
Eur. Phys. J. C (2021) 81:1019
https://doi.org/10.1140/epjc/s10052-021-09811-4

Regular Article - Theoretical Physics

Average minijet rapidity ratios in Mueller–Navelet jets

N. Bethencourt de León1, G. Chachamis2,a , A. Sabio Vera1,3

1 Instituto de Física Teórica UAM/CSIC, Nicolás Cabrera 15, 28049 Madrid, Spain
2 Laboratório de Instrumentação e Física Experimental de Partículas (LIP), Av. Prof. Gama Pinto, 2, 1649-003 Lisbon, Portugal
3 Theoretical Physics Department, Universidad Autónoma de Madrid, 28049 Madrid, Spain

Received: 8 September 2021 / Accepted: 5 November 2021 / Published online: 22 November 2021
© The Author(s) 2021

Abstract We investigate different final state features in
Mueller–Navelet jets events at hadron colliders. The focus
lies on the average rapidity ratio between subsequent minijet
emissions which has been investigated in previous works but
now is modified to also incorporate the transverse momenta
together with the rapidities of the emitted jets. We study the
dependence of this observable on a lower transverse momen-
tum veto which does affect the typical minijet multiplicity of
the events under scrutiny. We find that this observable is sta-
ble when including higher order quantum corrections, also
when collinear terms are resummed to all orders.

1 Introduction

An active area of research in QCD phenomenology at high
energies is to pin down novel observables where the dom-
inant contributions stem from the Balitsky–Fadin–Kuraev–
Lipatov (BFKL) domain [1–8]. This is a challenging task
since for typical observables calculations based on matrix
elements computed at fixed order along with the Dokshitzer–
Gribov–Lipatov–Altarelli–Parisi (DGLAP) evolution [9–13]
to account for the PDFs tend to describe the bulk of the data
adequately. It is then needed to move towards corners of
the phase space to isolate BFKL effects. This can be done
by studying the structure of final states in Mueller–Navelet
(MN) jets events [14] currently produced at the LHC.

In a nutshell, MN events have two jets with similar
and large enough pT such that they serve as a hard scale,
�2

QCD � p2
T � s, where s is the c.o.m. energy squared. The

two tagged jets should also be separated by a large rapidity
interval Y while there is a rich mini-jet activity in between.
Considering two tagged jets of similar pT ensures that we lie
within multi-Regge kinematics, this being one of the pillars
for the BFKL program. Requiring a large rapidity separation
between the two MN jets sets one of them in the very forward
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and the other in the very backward regions. Numerous stud-
ies took place on MN jets both at leading-order (LO) BFKL
as well as at next-to-leading order (NLO). The main quantity
of interest in most studies was the azimuthal decorrelation
between the two outermost jets, for a non exhaustive list of
theoretical works see Refs. [15–34] while relevant experi-
mental analyses by ATLAS and CMS can be found in Refs.
[35–38].

One of the conclusions of the comparison to experimental
data from different approaches is that a more precise theo-
retical work is needed (e.g. see [38]). This is more press-
ing recently since experimental uncertainties appear to be
smaller than the theoretical ones and extra emphasis needs
to be given in the theory side in order to have more accurate
predictions. It is in this context that we present new observ-
ables which could be useful for this quest.

As mentioned above, the rapidity ratios put forward in [39]
aim at probing novel multi-Regge kinematics signatures. The
proposal was to examine the average per event jet pT , the
average jet azimuthal angle φ and the average ratio of rapidi-
ties between neighboring jets. It was shown that the NLO
corrections could modify the predictions when compared to
the LO ones. From a theoretical stand point it would be desir-
able to propose infrared finite observables which are robust
under higher order corrections. We will show that the quan-
tities discussed in the following will lie within this category.

Besides the issues just described, there appears another
complication one needs to deal with. For our proposed
observables we see that events where the minijets have rel-
atively low pT , contrary to what one would naively expect,
give a very significant contribution to the gluon Green’s func-
tion (Fig. 1 in [39]) and consequently to the cross-section.
The experimental analyses however (mainly to deal with jet
energy reconstruction uncertainties) impose a veto on the
pT of any resolved minijet.1 Usually the pT veto value for

1 ‘minijets’ correspond to any of the jets in between the two outermost
MN jets.
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ATLAS and CMS is Q0 = 20 GeV which is rather large if
we compare it to the Q0 = 1 GeV value which was the jet
pT infrared cutoff for the plots in [39].

With the present work we want to address the two issues
just described in order to pave the path for a proper compar-
ison between a full BFKL phenomenological analysis and
experimental data for our proposed observables. The aim is
not a full fledged study but rather to isolate the intricacies
and deal with them. A full phenomenological study includ-
ing PDFs and integration over the pT of the MN jets and
over different rapidity ranges is well beyond the scope of
this paper. However, we think that the issues we discuss here,
namely, the difficulty of ascertaining the NLO uncertainties
and the role of the presence of a large pT veto for any resolved
minijet, will be of help to whoever proceed to such a study.

From the list with the average jet azimuthal angle φ, pT
and rapidities, here we will address the last two. Since in the
experimental analyses there is a large pT veto for resolved
minijets we would miss the largest part of any multi-Regge
kinematics effects because these trimmed sectors build up the
bulk of the cross section. We will show that this problem can
be diminished when mixing pT and rapidities in our newly
proposed quantities.

In the next section we will introduce our notation, set up
the basics for the two MN observables we will be studying
and the numerical framework to analyze them. In Sect. 3 we
will present new results and draw our conclusions in Sect. 4.

2 The observables

We focus on events where two jets with rapidities ya in the
forward direction and yb in the backward direction can be
clearly identified. If the difference Y = ya − yb is large
enough then terms of the form αn

s Y
n are important order-by-

order to get a good description of measured cross sections
which can be written in the factorized form

σ(Q1, Q2,Y ) =
∫

d2�kAd2�kB φA(Q1, �ka) φB(Q2, �kb)
× f (�ka, �kb,Y ). (1)

In this expression φA,B are impact factors depending on
external scales, Q1,2, and the off-shell reggeized gluon
momenta, �ka,b. The gluon Green function f depends on �ka,b

and the center-of-mass energy in the scattering ∼ eY/2. For
simplicity, we keep |�ka | and |�kb| constant and we consider that
the impact factors are proportional to Dirac deltas, imposing
|�ka | = Q1 and |�kb| = Q2 such that the gluon Green’s func-
tion can be also referred to as the cross-section.

For BFKL phenomenology at the LHC it is mandatory to
work within the NLO approximation at least for the gluon
Green’s function which introduces the dependence on phys-
ical scales such as the one associated to the running of the

coupling and the one related to the choice of energy scale
in the resummed logarithms [40–43]. It is possible to write
the gluon Green function in an iterative way in transverse
momentum and rapidity space at LO [44] and NLO [45,46].
The iterative solution has the form (at LO, for the NLO
expressions see Refs. [45,46])

f = e
ω
(�kA

)
Y

{
δ(2)

(�kA − �kB
)

+
∞∑
N=1

N∏
i=1

αs Nc

π

×
∫

d2�ki θ
(
k2
i − λ2

)
πk2

i

×
∫ yi−1

0
dyi e

(
ω
(�kA+∑i

l=1
�kl
)
−ω
(�kA+∑i−1

l=1
�kl
))

yi

δ(2)

(
�kA +

n∑
l=1

�kl − �kB
)}

, (2)

where

ω (�q) = −αs Nc

π
ln

q2

λ2 (3)

corresponds to the gluon Regge trajectory which carries a
regulator, λ, of infrared divergences. All these expressions
have been implemented in the Monte Carlo code BFKLex
which we have already used for different applications rang-
ing from collider phenomenology to more formal studies in
the calculation of scattering amplitudes in supersymmetric
theories [47–52]. The right-hand-side of Eq. (2) states that
the gluon Green’s function can be obtained by an infinite sum
of terms, however the sum is in reality convergent to a numer-
ically accepted value after a finite number of terms, hence in
actuality the upper limit of the sum is not infinity but rather
some properly chosen value for the sought numerical accu-
racy Nfinal. Let us assume that we truncate the sum at some
N = Ntrunc. Since all the terms in the sum corresponding
to N = 1, 2, . . . , Ntrunc contain phase space integrations,
there is an inherited statistical error in the result accumu-
lated thus far and if the contribution from N = Ntrunc + 1
is smaller than the statistical error, one can omit that and set
Nfinal = Ntrunc

2.

f (�ka, �kb, Y ) =
Nfinal∑
N=1

fN (�ka, �kb, Y ) or equivalently for the rest

of our discussion

σ =
Nfinal∑
N=1

σN with σN = fN . (4)

It turns out that the BFKL formalism can be quite sensitive
to collinear regions of phase space, in particular when the

2 The actual Nfinal depends mainly on the rapidity difference between
the two tagged jets and to a lesser degree on their transverse momenta.
The larger the rapidity difference, the larger Nfinal is needed.
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process-dependent impact factors are broad and allow for the
external scales Qi to significantly deviate from the internal
reggeized gluon transverse momenta ki . In this case there
exists a dominant double-log term in the NLO BFKL kernel
in the collinear regions which takes the form

θ
(
k2
i − λ2

)
→ θ

(
k2
i − λ2

)

− ᾱs

4
ln2

⎛
⎜⎝ �k2

A(�kA + �ki
)2

⎞
⎟⎠, (5)

which needs to be resummed to all orders to stabilize the
behavior of the BFKL cross sections and to apply the for-
malism beyond the original multi-Regge kinematics. These
issues have been investigated in [53,54]. In particular, in [55],
it was shown that the collinear corrections can be resummed
to all-orders using the prescription

θ
(
k2
i − λ2

)
→ θ

(
k2
i − λ2

)

+
∞∑
n=1

(−ᾱs)
n

2nn!(n + 1)! ln2n

⎛
⎜⎝ �k2

A(�kA + �ki
)2

⎞
⎟⎠. (6)

The double logarithms in the expression above resum
to a Bessel function of the first kind [55] (similar results
have recently been obtained in coordinate representation in
[56]). Phenomenological applications of this resummation,
not using a Monte Carlo approach, show good perturbative
convergence [21,22,57–63] whereas in [52] we implemented
this collinear resummation inBFKLex and investigated what
is its effect in the behavior of the gluon Green’s function. In
the following, whenever we use the term NLO in figures, we
will refer to the NLO kernel with the collinear contributions
from the double logarithms resummed by using the Bessel
function (NLO+DLs). The exact expression is given below:

K̃r
(
q, q′) = 1

π (q − q′)2

⎧⎨
⎩− ᾱs + a ᾱ2

s − b ᾱ2
s
|q′ − q|
q′ − q

ln

(
q2

q′2

)

+
(
q2

q′2

)b ᾱs
|q′−q|
q′−q

√√√√2
(
ᾱs − aᾱ2

s

)
ln2
(

q2

q′2
) J1

×
⎛
⎝
√

2
(
ᾱs − a ᾱ2

s

)
ln2
(
q2

q′2

)⎞
⎠
⎫⎬
⎭

+ ᾱ2
s

4π

{(
1 + n f

N 3
c

)(
3
(
q · q′)2 − 2q2q′2

16q2q′2

)

×
(

2

q2 + 2

q′2 +
(

1

q′2 − 1

q2

)
ln

q2

q′2

)

−
(

3 +
(

1 + n f

N 3
c

)(
1 −

(
q2 + q′2)2

8q2q′2

−
(
2q2q′2 − 3q4 − 3q′4)

16q4q′4
(
q · q′)2

))

×
∫ ∞

0
dx

1

q2 + x2q′2 ln

∣∣∣∣1 + x

1 − x

∣∣∣∣

+ 2
(
q2 − q′2)

(q − q′)2 (q + q′)2

(
1

2
ln

q2

q′2 ln
q2q′2 (q − q′)4
(
q2 + q′2)4

+
⎛
⎝
∫ − q2

q′2

0
−
∫ − q′2

q2

0

⎞
⎠ dt

ln(1 − t)

t

⎞
⎠

−
(

1 −
(
q2 − q′2)2

(q − q′)2 (q + q′)2

)((∫ 1

0
−
∫ ∞

1

)

×dz
1

(q′ − zq)2 ln
(zq)2

q′2

)}
, (7)

where,

a = 13

36

n f

N 3
c

+ 55

36
, b = 1

6

n f

N 3
c

+ 11

12
(8)

The BFKL equation at NLO is

(
ω − ω0

(
k2
a, λ

2
))

fω (ka,kb)

= δ(2) (ka − kb) +
∫

d2k

(
�

cusp
0

πk2 θ
(
k2 − λ2

)

+K̃r (ka,ka + k)
)
fω (ka + k,kb) (9)

with

ω0

(
q2, λ

)
= −

∫ q2

λ2

dk2

k2 �
cusp
0 + ᾱ2

s
3

2
ζ(3) (10)

�
cusp
0 ≡ ᾱs + ᾱ2

s

(
1

3
− ζ(2)

2

)
(11)

As mentioned previously, have two tagged jets such that
one is in the forward region at rapidity ya and the other in
the backward direction at rapidity yb while in between we
have emissions of minijets with transverse momenta ki and
rapidities yi with 1 ≤ i ≤ N and yb < yi < ya . Due to the
additive nature of rapidity under boosts, we shift the rapidi-
ties of the tagged jets and of the minijets such that yb = 0.
We also set yi−1 > yi , y0 = ya and yN+1 = yb = 0.
Finally, we define as jet multiplicity of an event, N , the
number of emitted minijets. We will not be using any jet
clustering algorithm in this study not to distort effects that
stem from BFKL dynamics. Nevertheless, we do need to
introduce a minimum pT cutoff for the minijets in order to
ensure IR safety. Therefore, we consider Jmin which is an
infrared cutoff simulating the resolution power of the col-
lider experiments or in other words the minijet veto: Jmin

should be interpreted as the minimum transverse momen-
tum resolution limit, any minijets above Jmin contribute to
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(a) (b)

(c) (d)

(e) (f)

Fig. 1 Multiplicity distributions for Y = 3, 6 and Jmin = 2, 10 and 25 GeV (top, middle, bottom)

the multiplicity of an event whereas minijets below Jmin are
unresolved.

To be more precise, let us picture a MN event where the
minijets are having transverse momenta k1 = 15 GeV, k2 = 3
GeV, k3 = 7 GeV, k4 = 30 GeV, k5 = 22 GeV, then its multi-
plicity will be N = 5 for Jmin = 2 GeV while for Jmin = 10
GeV its multiplicity will be N = 3. Schematically, a MN
event is characterized by:

ka, kb : transverse momenta of the MN jets

y0 = ya = Y,

yN+1 = yb = 0 : rapidities of the MN jets

k1, k2, . . . , kN : transverse momenta of the minijets

y1, y2, . . . , yN : rapidities of the minijets with yi−1 > yi
(12)

Now we focus on the study of the average rapidity ratio
of a MN event of multiplicity N , i.e.

〈Ry〉 = 1

N − 1

N−1∑
i=1

yi
yi−1

, (13)

and the newly defined average rapidity ratio scaled with the
pT of the minijets 〈RpT ,y〉, defined as

〈RpT ,y〉 = 1

N − 1

N−1∑
i=1

ki eyi

ki−1eyi−1
. (14)

Equation (13) differs from the original definition in [39] since
now i runs over the minijets and excludes the leading MN
jets. 〈RpT ,y〉 incorporates a pT dependence which carries
information related to the decoupling between transverse and
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(a) (b)

(c) (d)

(e) (f)

Fig. 2 Normalized 〈Ry〉 at LO (left) and NLO+DLs (right) for multiplicity N = 3, rapidity difference Y = 3, 6 and Jmin = 2 (top), Jmin = 10
(middle), Jmin = 25 (bottom)

longitudinal components of the emitted gluons. As we will
see in the next section, this quantity is more sensitive to the
increase of the total rapidity Y than 〈Ry〉.

In Ref. [39], we offered numerical results for 〈Ry〉 con-
sidering the whole gluon Green’s function which includes
the sum over all N = 1, 2, ..., Nfinal multiplicities. We now
consider a less academic situation where an experimental
resolution scale is present. We start presenting Fig. 1 where
we plot the contribution from each multiplicity for rapidities
Y = 3 and Y = 6, for Jmin = 2 (top) and Jmin = 10 (mid-
dle) and Jmin = 25 (bottom) both at LO (left) and NLO+DLs
(right) with ka = 20 GeV and kb = 30 GeV.

Let us first focus on Fig. 1a where Jmin = 2 GeV.
When Y = 6 we see that the largest contributions to the
cross-section come from N = 7, 8 multiplicities whereas
in Fig. 1e where Jmin = 25 GeV, the important multiplici-
ties are N = 1, 2. However, in our conventions here, a MN
event with N = 1, 2 is essentially a final state with 3, 4
hard jets since the experimental veto on the resolved mini-
jets is 20 GeV and there is no reason at present energies at
the LHC to believe that a NLO fixed order calculation will
fail to describe the hard scattering part of such a process.
One does not expect BFKL dynamics to add much to fixed
order predictions when the multiplicity is that small. BFKL
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(a) (b)

(c) (d)

(e) (f)

Fig. 3 Normalized 〈Ry〉 at LO (left) and NLO+DLs (right) for multiplicity N = 4, rapidity difference Y = 3, 6 and Jmin = 2 (top), Jmin = 10
(middle), Jmin = 25 (bottom)

dynamics is more relevant when we have events compatible
with the multi-Regge kinematics and that implies de facto
larger multiplicities. One important complication is that the
subset of events with small multiplicities when Jmin is large is
the dominant one and therefore it will be this part of events
that will drive the behavior of the observables we defined
above. Any BFKL related effects present in the subset of
events with larger multiplicities will be washed away since
it provides a much smaller contribution than that of the low
multiplicities subset.

To improve this situation we can set the multiplicity of
the final state to some fixed N and study 〈Ry〉 and 〈RpT ,y〉

for that specific multiplicity with the additional constraint
that N should be rather large. This implies of course that the
available events in the experimental data sets with fixed mul-
tiplicity will be much fewer that the whole MN jets events.
Setting the multiplicity to N = 3, 4, 5 should give enough
number of events for good statistics in the experimental
analyses and be large enough for BFKL effects not to be
overshadowed in future phenomenological analysis of LHC
data.

Let us now provide a more extensive presentation of our
results.

123



Eur. Phys. J. C (2021) 81 :1019 Page 7 of 17 1019

(a) (b)

(c) (d)

(e) (f)

Fig. 4 Normalized 〈Ry〉 at LO (left) and NLO+DLs (right) for multiplicity N = 5, rapidity difference Y = 3, 6 and Jmin = 2 (top), Jmin = 10
(middle), Jmin = 25 (bottom)

3 Results

In this section we will present the results or our numerical
analysis performed at LO and NLO+DLs, first for 〈Ry〉 and
then for 〈RpT ,y〉. In the first two subsections we mainly com-
pare the differences found for the two ratios after increasing
the rapidity span Y while in the last subsection we present
plots with a comparison between LO and NLO+DLs distri-
butions. Since this is not a phenomenological study against
data, we show normalized distributions as the best way to
compare shapes and qualitative characteristics in the plots.
In any case, even in a future phenomenological analysis, if

one imposes additional selection criteria for the events in the
experimental data (e.g. fixed multiplicity) a good practice
to deal with systematic uncertainties should be the usage of
normalized distributions. Therefore, we will present plots for

1
σN

dσN
d〈Ry〉 and 1

σN

dσN
d〈RpT ,y〉 .

We fix the minijet multiplicity to N = 3, 4, 5 and take a
range of values of Jmin = 2, 10, 25 GeV. It seems that the
minimum value of Jmin that can be realized experimentally is
20 GeV. Below that value the jet energy reconstruction uncer-
tainties are very large. Our reasoning for choosing the three
values is to have one value of Jmin where most of the BFKL
minijet radiation is taken into account (Jmin = 2 GeV), an
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(a) (b)

(c) (d)

(e) (f)

Fig. 5 Normalized 〈RpT ,y〉 at LO (left) and NLO+DLs (right) for multiplicity N = 3, rapidity difference Y = 3, 6 and Jmin = 2 (top), Jmin = 10
(middle), Jmin = 25 (bottom)

intermediate value where much of the radiation is really not
entering the observables (Jmin = 10 GeV) and a third value
of Jmin = 25 GeV which is experimentally accessible but for
which even more minijet radiation is left out from directly
entering the distributions. That way we should be able to see
whether there is a transition point in the observables depend-
ing on Jmin. As it turns out, 〈Ry〉 does not really depend
much on the actual value of Jmin whereas we do see a rel-
atively gradual transition in the multiplicity distributions in
Fig. 1 and the way that the 〈RpT ,y〉 distributions change as
we increase Jmin.

We use the two reference points at rapidity Y = 3 and Y =
6 for the MN jets setting their transverse momenta to be ka =

20 GeV and kb = 30 GeV. We choose to use an asymmetric
cut, namely to have ka and kb set to different values. In the first
complete NLO BFKL study of Mueller–Navelet jets [26], it
was argued that imposing a cut |ka | > E , |kb| > E + ,
where E is some lower cutoff and  realizes the asymmetry
between ka and kb, makes the fixed order calculation unstable
in the limit  → 0, therefore an asymmetric cut would be
preferable. Actually, the issue had already discussed in Ref.
[20] based on the work done in [64] (see also Ref. [65]). Later
works on Mueller–Navelet jets have incorporated in their
numerical analyses both symmetric (|kmin

a | = |kmin
b |) and

asymmetric cuts, emphasizing that experimental analyses in
asymmetric configurations would offer more discriminative
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(a) (b)

(c) (d)

(e) (f)

Fig. 6 Normalized 〈RpT ,y〉 at LO (left) and NLO+DLs (right) for multiplicity N = 4, rapidity difference Y = 3, 6 and Jmin = 2 (top), Jmin = 10
(middle), Jmin = 25 (bottom)

power in the search for BFKL related effects, see Refs. [28–
34].

This is similar to the lower end of the kinematical cuts
that can be used in MN experimental analyses at the LHC.
Larger values of rapidity separation, e.g.Y = 8, 9, are indeed
covered by the LHC experiments and in principle would be
more favourable for BFKL related effects to be manifest.
However, the number of MN events in that case is really
small and statistical uncertainties are dominant, especially
so, when one imposes the additional restriction of a fixed jet
(minijet) multiplicity. With Y = 3 and Y = 6 we study two
distinct regions in Y , the former is to cover the lower end
of rapidities where one should not expect large contributions

from BFKL dynamics and the latter is large enough for the
effects to kick in but not too large in order to have good
statistics.

3.1 〈Ry〉

In Figs. 2, 3 and 4 we plot 1
σN

dσN
d〈Ry〉 for N = 3, 4, 5 mul-

tiplicities respectively. In each subplot of all three figures,
we show two distributions, one curve is reserved for rapidity
Y = 3 and the other for Y = 6 whereas, subplots (a), (c)
and (e) are at LO and (b), (d) and ( f ) are at NLO+DLs. The
two subplots on the top row have Jmin = 2 GeV, the ones in
the middle have Jmin = 10 GeV and the two subplots at the

123



1019 Page 10 of 17 Eur. Phys. J. C (2021) 81 :1019

(a) (b)

(c) (d)

(e) (f)

Fig. 7 Normalized 〈RpT ,y〉 at LO (left) and NLO+DLs (right) for multiplicity N = 5, rapidity difference Y = 3, 6 and Jmin = 2 (top), Jmin = 10
(middle), Jmin = 25 (bottom)

bottom have Jmin = 25 GeV. In all cases, the values of 〈Ry〉
are bounded by 0 and 1.

For multiplicity N = 3, in Fig. 2 we see that there is a
peak at around 〈Ry〉 = 0.5 and the distributions are quite
broad. There is a clear asymmetry between the 〈Ry〉 < 0.5
and 〈Ry〉 > 0.5 regions that has to do with the asymmetry
in ka and kb. Since we need to have momentum conservation
on the transverse plane, �kb − �ka − �k1 − �k2 = �k3 which really
means that only two out of three minijets are generated freely
and hence the actual values of the two outermost jets do have
an impact. That effect is more pronounced as Jmin becomes
larger. While the distributions for Y = 3, 6 at LO and for
smaller values of Jmin present some differences, they are

very similar at NLO+DLs regardless of Jmin and the same
holds at LO but for Jmin = 25 GeV.

For multiplicity N = 4, in Fig. 3 we see that the peak is
shifted to larger values and in particular a bit beyond 〈Ry〉 =
0.65. The distributions are considerably less broad and more
symmetric to the left and right of the peak although there
is still some noticeable skewness. We again see noticeable
differences between the distributions for Y = 3, 6 at LO and
for smaller values of Jmin (Fig. 3a, b) while in the remaining
subplots the distributions for the two values of rapidity are
very similar. The peak seems to shift very slightly to larger
values as Jmin becomes larger.
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(a) (b)

(c) (d)

(e) (f)

Fig. 8 Comparison of LO and NLO+DLs normalized 〈Ry〉 distributions for multiplicity N = 3, rapidity differences Y = 3 (left) and Y = 6
(right) and Jmin = 2 (top), Jmin = 10 (middle), Jmin = 25 (bottom)

Lastly, in Fig. 4 for N = 5 the same trend continues.
We see that the peak is shifted to even larger values, closer
now to 〈Ry〉 ∼ 0.7. The distributions are more narrow and
more symmetric than for N = 4, nevertheless, the tail of the
distributions at small values drops more gradually than the
tail near 〈Ry〉 ∼ 1. They are also more similar for the two
rapidity values Y = 3, 6 in all six subplots than in smaller
multiplicities. The peak again shifts very slightly to larger
values as Jmin increases.

It is remarkable that for Jmin = 2 and especially for
Jmin = 10, in all Figs. 2, 3, 4, the distributions at NLO+DLs
are very similar for Y = 3 and Y = 6.

Last but not least, these observables are invariant under the
introduction of higher order corrections. This provides a very
robust set of predictions from the theoretical view point. This
actually might not be very surprising if we keep in mind that,
at the energies we are investigating, preasymptotic effects
play a very important role and one cannot assume without
oversimplifying neither that the LO solution simulates simply
the multi-Regge kinematics (MRK) nor that the NLO+DLs
solution signifies that we are in quasi-multi-Regge kinemat-
ics (QMRK). Even on a more formal level, after switching on
the NLO corrections of the BFKL evolution, it doesn’t auto-
matically mean that one jumps from MRK to QMRK. For the
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(a) (b)

(c) (d)

(e) (f)

Fig. 9 Comparison of LO and NLO+DLs normalized 〈Ry〉 distributions for multiplicity N = 4, rapidity differences Y = 3 (left) and Y = 6
(right) and Jmin = 2 (top), Jmin = 10 (middle), Jmin = 25 (bottom)

iterative solution implemented in BFKLex, as one can see in
Eq. (2), there is no strong ordering in rapidities requirement
imposed by any kinematic constraint, the nested integrations
over yi require a normal ordering such that yi > yi+1 even
at LO.

3.2 〈RpT ,y〉

In Figs. 5, 6 and 7 we plot 1
σN

dσN
d〈RpT ,y〉 for N = 3, 4, 5

multiplicities respectively. As in the previous subsection, in
each subplot of all three figures, we show two distributions,
one curve is reserved for rapidityY = 3 and the other forY =

6 whereas, subplots (a), (c) and (e) are at LO and (b), (d)

and ( f ) are at NLO+DLs. The two subplots on the top row
have Jmin = 2 GeV, the ones in the middle have Jmin = 10
GeV and the two subplots at the bottom have Jmin = 25
GeV. In all cases, the values of 〈RpT ,y〉 are bounded by 0
but do not have an upper limit since we average over ratios

ki eyi
ki−1e

yi−1 . The factor eyi
eyi−1 is always smaller than 1 but the

factor ki
ki−1

is practically unbounded (although it is expected
to be typically of order one in multi-Regge kinematics).

For multiplicity N = 3, in Fig. 5 we see that we have clear
peaks situated in the region between 0.2 and 0.5 and that
the distributions drop fast near 〈RpT ,y〉 ∼ 0 whereas they
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(a) (b)

(c) (d)

(e) (f)

Fig. 10 Comparison of LO and NLO+DLs normalized 〈Ry〉 distributions for multiplicity N = 5, rapidity differences Y = 3 (left) and Y = 6
(right) and Jmin = 2 (top), Jmin = 10 (middle), Jmin = 25 (bottom)

present a smoother drop for 〈RpT ,y〉 > 1. The peaks appear
at lower values and the distributions become more narrow
as Y increases. An increase of the value Jmin also makes
the distributions more narrow although this is more striking
when we move from Jmin = 2 GeV to Jmin = 10 GeV and
less so when we move from Jmin = 10 GeV to Jmin = 25
GeV. The impact of increasing Jmin on the positions of the
peaks is more complicated. For Y = 3, the peaks are clearly
shifting to larger values whereas for Y = 6 they still seem to
follow that tread but to a much lesser degree.

As we increase the multiplicity to N = 4 and N = 5
the above observations generally hold. However, the actual
positions of the peaks are gradually found at larger values

such that for N = 5 they are in the region 〈RpT ,y〉 ∼ 0.5
(Y = 6) and 〈RpT ,y〉 ∼ 0.8 (Y = 3). We should also note
that the distributions become more narrow as the multiplicity
increases.

3.3 Comparison between LO and NLO+DLs

Here, in Figs. 8, 9 and 10 we compare the LO and the
NLO+DLs distributions of 〈Ry〉, whereas in Figs. 11, 12
and 13 we compare the LO and the NLO+DLs distributions
of 〈RpT ,y〉. The layout of subplots in all these figures is the
same, namely, Jmin = 2 GeV on the top, Jmin = 10 GeV
in the middle and Jmin = 25 GeV at the bottom. To the left,
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(a) (b)

(c) (d)

(e) (f)

Fig. 11 Comparison of LO and NLO+DLs normalized 〈RpT ,y〉 distributions for multiplicity N = 3, rapidity differences Y = 3 (left) and Y = 6
(right) and Jmin = 2 (top), Jmin = 10 (middle), Jmin = 25 (bottom)

we place the plots with Y = 3 and to the right the ones with
Y = 6. Each subplot contains two curves, one at LO and the
other at NLO+DLs.

Regarding the average ratio 〈Ry〉 studied in Figs. 8, 9
and 10, we notice that the stability upon the inclusion of
the NLO+DLs corrections is total for all three multiplicities.
Even more so since it holds for all three different values of
Jmin and for both values of Y . The stability is also very high
for the average ratio 〈RpT ,y〉 as can be seen in Figs. 11, 12
and 13 but not as remarkable as for 〈Ry〉. In particular, it is
better for Y = 6 and for smaller N . The position of the peak
of the distributions seems to be extremely stable whereas

the most noticeable difference between LO and NLO+DLs
concerns the actual height of the peak.

4 Conclusions

We have revisited some observables proposed some time ago
in MN configurations at the LHC. These were initially the
average jet azimuthal angle φ, the average jet pT and the
average ratio of rapidities. In the present study we were con-
cerned with the rapidities and the pT of the minijets. We
have improved the initial observables in two ways. Firstly,
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(a) (b)

(c) (d)

(e) (f)

Fig. 12 Comparison of LO and NLO+DLs normalized 〈RpT ,y〉 distributions for multiplicity N = 4, rapidity differences Y = 3 (left) and Y = 6
(right) and Jmin = 2 (top), Jmin = 10 (middle), Jmin = 25 (bottom)

we removed any direct influence of the MN jets by using as
input the rapidities and the transverse momenta of the mini-
jets in between them to probe better the inner dynamics of
the multi-Regge kinematics. Secondly, we combined the pT
and the rapidities of the minijets into a new observable so that
in the end we have two average rapidity ratios, 〈Ry〉 which
is very similar to the original proposal and 〈RpT ,y〉 which is
scaled by the transverse momenta of the minijets.

In addition, since both ATLAS and CMS use a veto on
the resolved minijets of the order of 20 GeV, we introduced
in the present study three different values of a theoretical
equivalent to the minijet pT veto, namely 2, 10 and 25 GeV.

We presented plots of the distributions of the two average
rapidity ratios for fixed minijet multiplicities both at LO and
at NLO+DLs. We found that the LO and NLO+DLs distri-
butions are in remarkable agreements for 〈Ry〉 for all Jmin

values and for both reference rapidities whereas for 〈RpT ,y〉
they are still in very good agreement but more so for the large
values of Y .

We foresee that these observables will contribute to isolate
BFKL related effects in MN jets final states at the LHC. For
that, we will need to perform a full phenomenological study
including PDFs and jet vertices at NLO which we hope to
do in the near future. We also hope that this work will draw
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(a) (b)

(c) (d)

(e) (f)

Fig. 13 Comparison of LO and NLO+DLs normalized 〈RpT ,y〉 distributions for multiplicity N = 5, rapidity differences Y = 3 (left) and Y = 6
(right) and Jmin = 2 (top), Jmin = 10 (middle), Jmin = 25 (bottom)

the attention of the community to the importance of taking
into account in theoretical works the minijet pT veto used by
the LHC experiments as well as restricting the multiplicity
of resolved final state jets into fixed values.
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