm) . (5)

The intrinsic decoupling of the scalar degree of freedom is
manifest for Lm = T [24–26,28–30]. Indeed, for Lm = T
on-shell – such as for a dust field, or null-radiation –Lm/R =
constant is solution of the trace of the metric field equation
(5), such that one recovers the metric field equation of general
relativity in that case [25].

It is important to notice that the coupling constant between
matter and geometry in the metric field equation of general
relativity is replaced by a scalar field degree of freedom in
entangled relativity that corresponds to the ratio between R
and Lm : 8πGeff/c4 := −R/Lm [25]. In particular, the effec-
tive coupling in the metric field equation of entangled rela-
tivity is positive for Lm/R < 0 and negative for Lm/R > 0,
potentially providing a repulsive mechanism at high density,
where the kinetic energy density should dominate in the on-
shell matter Lagrangian [27,32]. 4

Indeed, as a star collapse into a black hole, the kinetic part
K of the matter Lagrangian density shall ineluctably start
to dominate the whole Lagrangian density on-shell – that is
K > V , such that Lm := K − V > 0, where V is the poten-
tial part of the Lagrangian density. If, in the meantime, R
keeps the same sign, then gravity shall become repulsive and

3 The metric field equation for all Lm is given in the Appendix A.
4 While the transition between the attractive and repulsive cases seems
to be singular in Eq. (2), it is not the case when one looks at the actual
metric field equation for all Lm given in Eq. (A.1).

the collapsing matter shall rebound due to the new repul-
sive nature of gravity. This should avoid the formation of
spacetime singularities inside black holes in the framework
of entangled relativity.

The avoidance of singularities in entangled relativity is
also somewhat expected given that the theory prohibits the
existence of spacetime without matter at a fundamental level
[22,25,32].

3 Almost equivalent action

At least for spacetimes that are such that (R,Lm) �= 0, there
is a one to two correspondence at the classical level between
the action of entangled relativity and a dilaton theory with
the following action [22,25]

S = 1

c

ξ

κ̃

∫
d4x

√−g

[
φR

2κ̃
+ √

φLm

]
, (6)

where κ̃ is an effective coupling constant between matter
and geometry, with the dimension of the coupling constant
of general relativity κ . Because entangled relativity leads to
a repulsive gravitational phenomenon for Lm/R > 0, the
action in Eq. (6) corresponds to the original action in Eq.
(1) as long as one has κ̃ > 0 if Lm/R < 0, and κ̃ < 0 if
Lm/R > 0. The corresponding field equations read

Gαβ = κ̃
Tαβ√

φ
+ 1

φ

[∇α∇β − gαβ�
]
φ, (7)

√
φ = −κ̃Lm/R. (8)

The conservation equation reads

∇σ

(√
φT ασ

)
= Lm∇α

√
φ, (9)

The trace of the metric field equation can therefore be rewrit-
ten as follows

3

φ
�φ = κ̃√

φ
(T − Lm) . (10)

The equivalence between Eqs. (7–10) and (2–4) is pretty
straightforward to check.

4 Generic external vacuum solutions in scalar–tensor
theories

Let us consider the following generic class of actions5

5 For now on, we use the unit system that is such that G = c = μ0 = 1.
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S =
∫

d4x
√−g

[
R − 2(∇ϕ)2 + f (ϕ,Lm)

]
, (11)

that is such that one has in the vacuum limit (Lm → 0)

lim
Lm→0

f (ϕ,Lm) → 0. (12)

For instance, Brans–Dick theory in the Einstein frame
implies that f (ϕ,Lm) = Lm(A2(ϕ)gμν) [41], whereas low-
energy string, supergravity, Kaluza–Klein and entangled rel-
ativity theories in the Einstein frame generically imply that
f (ϕ,Lm) = f (ϕ)Lm(A2(ϕ)gμν) [8,13,32], while general
relativity corresponds to f (ϕ,Lm) = Lm(gμν). The action
(6) can be put in the form of the action (11) after the confor-
mal transformation of the metric gαβ → e−2ϕ/

√
3gαβ , with

φ = e−2ϕ/
√

3 – see Sect. 5.
We found that a class of vacuum spherical solutions for

the generic class of actions (11) reads

ds2 = −
(

1 − 2m

βr

)β

dt2 +
(

1 − 2m

βr

)−β

dr2

+r2
(

1 − 2m

βr

)1−β [
dθ2 + sin2 θ dψ2

]
, (13)

with

ϕ = 1 − β

2α
ln

(
1 − 2m

βr

)
(14)

where

α2 = 1 − β

1 + β
, (15)

where β ∈ [−1; 0[ ∪ ]0; 1] (or equivalently α ∈ R−{1}).6
One can either have α ≥ 0 or α ≤ 0 because the action
is invariant under the reflection (Z-2) symmetry ϕ → −ϕ

at the limit Lm = 0. One recovers the usual Schwarzschild
metric for β = 1 (or equivalently α = 0).7 Hence, Eqs. (13–
15) are a generalization of the Schwarzschild metric for all
the theories that can be written in the form of Eqs. (11–12).
The solutions described by the Eqs. (13–15) are also much
simpler than the Janis–Newman–Winicour solutions [19] –
although they ought to describe the same spacetimes, albeit
with different coordinates. After some investigation of the
literature, we found that the solutions in Eqs. (13–15) can
already be found in Damour and Esposito-Farese [7], and
that it has been attributed to Just [21].

It is crucial to understand that Eqs. (13–15) are vacuum
solutions of Eqs. (11–12) for all β ∈ ] − 1; 0[ ∪ ]0; 1]. It

6 We check these solutions in Appendix B.
7 Actually, one can show that the metric (13) is invariant under the
transformation β → −β, with a shifted radial coordinate ρ as ρ =
r − 2m/β – see Appendix C.

means that any theory that can be written in the form of Eqs.
(11–12), has a family of solutions that reads as Eqs. (13–
15), with various values for the parameters m and β. As a
consequence, all theories that can be written as Eqs. (11–12)
have spherical solutions that do not only depend on a mass,
but on the parameter β as well. We shall therefore qualify
these solutions as hairy ones.

It is therefore quite different from the charged spherical
solutions in the Einstein–Maxwell-dilaton theories [12,18],
for which a similar parameter α is fixed by the theory that
one considers – like for instance α = 1 for the tree-level
low-energy limit of string theory and (D = 4, N = 4) super-
gravity, or α = √

3 for 5D Kaluza–Klein theory [13], or
α = 1/(2

√
3) for entangled relativity [32]. Here, on the

other hand, the theory does not constrain the value of α nor
β. Indeed, α and β do not appear in the Lagrangian den-
sity, unlike in the Einstein–Maxwell-dilaton cases, where α

corresponds to the coupling strength between the scalar and
electromagnetic fields in the Lagrangian density [12,18].

It is important to note that Eqs. (13–15) are solutions of
general relativity as well, provided that there is a massless
canonical scalar field – for which, as far as we know, there
is currently no evidence for in nature. One might therefore
think that the solutions in Eqs. (13–15) violate Birkhoff’s
theorem [15], but that is not the case. Indeed, the presence
of the scalar-field in the action (11) implies that one is not
dealing with general relativity in vacuum, while Birkhoff’s
theorem applies to general relativity in vacuum [15].

It is also important to note that r = 2m/β is a curvature
singularity for all β ∈ ]0; 1[ (or equivalently α ∈ ]0; 1[)
– see Appendix D – whereas it is an event horizon for the
Schwarzschild case – that is, for β = 1 (or equivalently
α = 0). However, such a singularity is not expected to happen
in nature due to the fact that scalar hairs are radiated away
during the collapse into a black-hole in scalar–tensor theories
of the form of (11–12), leading to black holes with no hair
[5,14,16,38,40]. Therefore, while the solutions in Eqs. (13–
15) should be exact external solutions of spherical objects,
they should not correspond to pure vacuum solutions – unlike
the Schwarzschild and Kerr black holes for instance.

Nevertheless, direct observations of the shadow of diverse
black holes [11,33] – such as the one done with the Event
Horizon Telescope for M87 [11] – and the corresponding
signatures of photons subrings [20], could be used in order
to test β �= 1 solutions – that is solutions with scalar hairs –
for actual astrophysical objects that are currently supposed
to be black holes. The goal would be to test the existence
of scalar hairs, despite the fact that they are currently not
expected at the theoretical level.
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4.1 Comment on the vacuum limit in entangled relativity

Let us note that entangled relativity corresponds to f (ϕ,Lm) =
f (ϕ)Lm(eαϕgμν) like usual dilaton theories, provided that
one has Lm �= 0 and R �= 0 [2,22,25]. This means that while
the solutions (13–15) cannot be exact solutions of entangled
relativity, they should be good approximations in the vac-
uum limit of the theory – that is, when Tμν → 0 but Tμν �= 0
– just as the Schwarzschild metric has been found to be a
good approximation of spherical black holes in this limit in
Minazzoli and Santos [32].

5 Dilaton action and solutions in the Einstein frame

After the conformal transformation g̃αβ = e−2ϕ/
√

3gαβ , with

φ = e−2ϕ/
√

3, the action (6) reads

S =
∫

d4x
√−g̃

[
R̃ − 2g̃αβ∂αϕ∂βϕ (16)

+e−ϕ/
√

3L̃m(e2ϕ/
√

3g̃μν)
]
, (17)

where L̃m := e4ϕ/
√

3Lm . It means that it corresponds to

f (ϕ, L̃m) = e−ϕ/
√

3L̃m(e2ϕ/
√

3g̃μν) (18)

in Eq. (11), in which one would have gαβ := g̃αβ . One can
check that δ(

√−g̃ f )/δϕ = 0 ∀ L̃m = T̃ – or, equivalently,
Lm = T in the field equations in the original frame – such
that the scalar-field equation reduces to �ϕ = 0 ∀ L̃m = T̃
on-shell. This is the property of what has been called intrin-
sic decoupling in Minazzoli and Hees [28,29]. Note that one
notably has Lm = T for dust and pure electromagnetic radi-
ation for instance; whereas one hasLm �= T for an electric or
a magnetic field – notably leading to different charged black-
holes with respect to the ones of general relativity [32].

One can therefore use the external solutions (13–15), that
we shall rewrite as follows (for later convenience):

ds2 = −
(

1 − 2m

βr

) 1−α2

1+α2

dt2 +
(

1 − 2m

βr

)− 1−α2

1+α2

dr2

+r2
(

1 − 2m

βr

) 2α2

1+α2 [
dθ2 + sin2 θ dψ2

]
, (19)

and

eϕ =
(

1 − 2m

βr

) α

1+α2

, (20)

with

β = 1 − α2

1 + α2 . (21)

There are three possible branches:

– α > 0: which we shall name α+.
– α < 0: which we shall name α−.
– α = 0: which we shall name α0, and which simply is the

Schwarzschild solution.

In the Einstein frame, the metric solutions for the branches
α+ and α− are the same, but it is not the case in the original
frame, as we shall see in the next section.

As one can see in Eq. (20), the sign of α gives the direction
of the monotonicity of ϕ. One therefore deduces that α0 cor-
responds to sources that are such that δ(

√−g̃ f )/δϕ = 0, α+
corresponds to sources that are such that δ(

√−g̃ f )/δϕ > 0
andα− corresponds to sources that are such that δ(

√−g̃ f )/δϕ
< 0.

6 Solutions in the original frame

Performing the inverse conformal transformation – gαβ =
e4ζϕ g̃αβ , with φ = e−4ζϕ and ζ := 1/(2

√
3) – in order to

get the corresponding solutions for the action (6), one either
gets the usual Schwarzschild solution as limit (when α = 0),
or the two limits that follow. With the metric given by

gμνdxμdxν = −adt2 + bdρ2 + ρ2dΩ2, (22)

where dΩ2 = dθ2 + sin2 θ dψ2, one has

a =
(

1 − 2m

βr

) 1−α2+4ζα

1+α2

, (23)

b =
(

dρ

dr

)−2 (
1 − 2m

βr

) α2−1+4ζα

1+α2

, (24)

ρ = r

(
1 − 2m

βr

) α2+2ζα

1+α2

, (25)

φ =
(

1 − 2m

βr

)− 4ζα

1+α2

. (26)

One can see that in this frame, the metric are different for the
branches α+ and α− – which correspond to α > 0 and α < 0
respectively.

7 Comparing to external numerical solutions

With the metric given by

gμνdxμdxν = −adt2 + bdρ2 + ρ2dΩ, (27)
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the Tolman-Oppenheimer-Volkoff (TOV) equations for the
action (6) outside an object in the vacuum limit reduce to

φ̈

φ̇
= 1

2

[
ḃ
b − ȧ

a − 4
ρ

]
(28)

ḃ
b = 1−b

ρ
− ξ

2
ȧ
a (29)

ȧ
a = b−1

ρ

[
1 + ξ

2

]−1 − 2 ξ
ρ

[
1 + ξ

2

]−1
(30)

where ξ ≡ ρφ̇/φ. After integrating Eq. (28), one ends up
with

φ̇ = C

ρ2

√
b

a
(31)

with C a constant of integration. The sign of C – which is
such that sign(C) = −sign(α) (see Eq. (26)) – completely
determines the monotonicity of φ.

One can check that each of the three vacuum limits dis-
cussed in Sect. 6 is indeed solution to the equations (28–30).
It means that the three solutions α0, α− and α+ should match
external numerical solutions of the TOV equations found in
Arruga et al. [2].

Entangled relativity being parameter free, the three cases
can nevertheless be shown to correspond to the three different
types of on-shell matter Lagrangians that one may consider
– that is, Lm = T , Lm = −ρ or Lm = P , given that they
correspond to no-source, positive or negative sources8 in the
scalar-field equation respectively. [Depending on the type
of matter composing the compact object, one may have any
of these cases [2]]. In what follows, we shall show that it
is indeed the case, although the three cases actually more
generally depend on whether the source of the scalar field
is null, positive or negative respectively – since the various
cases are related to the monoticity of φ, as one can see from
Eq. (31).

The numerical integration is based on our previous work
[2], in which we assumed a basic polytropic equation of state
P = Kργ for simplicity, with γ = 5/3 and K = 1.475 ×
10−3( f m3/MeV )2/3.

The code that does the numerical integration and generates
all the figure of this manuscript is freely available on GitHub
[1].

7.1 Comparison of α0

It was found in Arruga et al. [2] that for Lm = T the TOV
solutions in entangled relativity are the same as the ones of

8 The source of the scalar-field equation is proportional to Lm − T in
Eq. (10), such that it is null, positive or negative for Lm = T , Lm = −ρ

or Lm = P respectively. The corresponding value of C will therefore
be null, positive or negative respectively, such that the corresponding
value of α will be null, negative or positive respectively.

Fig. 1 Comparison of the product of the metric components and the
scalar field between the analytical solution α− and the numerical solu-
tion for Lm = −ρ, and ρ0 = 1000 MeV/ f m3. The vertical line indi-
cates the radius of the compact object

general relativity. It means that forLm = T , the external vac-
uum limit solution of compact objects is the Schwarzschild
metric. Therefore, the caseα0 corresponds to compact objects
that are made of matter that satisfy Lm = T . Indeed, the
extra degree of freedom of entangled relativity with respect
to general relativity is not sourced in that case. Whether or
not matter can lead to Lm = T is an ongoing debate [2–4].

In any case, as already discussed in Sect. 4, due the
radiation of scalar hair during the collapse into a black
hole in scalar–tensor theories [16,38], one expects that the
Schwarzschild metric corresponds to black hole solutions,
whether or not the Schwarzschild solution also corresponded
to the external solution of the initial spherical compact object.

7.2 Comparison of α−

The α− case can be matched to the external part of the numer-
ical TOV solutions for compact objects that are made of mat-
ter fields that satisfy Lm = −ρ – as one can see in Figs. 1
and 2.
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Fig. 2 % difference of the metric components and the scalar field
between the analytical solution α− and the numerical solution for
Lm = −ρ, for ρ0 = 1000 MeV/ f m3. The vertical line indicates the
radius of the compact object

Fig. 3 Values of the parameters α and β in Eqs. (23–26) with respect
to the density of the compact object for Lm = −ρ

In particular, one can see the good agreement between the
analytical and external numerical solutions in Fig. 2. Only
a sub-permil deviation between the two solutions occurs at
the limit of the compact object, and then decreases with the
distance to the object. A sub-permil offset – which has been
removed in Fig. 2 – remains for the time-time component
of the metric a. It is easily explained by the fact that at the
numerical level, one cannot use a normalization at infinity,
but only at the limit of the simulation – that is, in our case,
at r = r∞ := 10,000 km.

One can see in Fig. 3 that there is a monotonic behavior
of the parameters α and β in (23–26) with respect to the
central density. For objects with low central densities, the
solution is closer to the Schwarzschild solution – that is α

is closer to 0, and β is closer to 1 – whereas the stronger
the central density, the more the solution deviates from the
Schwarzschild solution of general relativity. In other words,
the more relativistic the object, the more deviation there is
from general relativity.

Fig. 4 Comparison of the product of the metric components and the
scalar field between the analytical solution α+ and the numerical solu-
tion forLm = P , and ρ0 = 1000 MeV/ f m3. The vertical line indicates
the radius of the compact object

More generally, the α− case corresponds to spherical solu-
tions for which the source of the scalar-field (i.e. r.h.s. of
Eq. (10)) is positive.

7.3 Comparison of α+

The α+ case can be matched to numerical TOV solutions for
compact objects that are made of matter that satisfy Lm = P
– as one can see in Figs. 4 and 5. Although note that Lm = P
is not consistent with a collection of baryonic particles, which
Lagrangian must tend to Lm = −ρ0 for P = 0, where ρ0 is
the inertial energy density of the collection of particles.Lm =
P might be used, however, in order to model exotic objects
that would, for instance, entirely be made of a scalar field –
given that P = K − V = Lm for scalar fields, where K and
V are the kinetic and potential energy densities respectively.
One may have in mind Higgs monopoles for instance, like in
Schlögel et al. [39].

In particular, one can see the good agreement between the
analytical and external numerical solutions in Fig. 5. Again,
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Fig. 5 % difference of the metric components and the scalar field
between the analytical solution α+ and the numerical solution for
Lm = P , for ρ0 = 1000 MeV/ f m3. The vertical line indicates the
radius of the compact object

Fig. 6 Values of the parameters α and β in Eqs. (23–26) with respect
to the density of the compact object for Lm = P

a sub-permil deviation between the two solutions occurs at
the limit of the compact object, and then decreases with the
distance to the object. Again, a sub-permil offset remains for
the time-time component of the metric (a).

As one can see in Fig. 6 the behavior of the parameters α

and β in (23–26) is slightly different for α+. Indeed, the more
dense the compact object, the more close the Schwarzschild
metric it becomes. [We have checked that this behavior
reverses for much lower central densities – that is, that β

goes back to one for much less dense objects]. Note that,
given one has Lm = P > 0, Eq. (8) implies that R < 0 for
the α+ case. We have checked that it is indeed the case in our
TOV simulation.

More generally, the α+ case corresponds to spherical solu-
tions for which the source of the scalar-field (i.e. r.h.s. of
Eq. (10)) is negative.

8 Test particle geodesics

We assume that the action (6) induces for test particles that
their action reads Stp = −mc2

∫ √
φdτ , where τ is an affine

parameter of the test particle’s trajectory defined such that

dτ =
√

−gαβdxαdxβ . This assumption follows the assump-
tion of the stability of the universal coupling at the quan-
tum field theory level, such that all the contributions to the
mass of a particle are proportional to the same function of
the scalar field φ, which can therefore be factorized out as
m(φ) → √

φ m. In particular, it means that we assume that

√
φLSM

m → √
φT SM

anomaly, (32)

where LSM
m is the effective low energy limit of the standard

model of particles and T SM
anomaly its corresponding quantum

trace anomaly [30,34] – which gives their mass to composite
particles in the standard model of particles [9].

After the conformal transformation g̃αβ = e−2ϕ/
√

3gαβ ,

with φ = e−2ϕ/
√

3, defined in Sect. 5, the test particle
part of the action reads Stp = −mc2

∫
d τ̃ , where d τ̃ =√

−g̃αβdxαdxβ . The whole action with a neutral massive
test particle in the conformal frame therefore reads

S =
∫

d4x
√−g̃

[
R̃ − 2(g̃αβ∂αϕ∂βϕ) − e−ϕ/

√
3 F̃

2

4

]

−mc2
∫

d τ̃ , (33)

where
√−g̃ F̃2 = √−gF2 := √−gFαβFαβ due to the con-

formal invariance of the electromagnetic part of the action at
the classical level, with Fαβ = ∇αAβ − ∇β Aα , and Aα the
electromagnetic four-vector.

The electromagnetic contribution to the mass m (through
the trace anomaly in Eq. (32)), by definition, breaks the
conformal invariance of the electromagnetic part of the
action (6), leading to the universal effective coupling Stp =
−mc2

∫ √
φdτ in the original frame (6) – which effectively

corresponds to having a mass that is proportional to
√

φ. This
is why m can become independent of the scalar-field in the
Einstein frame. It is important to stress that – except for the
special case of general relativity – it would not be the case (at
least, in general) for other functions f (ϕ, L̃m) than the one
of entangled relativity, given in Eq. (18). This shows how,
despite its very unusual form in Eq. (1), entangled relativity
actually is pretty close to general relativity, as one can see
in Eq. (33). Only a coupling of an effective scalar degree of
freedom to the electromagnetic part of the action remains in
the Einstein frame for neutral point particles.

Therefore, neutral massive test particles follow geodesics
of the conformal metric g̃αβ . However, it is important to stress
that the affine parameter on the geodesic τ̃ is not the time
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given by, say, an atomic clock along the geodesics, since the
latter depends on the variation of the fine structure constant
that should be proportional to eϕ/

√
3 in this model [17,29].

Entangled relativity therefore seems to break the local posi-
tion invariance in general – that is, as long as ϕ is not con-
stant. Fortunately enough, the embedded intrinsic decoupling
in entangled relativity implies a near constant scalar field in
most situations [2,24,26,28,29,31].

One can show that electromagnetic plane-waves in the
geometric optic approximation also follow null-geodesics of
either the metric gαβ or its conformally transformed version
g̃αβ [29]. This is due to the conformal invariance of the elec-
tromagnetic part of the action at the classical level.

Working in the plane θ = π/2 without loss of generality,
one deduces the following equations of motion from Eq. (13)

(
dr

dτ̃

)2

+ λ̃2(r)

[
ε + L2

ρ̃2(r)

]
= E2, (34)

ρ̃2(r)
dψ

dτ̃
= L , (35)

λ̃2(r)
dt

dτ̃
= E, (36)

where

ρ̃2(r) = r2
(

1 − 2m

βr

)1−β

, (37)

λ̃2(r) =
(

1 − 2m

βr

)β

. (38)

and where E and L are the conserved energy and momentum
along the trajectories respectively, and where ε is either equal
to 0 or 1 for null and time-like geodesics respectively.

One can define an effective radial potential that reads

Veff(r) = 1

2

(
−E2 + l̃2(r)

L2

r2 + λ̃2(r)ε

)
, (39)

where

l̃2(r) :=
(

1 − 2m

βr

)2β−1

. (40)

We have plotted some examples of null and timelike
geodesics in Fig. 7.

8.1 Shapiro delay

The electromagnetic Lagrangian density being conformally
invariant at the classical level, one can compute the Shapiro
delay from any metric related by a conformal transformation
and get the same result. From Eq. (13), the relative time delay
[42] from the surface of the spherical object r = R > 2m/β

Fig. 7 Upper panel: timelike geodesics parametrized by the coordinate
time t , with m = 1, E = 0.98, L = 4.5, for β = 1 (general relativity)
versus β = 0.88, which corresponds to the lowest value found in our
TOV simulations in entangled relativity, for an exotic compact object
(i.e. Lm = P) – see Fig. 6. Note that for a more realistic object (i.e.
Lm = −ρ or T ), the lowest value has been found to be β = 0.975
instead – see Fig 3. Lower panel: null geodesics parametrized by the
coordinate time t with various impact parameters, with m = 1, for
β = 1 (general relativity) versus β = 0.88

therefore reads

δt (σ ) =
∫ ∞

R

1

λ̃2(r)

⎛
⎝ 1√

1 − σ 2 l̃2(r)
r2

− 1

⎞
⎠ dr (41)

where the impact parameter σ satisfies σ = L/E , while λ̃(r)
and l̃(r) are given in Eqs. (38) and (40) respectively.

δt (σ ) is the traveling time t (σ ) − t , minus the reception
time of an hypothetical radial ray t (σ = 0). It is simply
meant to define a usefull finite quantity after an integration
over infinity, which can also be used to relate the emission and
reception times in terms of the periodic change of the impact
parameter of the hot spots at the surface of the neutron star
[42].
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9 Conclusion

In this manuscript, we provided external analytical solutions
for spherical objects valid for a very general class of scalar–
tensor theories. From them, we derived the specific external
analytical solutions for spherical objects in entangled rela-
tivity, which we compared to numerical solutions. We found
that analytical and numerical solutions match very well out-
side the compact objects – therefore providing evidence that
both types of solutions are valid.

A direct use of these simple analytical solutions would
be to use them instead of the more complex numerical solu-
tions in order to infer, say, a neutron star’s mass, radius and
scalar hair. Indeed, whereas numerical solutions rely on the
unknown equation of state of neutron stars, analytical solu-
tions are parametrized by only two parameters – that is, the
mass and a parameter related to the amplitude of the scalar
hair. It therefore greatly simplifies the model to be adjusted
to observations.

We also provided the relevant equations in order to com-
pute such observables.
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Appendix A: General metric field equation of entangled
relativity

The metric field equation that derives from the action (1),
reads (∀Lm)

L2
m

R2

(
Rμν − 1

2
gμνR

)
= −Lm

R
Tμν

+ (∇μ∇ν − gμν�
) L2

m

R2 . (A.1)

Therefore, for Lm �= 0, Eq. (A.1) can indeed be rewritten as
Eq. (2).

If the on-shell matter Lagrangian goes to zero during a
transition between Lm > 0 and Lm < 0 whereas R �= 0,
the field equation at the location of the transition reduces to(∇μ∇ν − gμν�

)L2
m/R2 = 0.

Appendix B: Check external analytical solution

– From the action in Eq. (11), the metric field equation at
the vacuum limit reads

Gαβ = 2

[
∂αϕ∂βϕ − 1

2
gαβ(∂ϕ)2

]
=: Sαβ, (B.2)

where Gαβ is the usual Einstein tensor. From the met-
ric in Eq. (13), one gets the following non-null mixed
components of the Einstein tensor

G0
0 = β2 − 1

β2

m2

r4

(
1 − 2m

βr

)β−2

= Gθ
θ = Gψ

ψ = −Gr
r , (B.3)

whereas the non-null mixed components of the source
reads

S0
0 = −grr

(
∂ϕ

∂r

)2

= Sθ
θ = Sψ

ψ = −Srr . (B.4)

One finds that G0
0 = S0

0 , such that one has checked that
Gαβ = Sαβ .

– From the action in Eq. (11), the scalar field equation at
the vacuum limit reads

�ϕ = grrϕ′′ − gαβ�r
αβϕ′ = 0. (B.5)

From the mertic (13) and the scalar field (14) equations,
one gets

gαβ�r
αβϕ′ = β − 1

α

2m2

r4

(
1 − 2m

βr

)β−2 (
mβ − r

mβ

)
,
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(B.6)

such that one can check that

grrϕ′′ = gαβ�r
αβϕ′. (B.7)

Therefore, one indeed has verified that �ϕ = 0.

Appendix C: Mapping between the β and −β solutions

Defining ρ = r − 2m/β, one gets

1 − 2m

βr
=

(
1 + 2m

βρ

)−1

, (C.8)

such that the Eqs. (13–14) read

ds2 = −
(

1 + 2m

βρ

)−β

dt2 +
(

1 + 2m

βρ

)β

dρ2

+ρ2
(

1 + 2m

βρ

)1+β [
dθ2 + sin2 θ dψ2

]
, (C.9)

that is, it is Eq. (13) with β → −β when r → ρ. In particular,
one can see that the metric in Eq. (13) with β = −1 corre-
sponds to the exterior of the Schwarzschild solution – that is,
β = 1 in Eq. (13) – because ρ goes from the event horizon
r = 2m to infinity. Otherwise, the scalar field transforms as

ϕ = β − 1

2α
ln

(
1 + 2m

βρ

)
. (C.10)

Appendix D: Curvature singularity

The Ricci scalar of the metric in Eq. (13) reads

R = −2
β2 − 1

β2

m2

r4

1(
1 − 2m

βr

)2−β
, (D.11)

such that one can check that it diverges at r = 2m/β ∀ β ∈
]0; 1[. r = 2m/β therefore is a curvature singularity for
all β ∈ ]0; 1[. For β ∈ ] − 1; 0[, the Ricci scalar only
diverges at r = 0. The reason simply being that the metric
withβ < 0 correspond to the metric withβ > 0 with a shifted
radial coordinate r → r +2m/β. See Sect. Appendix C. For
|β| < 1, the Ricci scalar is positive, whereas one recovers
the flatness of the Schwarzschild metric – that is R = 0 – for
|β| = 1.
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